N
N

N

HAL

open science

Peer-to-Peer Metadata Management for Knowledge
Discovery Applications in Grids

Gabriel Antoniu, Antonio Congiusta, Sébastien Monnet, Domenico Talia,

Paolo Trunfio

» To cite this version:

Gabriel Antoniu, Antonio Congiusta, Sébastien Monnet, Domenico Talia, Paolo Trunfio.

Peer-

to-Peer Metadata Management for Knowledge Discovery Applications in Grids. Talia, Domenico;
Yahyapour, Ramin; Ziegler, Wolfgang (Eds.). Grid Middleware and Service Challenges and Solutions,
Springer, pp.219-233, 2008, CoreGrid Series, 978-0-387-78445-8 (Print) 978-0-387-78446-5 (Online).
10.1007/978-0-387-78446-5_15 . inria-00447924

HAL 1d: inria-00447924
https://inria.hal.science/inria-00447924
Submitted on 16 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00447924
https://hal.archives-ouvertes.fr

PEER-TO-PEERMETADATAMANAGEMENT FOR
KNOWLEDGEDISCOVERY APPLICATIONSINGRIDS®

Gabriel Antonid

Gabriel. Antoniu@irisa.fr

Antonio Congiusta
acongiusta@deis.unical.it

Sébastien Monnét

Sebastien.Monnet@irisa.fr

Domenico Talid
talia@deis.unical.it

Paolo Trunfid
trunfio@deis.unical.it

L |RISAVINRIA

Campus de Beaulieu, 35042 Rennes cedex, FRANCE
2 DEIS, University of Calabria

\ia P. Bucci 41C, 87036 Rende, Italy

Abstract Computational Grids are powerful platforms gathering cotaponal power and
storage space from thousands of geographically distidbrgsources. The ap-
plications running on such platforms need to efficiently aglthbly access the
various and heterogeneous distributed resources thay fies can be achieved
by using metadata information describing all availabl®veses. It is therefore
crucial to provide efficient metadata management architestand frameworks.
In this paper we describe the design of a Grid metadata mere&geservice.
We focus on a particular use case: the Knowledge Grid aathite which pro-
vides high-level Grid services for distributed knowledggcdvery applications.
Taking advantage of an existing Grid data-sharing serviemely JUuxMEM,
the proposed solution lies at the border between peerdogestems and Web
services.

*This work was carried out for the CoreGRID IST project n°0882unded by the European Commission.

1. Introduction

Computational Grids are powerful platforms gathering cotaponal power
and storage space from thousands of resources geograyphstiibuted in
several sites. These platforms are large-scale, hetezogengeographically
distributed and dynamic architectures. Furthermore tlogain many types
of resources such as software tools, data sources, spenifizvaire, etc. These
resources are spread over the whole platform. Therefoi® ciucial to pro-
vide a mean for the applications running on Grids to locatind access the
available resources in such large-scale, heterogenegugic, distributed
environment.

Each Grid resource can be described by a metadata item iiegMa doc-
ument). Such a metadata document may contain the 1) theitestrof a
particular resource, 2) its localization and 3) informatgm the resource usage
(eg., command line options of a software tool, format of @adaurce, protocol
used to access a particular node, etc.). Thus, given a mesougtadata, it is
possible to access the resource. All the metadata itemsrilieg the whole
set of resources available in a given Grid have to be managadefficient and
reliable way especially in large-scale Grids.

In this paper we propose a software architecture of a seatabtl metadata
management service. We focus on a particular use case: atetadnagement
forthe Knowledge Grid [7]. The Knowledge Grid isetvice-oriented software
distributed framework that aims to offer high-level Gridhgees for knowledge
discovery applications running on computational Gridse Rmowledge Grid
services are built on top of existing, low-level Grid seessuch as GRAM [12],
GridFTP [1] or MDS [11].

Within the Knowledge Grid architecture, metadata providgsrmation
about how an object (either a data source or an algorithm)ceaaccessed.
It consists of information on its actual location and on @snfiat (for a data
source) or its usage (for an algorithm).

