Time Optimal Self-assembly for 2D and 3D Shapes: The Case of Squares and Cubes.

Abstract : We refine the current notion of time in self-assembly, and show constructions which are time- optimal, not only up to a constant. For this, we refine the notion of time-complexity of an assembly, to separate the influence of the concentrations from the intrinsic speed of the assembly. We give a time-optimal construction for the square. A formulation of tile-sets in terms of time allows us to build an optimal system for 3D-cubes.
Type de document :
Communication dans un congrès
14th International Meeting on DNA Computing, Jun 2008, Prague, Czech Republic. pp.0, 2008, 〈10.1007/978-3-642-03076-5〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00448556
Contributeur : Florent Becker <>
Soumis le : mardi 19 janvier 2010 - 13:09:46
Dernière modification le : mardi 24 avril 2018 - 13:52:28

Identifiants

Collections

Citation

Florent Becker, Éric Rémila, Nicolas Schabanel. Time Optimal Self-assembly for 2D and 3D Shapes: The Case of Squares and Cubes.. 14th International Meeting on DNA Computing, Jun 2008, Prague, Czech Republic. pp.0, 2008, 〈10.1007/978-3-642-03076-5〉. 〈inria-00448556〉

Partager

Métriques

Consultations de la notice

146