As metadata is actually stored as pieces of data (eg., XM§)fitey may
be treated as such. We take advantage of the good propextidsted by
an already existing Grid data-sharing servidexMgwMm [2, 4], to store and
retrieve metadata. We then build a distributed and reglecaterarchical index
of available metadata.

In the next section we briefly present the architecture okihewledge Grid
and focus on its metadata management needs. Section 3igrésiux MEM
Grid data-sharing service that we use to reliably store amve both resource
metadata and the distributed replicated index. Sectionsdriies our archi-
tecture for a metadata management Grid service tailorethtBoKnowledge
Grid and based oduxMEeM. Finally, Section 5 presents ongoing work and
concludes this paper.

Peer-to-Peer Metadata Management 3

2. TheKnowledge Grid
21 Knowledgediscovery in Grids

Nowadays, big companies have to deal with daily generarge lamounts
of data. They need tools to both store this information atieres knowledge
from it. Computational Grids [14] offering high computatad power and
large storage resources can be used to store and procesaraogints of data.
Furthermore their geographically distributed nature feedl with the companies
architecture. Indeed companies data sources and congmatigiower may be
spread all over the world.

However, performing knowledge discovery over such a disted and of-
ten heterogeneous architecture, using data sources anchitang algorithms
spread over thousands of nodes is not a trivial task. Bugldind running a
distributed knowledge discovery application on a Grid rezpihigh-level ser-
vices. Data sources to be mined have to be located, furthrertheir format has
to be discovered somehow (they could be relational databsess files, etc.).
As well, data mining algorithms and software tools have tddoalized and
their usage has to be known. Then the computations (datagnaigorithms
running over data sources) have to be scheduled over aeaail nodes. A
knowledge discovery application can be complex, congjstimumerous se-
guential or parallel data mining algorithms working on itleal or different
data sources. Some data mining algorithm may be run withdteegtoduced
by another data mining algorithm, leading to task depenidsnetc.

The Knowledge Grid provides high-level services and a trsemdly inter-
face VEGA [9] that allows a user to easily describe a distatduknowledge
discovery application, it then takes care of locating tlsueces (data sources,
algorithms, computational nodes), scheduling tasks, aeciging the applica-
tion. Within the Knowledge Grid, the application designatythas to describe
anabstract execution plan, with VEGA, he can even do it graphically. Aa-
stract execution plan defines at high level the algorithms to be executed and the
data sources to be mined. The Knowledge Grid services ¢daHerid services
for short thereafter) are responsible to locate the regsuand services and in-
stantiate the execution plan which becomesmatantiated execution plan like
the one presented in Figure 1.

An instantiated execution plan contains a set of tasks -msgigned Grid
resources- to be done (data transfers and computatioris)executed by the
K-Grid services and it may be refined as resources may becuailalde or
unavailable in a Grid.

<ExecutionPlan type="instantiated">
<Task label="taskl">
<Program href="minos.cs.icar.cnr.it/software/DB2Extractor.xml"
title="DB2Extractor on minos.cs.icar.cnr.it"/>
<Input href="minos.cs.icar.cnr.it/data/car-imports_db2.xml"
title="car-imports.db2 on minos.cs.icar.cnr.it"/>
<Output href="minos.cs.icar.cnr.it/data/imports-85c_db2.xml"
title="imports-85c.db2 on minos.cs.icar.cnr.it"/>
</Task>
<Task label="checkl">
<ResourceCheck method="soft"/>
</Task>
<Task label="task2">
<Program href="minos.cs.icar.cnr.it/software/GridFTP.xml"
ti ="GridFTP on minos.cs.icar.cnr.it"/>
<Input href="minos.cs.icar.cnr.it/data/imports-85c_db2.xml"
title="imports-85c.db2 on minos.cs.icar.cnr.it"/>
<Output href="abstract_hostl/data/imports-85c_db2.xml"
title="imports-85c.db2 on abstract_hostl"/>
</Task>

<Task label="task6">
<Program href="abstract_hostl/software/autoclass3-3-3.xml"
title="autoclass on abstract hostl"/>

<Input href="abstract_ hostl/data/imports-85c_db2.xml"
title="imports-85c.db2 on abstract hostl"/>

<Output href="abstract_hostl/data/classes.xml"
title="classes on abstract_hostl"/>

</Task>

<TaskLink ep:from="taskl" ep:to="checkl"/>
<TaskLink ep:from="checkl" ep:to="task2"/>
<TaskLink ep:from="task2" ep:to="task3"/>

<TaskLink ep:from="task5" ep:to="task6"/>

<Resourcelnstantiation abstractResource="abstract_hostl">
<candidateResource>icarus.cs.icar.cnr.it</candidateResource>
<candidateResource>telesio.cs.icar.cnr.it</candidateResource>

</Resourcelnstantiation>

</ExecutionPlan>

Figurel. A sample instantiated execution plan (from [15]).

2.2 TheKnowledge Grid architecture

The K-Grid services are organized in a two-layer softwaohigecture: 1)
the High-level K-Grid layer and 2) the Core-level K-Grid &y In its current
implementation, the different services composing the Kledge Grid are Grid
services interacting by using the WSRF [10] standard. Theroration of the
K-Grid services is described by Figure 2. The High-level Ke@ayer includes
services to compose, validate and execute distributed lenlge discovery ap-
plications. The main services of the High-level K-Grid seeg are:

» TheDataAccessService(DAS), responsible for data sources and mining
results publication and search.

m TheToolsand Algorithms Access Service (TAAS), responsible for data
mining and visualization tools and algorithms publicationd search.

s The Execution Plan Management Service (EPMS), allowing to de-
scribe a distributed knowledge discovery application biyding an ex-
ecution graph with constraints on resources. It generateabatract
execution plan (resources are not know yet).

Peer-to-Peer Metadata Management 5

» The Results Presentation Service (RPS), offering services for knowl-
edge discovery results presentation;

The services exhibited by the Core K-Grid layer are:

m The Knowledge Discovery Service (KDS), responsible for metadata
management. Every resource (nodes, algorithms and taibs sdurces
and mining results) of the Knowledge Grid is described by taadtegta
item. In the Knowledge Grid, resource metadata is a XML dasoim
stored in @&Knowledge Metadata Repository (KMR).

m TheResourceAllocation and Execution M anagement Service(RAEM S),
responsible to instantiate an abstract execution plarsek the KDS ser-
vice to find resources satisfying the constraints imposetheybstract
execution plan. It is also responsible for the applicatieecation man-
agement.

Hight-level K-Grid layer

DAS
Data access
Service

TAAS
Tools and algorithms
access service

EPMS
Execution plan
management service

RPS
Results
presentation service

Core-level K-Grid layer

KDS RAEMS

Knowledge discovery =~ |<#—————=| Resources alloc. and
service exec. manag. service

i i
- -

Figure2. The Knowledge Grid software architecture.

2.3 Current KDSdesign and limitations

The Knowledge Directory Service (KDS) is responsible fondilang meta-
data describing Knowledge Grid resources. A sample metaslgatesented by
Figure 3. Such resources include hosts, data repositéoigls,and algorithms
used to extract, analyze, and manipulate data, executaons phnd knowledge
models obtained as result of mining processes.

The metadata information is represented by XML documersedtin a
component called Knowledge Metadata Repository (KMR).flinetionalities

<DataMiningSoftware name="AutoClass">

<Description>
<KindOfData>flat file</KindOfData>
<KindOfKnowledge>clusters</KindOfKnowledge>
<KindOfTecnique>statisties</KindOfTecnique>
<DrivingMethod>autonomous knowledge miner</DrivingMethod>

</Description>

<Usage>

<Syntax>
<Arg description="executable" type="required" value="/usr/autoclass/autoclass">

<Arg description="make a classification" type="alternative" value="-search">
<Arg description="a .db2 file" type="required"/>
<Arg description="a .hd2 file" type="required"/>
<Arg description="a .model file" type="required"/>
<Arg description="a .s-params file" type="required"/>

</Arg>

<Arg description="create a report" type="alternative" value="-reports">
<Arg description="a .results-bin file" type="required"/>

</Arg>
</Arg>
</Syntax>
<Hostname>icarus.cs.icar.cnr.it</Hostname>
<ManualPath>/usr/autoclass/read-me.text</ManualPath>
<DocumentationURL>http://ic-www.arc.nasa.gov/ic/projects/...</DocumentationURL>
</Usage>
</DataMiningSoftware>

Figure3. An extract from an XML metadata sample for the AutoClassvearfe (presented in
[15]).

of the KDS are mostly used by DAS and TAAS services while iitig and
searching for datasets and tools to be used in a KDD appulicatDAS and
TAAS services always interact with a local instance of theS{&hich in turn
may invoke one or more other remote KDS instances.

The KDS exports three main operations:

- publishResource, used to publish metadata related to a given resource
into the KMR;

- searchResource, for locating resources that match some given search
criteria;

- retrieveMetadata, invoked to retrieve metadata associated to a given
resource identified by a provided KDS URL.

It should be noted that whengublishResource is performed, only an
interaction between a DAS/TAAS service and the local KDSdseded, be-
cause each KMR instance stores metadata about resourdidblavan the
same Grid node on which the KMR itself is hosted. On the coptrahen
a searchResource is invoked, the related query is first dispatched from the
DAS/TAAS to the co-located KDS service, which then answergltoecking
the local KMR, and in turn forwards the same query to remoteSKith the
aim of finding more matches.

TheretrieveMetadatareceives a KDS URL returned by a previous invo-
cation of thesearchResource operation, and uses it to contact the remote KDS
on which the resource is available to retrieve the assatiattadata document.

Peer-to-Peer Metadata Management 7

It appears clear, thus, that thearchResource is the most complex activity
performed by the KDS, because it involves interactions ammtdination with
remote instances of the same service. Onthe other handuiidshe mentioned
that the architecture of the Knowledge Grid does not prescany particular
mode of interaction and/or protocol between the differeDiSinstances.

The current implementation, for instance, is adopting tthgourpose one
of the simplest strategies: the query forwarding is perfanby contacting
concurrently all of the known remote KDS instances (avajdoops).

In this paper we propose a new KDS design based on a sharetudist
index handled by a Grid data-sharing service and a peeedo-fechnique.
This is useful for reducing the number of remote KDS instancentacted
when forwarding a search query.

Resources metadata like the one presented by Figure 3 shewltbred in
a persistent and fault tolerant storage. Furthermore, thay be shared by
multiple applications, and sometimes updated. Therefbiis,necessary to
maintain the consistency between the different copies tiwt exist in the
Grid. Thus we use a data-sharing servitex MEM, which offers transparent
access to persistent mutable data, to store the XML filegspanding to pieces
of metadata.

3. JuxMEewm: aGrid data-sharing service

In this section we present theuxMEewm Grid data-sharing service used in
the design of the metadata management Grid service.

3.1 A hierarchical architecture

From the metadata management Grid service perspedtiveMEM is a
service providing transparent access to persistent, neytstiared data. When
allocating memory, a client has to specify in how many $itbe data should
be replicated, and on how many nodes in each site. This seisit the in-
stantiation of a set of data replicas, associated to a groppers calledlata
group. Usually each node runs one single peer. The allocationifpremeturns
a globaldata-1D, which can be used by the other nodes to identify existing.dat
To obtain read and/or write access to a data block, the sliemlly need to use
this data-ID.

The data group is hierarchically organized, as illustraied~igure 4: the
Global Data Group (GDG) gathers all provider nodes holding a replica of the
same piece of data. These nodes can be distributed in diffsites, thereby

1A site is a set of clustered nodes, it can be a physical clusitain a cluster federation, or close from a
latency viewpoint.

8

increasing the data availability if faults occur. The GDG@Gliigided intoLocal
Data Groups (LDG), which correspond to data copies located in a same site.

In order to access a piece of data, a client has to be attachedecific
LDG (to “map” the data). Then, when the client performs thedferrite and
synchronization operations, the consistency protoca@riayanages data syn-
chronization and data transmission between clients, LD@s@DG, within
the strict respect of the consistency model.

Figure4. JuxMEeM: a hierarchical architecture.

3.2 JuxMEewM softwar e architecture

The JuxMEM Grid service is composed of a set of layers presented in
Figure 5. The lower layer Juk is thieyx MEM kernel. Itrelies on JXTA [16] to
offer to the uppers layers publish/subscribe operatidfisiemt communication
and storage facilities. Every node involved or usihgxMEeM is therefore
managed in a peer-to-peer way using JXTA. JXTA is is a set ofoppls
allowing nodes (Grid nodes, PDA, etc.) to communicate arhlorate in
a P2P manner. The implementations of these protocols mdtig ability to
obtain efficient communications on Grids [6].

Above Juk, a fault-tolerance layer is responsible for higvigal data repli-
cation. It offers the concept delf-Organizing Group (SOG), a SOG is a
replication group that is able to adapt itself in case of dyitachanges (by
creating new replicas or removing old ones), this providhesability to keep
fault tolerance guarantees even in presence of failures.

The upper layer is responsible for data consistency managgen serves
data access requests, manages locks and maintain pengliregt®lists.

A multi-protocol architecture. The layers presented above are built as inter-
changeable software modules. Therefore, itis possibkedion data item stored
by the Grid data-sharing service to specify a particulasistancy protocol or

a particular SOG implementation.

Peer-to-Peer Metadata Management 9

Consistency management layer

! !

Fault tolerance layer
Self organizing groups (SOG)

! !

JuxMem Kernel
Juk

Figure5. JuxMEM layered software architecture.

The JuxMEM service can not be used in its current design to manage meta-
data, but additional features must be provided. Data storelbxMEM is
accessible (localizableg)nly by using its associated data-ID. Metadata items
have to be localizable using only names and attributes. dhewing sec-
tion presents our approach to build a metadata managenmeitesasing the
JuxMEM data-sharing service.

4. A Grid metadata management service

From the Knowledge Grid viewpoint, the Grid metadata maregg service
consists of a particular design and implementation for tB&kservice and the
KMR repository. The service presented below serves regjiiesh the TAAS
and the DAS High-level K-Grid services but also from the RA&RMore K-Grid
service (see Figure 2).

Our approach relies on the use of thexMEwM Grid data-sharing service
prototype presented in the previous section. Metadatasita stored within
the Grid data-sharing service.

4.1 Metadata storage and retrieval

Requirements. Resources metadata should remain available in the Grid.
Therefore they should be stored ifiaalt tolerant andpersistent manner. This
may provide the ability to access metadata information itesy failures and
disconnections. Furthermore, some metadata shouldptiatable. In the
Knowledge Grid use case, a piece of metadata may describeesbl of a
knowledge discovery task, this result may be refined latechmveads to meta-
data modifications. If aresource location is changing,otsdthalso be reflected

by updating the associated metadata. Finally, metadat® h&@socalizable by
providing name, attributes and constraints upon the desgriesource.

10

Storing metadata in a Grid data-sharing service. To achieve high avail-
ability of metadata despite failures we store them intheMEeM Grid data-
sharing service. Each metadata item describing a resauthelgh replicated
and associated to one unique ID as described in Section 8.IDttan then be
used to retrieve metadata information stored in the Grid-gdhtiring service.
Availability and consistency (eg., in case of concurrentatps) is then also
managed by the Grid data-sharing service. The metadata it will not
be updated (e.g. describing a large data source that wilbeatpdated and
will not be moved) can take advantage Jafx MEM multi-protocol feature by
using a very simple and efficient consistency protocol witteynchronization
operations. ThusJuxMEM is used as $ault-tolerant, distributed andshared
KMR (see Section 2) anduxMEM’s data-IDs are used as KDS URLSs.

Locality. Metadata information is strongly linked with the resourtee-
scribes. Therefore if the resource becomes unavailaldecatresponding
metadata information would become useless (it can alsonfecnisleading).
Therefore, regardingux MEM hierarchical architecture, metadata information
should be stored within the site containing the resourcestdbes (i.e. over
one uniqueJuxMEeM LDG). If all the nodes of the site fail (due to a power
failure in a computer room for instance) the resources nagiaof this site be-
come unavailable but it is also the case of the describediress. Thus, we
choose to store metadata information in the described resgisite using only
oneJuxMEM LDG per metadata item. However notice that LDG are reliable
self-organizing groups, ie. the failure of a node does nad I® the loss of
metadata items.

4.2 Fault-tolerant distributed indexes

While looking for metadata information using teearchResource opera-
tion, application$ can provide information like a name (eg., a data source name
“clientdatal” or an algorithm name “J48") or a set of atttdmiand constraints
as the one in the “Description” section of the metadata piteskein Figure 3.
An accurate description of the kind of requests the KDS sershould be able
to serve is given in [15].
Therefore it is necessary to have a mean to find a metadatifietegwhich
then permit to retrieve the metadata information itselipgsnames and at-
tributes that represent the resource described by the atatad

Distributed indexes. Usual approaches rely on the use of a centralized
indexing system. It can be either a relational databaseMi4“8QL [18] or a

2In our current use case the applications are the DAS, TAASRKEMS K-Grid services.

Peer-to-Peer Metadata Management 11

LDAP [13] server (used in previous Knowledge Grid implenagioins). We use
distributed indexes: in each site composing the Grid, wentaai asite index
of the published resources metadata within this site. Titesisdex contains
tuples consisting of the resource name, attributes (asea\mdtor) and the
resource metadata identifier (izxMEM data-ID).

Fault tolerance. There again we rely on théuxMEM data-sharing ser-
vice: the site indexes are data item that can be stordd kM EM. Therefore
they are automatically replicated for fault tolerance. ibthat a site index
only contains information of its own site, furthermore itedonot contain the
whole metadata information but only metadata item namessante relevant
attributes. Thus, a site index size remains limited.

Index sharing. The WSRF KDS instances servipgblishResource and
searchResource requests are clients of theuxMEM service. In each site
it is possible to have multiple KDS services having mappedite’s index
as illustrated in Figure 6. The KDS are responsible for pardhe index,
finding the metadata identifier, fetching the metadata ¢uie identifier) and
sending back the retrieved metadata to the requester (, TAAS or
RAEMS). These tasks are achieved by interacting withJtheMEM service.
Itis important to notice that the site index is a data itemestdyJ ux MEM and
mapped by the multiple KDS: the consistency of the shareekimnglensured by
the grid data-sharing service while new publications accur

The shared site indexes allows KDS instances to retiiesaly (on their
node) KDS URLs of metadata describing resources spreadlwiesite nodes.

4.3 Bigpicture

431 Metadata publication. Metadata publications done by the DAS
and the TAAS are made through theblishResource operation provided by
KDS. When a KDS receives such a request:

1 It stores the corresponding XML file withihux MEM,
2 locks the index to ensure no concurrent publish occurs,

3 updates it, adding the new resource metadata index etimpges and
JuxMEeM data-ID of the XML file).

The KDS then releases the lock upon the index. To allow therd{iDS to
continue serving search requests while an update occurgsaa particular
consistency protocol allowing read operations concut@atwrite operation.
Such a protocol is available IlUXMEM, it is described and evaluated in details
in [3]. Note that the publication of a site resource affectlydhe index stored

12

DAS TAAS EPMS

\/
T e F
= .

RPS

JuxMem data-sharing service

(distributed and replicated KMR)
Replicated local D

index Replicated KDS
list

‘ Replicated Node 2
XML files

(metadata information)

Figure6. In each site KDS interact with thBuxMEM service to access 1) the local index, 2)
the KDS list, and 3) the metadata information itself.

in this site and used by the local KDSs, furthermore resauroetadata are
also stored on intra-sitdéuxMewm providers (in LDGSs). Therefore a publish
operation does not imply inter-site communications.

432 Metadatasearch. When K-Grid services need to search a partic-
ular resource metadata, they request the KDS running oratine siode or a
randomly chosen remote KDS within their own itdhe KDS receiving such

a request search in its mapped (in its local memory) sitexind¢he resource

is found, it gets the corresponding XML file using the datastBred in the site
index. In this case the resource is available within the ssitee If a corre-
sponding resource can not be found in the site index, the Kib@alrds it to
one randomly chosen KDS in each other site involved in thd Gsing JXTA
peer-to-peer communication layers as illustrated by EiqurTo achieve this, a
partial list of KDS instances is stored and maintained witheJuxMEewm Grid

3A round robin policy could also be used.

Peer-to-Peer Metadata Management 13

data-sharing service. This list is replicated hierardhida the whole platform
using the GDG/LDG hierarchy presented in Section 3.

JuxMem data-sharing service
(distributed and replicated KMR)

Replicated local Replicated local
index 1 index 2

Replicated Replicated
XML files XML files \

ted| KDS list

KDS |5 KDS

Node A1 Node B2

KDS
Node A2 Node B1

Node B3

Site A Site B

- Request forwarding among sites

Figure7. Among sites, KDS cooperate using the hierarchically repdid KDS list.

At initialization, a KDS maps its site index and the KDS ligtcan then
add itself into this list. If a KDS does not answer to a reqiegher publish
or search), it is removed from this list. The KDS list is nopegted to be
frequently updated as Grid nodes are assumed more stablpdkeas in peer-
to-peer systems.

4.4 Technical concerns

From a technical view point our solution implies integrgtitie Jux MEM
and the Knowledge Grid research prototypdsxMEM entities are managed
in a peer-to-peer manner, using Sun Microsystems JXTA potgpwhile the
entities involved in the Knowledge Grid service use the W&Rig standard.

The junction between the two different sets of protocolsoisedby the new
KDS implementation: KDS instances are part of both Ilm&MEM platform,
as clients of theJuxMEM Grid service, and they serve WSRF requests from
the Knowledge Grid servicepiblishResource andsearchResource).

The KDSs are also responsible to parse the distributed indexdistributed
nature of the index implies a cooperation between the KDi@irees distributed
in different sites all over the Grid. This cooperation is masla peer-2-peer

14

manner, taking advantage of the Grid data-sharing semwis®te, manage and
share a neighbor list (the KDS list).

5. Conclusion

Metadata data management in large scale, heterogeneagapgkically
distributed and dynamic architectures such as computdtnds is an impor-
tant problem. Providing an efficient and reliable metadeiaagement service
allows applications to easily access heterogeneous @oapread over thou-
sands of nodes.

The solution we presented in this paper takes advantageezHdyl exist-
ing work in Grids. By integrating thduxMEewM Grid data-sharing service in
the design of a metadata management service for the Knowlédigl, XML
metadata files are stored on a fault tolerant and consisippbst, and are kept
close to the resources they describe. The proposed twbielex hierarchy
allows the applications to get resources located in their site if they exist or
in remote ones otherwise, enhancing locality.

The integration of the two research prototypes is in pragrasd we plan to
evaluate this solution on a real Grid platform such as G6A®&([17, 8]. The
format of the distributed index should then be further itigeged, using bina-
ries trees for instance. The peer-to-peer cooperationdetviKDS instances
should also be enhanced, for instance by selecting sev&3&kKor inter-site
cooperation.

References

[1] Bill Alicock, Joe Bester, John Bresnahan, Ann L. ChederCarl Kesselman, Sam Meder,
Veronika Nefedova, Darcy Quesnel, Steven Tuecke, and lateF&ecure, Efficient Data
Transport and Replica Management for High-Performanca-Ddensive Computing. In
Proceedings of the 18th |EEE Symposium on Mass Sorage Systems (MSS 2001), Large
Scale Sorageinthe Web, page 13, Washington, DC, USA, 2001. IEEE Computer Society.

[2] Gabriel Antoniu, Marin Bertier, Eddy Caron, Frédéric dpeez, Luc Bougé, Mathieu
Jan, Sébastien Monnet, and Pierre SeRsture Generation Grids, chapter GDS: An
Architecture Proposal for a Grid Data-Sharing Servicegga33—152. CoreGRID series.
Springer-Verlag, 2006.

[3] Gabriel Antoniu, Loic Cudennec, and Sébastien Monnetteiiing the entry consis-
tency model to enable efficient visualization for code-dimgpgrid applications. Ir6th
|EEE/ACM International Symposiumon Cluster Computing and the Grid, pages 552-555,
Singapore, May 2006. CCGrid 2006.

[4] Gabriel Antoniu, Jean-Francois Deverge, and Sébadfiennet. How to bring together
fault tolerance and data consistency to enable grid daténgh&oncurrency and Com-
putation: Practice and Experience, (17), 2006. To appear.

[5] Gabriel Antoniu, Philip Hatcher, Mathieu Jan, and DaRidNoblet. Performance Eval-
uation of JXTA Communication Layers. FProceedings of the Workshop on Global and
Peer-to-Peer Computing (GP2PC 2005), Cardiff, UK, May 2005. Held in conjunction

Peer-to-Peer Metadata Management 15

(6]

[7]

9]

(10]

(11]

(12]

(17]
(18]

with the 5th IEEE/ACM International Symposium on Clustem@uting and the Grid
(CCGrid '05). Best presentation award.

Gabriel Antoniu, Mathieu Jan, and David A. Noblet. Eriaglthe P2P JXTA Platform for
High-Performance Networking Grid Infrastructures. Rroceedings of the 1st Interna-
tional Conference on High Performance Computing and Communications (HPCC ' 05),
number 3726 in Lecture Notes in Computer Science, pages44P9-Sorrento, Italy,
September 2005. Springer.

Mario Cannataro and Domenico Talia. The knowledge dZmmmun. ACM, 46(1):89-93,
2003.

Franck Cappello, Eddy Caron, Michel Dayde, Frédéricjpes, Emmanuel Jeannot, Yvon
Jegou, Stéphane Lanteri, Julien Leduc, Nouredine MelaBla@me Mornet, Raymond
Namyst, Pascale Primet, and Olivier Richard. Grid’5000:akde Scale, Reconfigurable,
Controlable and Monitorable Grid Platform. Rroceedings of the 6th IEEE/ACM In-
ternational Workshop on Grid Computing (Grid '05), Seattle, Washington, November
2005.

Antonio Congiusta, Domenico Talia, and Paolo Trunfio. &4 A Visual Environment
for Developing Complex Grid Applications. Proc. of the First International Workshop
on Knowledge Grid and Grid Intelligence (KGGI 2003), pages 56—66, Halifax, Canada,
October 2003. Department of Mathematics and Computingn8eieSaint Mary’s Uni-
versity. ISBN 0-9734039-0-X.

Antonio Congiusta, Domenico Talia, and Paolo TrunfigstBbuted data mining services
leveraging WSRFFuture Generation Computer Systems, 23(1):34—41, January 2007.

Karl Czajkowski, Steven Fitzgerald, lan Foster, andl®&sselman. Grid Information
Services for Distributed Resource SharingPinceedings of the Tenth | EEE International
Symposiumon High-Performance Distributed Computing, pages 181-184, San Francisco,
CA, August 2001. IEEE Press.

Karl Czajkowski, lan Foster, Nick Karonis, Cral Kegsaln, Stewart Martin, Warren
Smith, and Steve Tuecke. Resource Management Architeftiuietacomputing Sys-
tems. InProc. IPPS'SPDP:Workshop on Job Scheduling Strategies for Parallel Process-
ing, pages 62—-82, March 1998.

Jeff Hodges and Robert Morgan. Lightweight Directorgc&ss Protocol (v3): Technical
Specification. IETF Request For Comment 3377, Network Wayksroup, 2002.

Carl Kesselman and lan Fost&he Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, November 1998.

Carlo Mastroianni, Domenico Talia, and Paolo Trunfio.etitlata for managing grid
resources in data mining applicatiordaurnal of Grid Computing, 2(1):85-102, March
2004.

Bernard Traversat, Ahkil Arora, Mohamed AbdelazizkgIDuigou, Carl Haywood, Jean-
Christophe Hugly, Eric Pouyoul, and Bill Yeager. ProjecT&.0 Super-Peer Virtual
Network. http://www.jxta.org/project/www/docs/JXTA2.0protocolsl.pdf,
May 2003.

Grid’5000 Projecthttp://www.grid5000.org/.

MySQL. http://wuw.mysql.com/.

