. Relative-errors-w.-r.-t and . Mc, Option parameters: K = 100, H = 90, r = 0.04879, T = 0.1. Algorithm parameters: h ? space step, N ? number of time steps in the FWH-method (or the parameter in the FWH&PW-method), S ? spot price

J. Abate and W. Whitt, A Unified Framework for Numerically Inverting Laplace Transforms, INFORMS Journal on Computing, vol.18, issue.4, pp.408-421, 2006.
DOI : 10.1287/ijoc.1050.0137

J. Abate and W. Whitt, Numerical Inversion of Laplace Transforms of Probability Distributions, ORSA Journal on Computing, vol.7, issue.1, pp.36-43, 1995.
DOI : 10.1287/ijoc.7.1.36

C. Albanese and A. Kuznetsov, Discretezation schemes for subordinated processes, 2003.

K. Amin, Jump Diffusion Option Valuation in Discrete Time, The Journal of Finance, vol.21, issue.5, pp.1833-1863, 1993.
DOI : 10.1111/j.1540-6261.1993.tb05130.x

L. Alili and A. Kyprianou, Some remarks on first passage of L??vy processes, the American put and pasting principles, The Annals of Applied Probability, vol.15, issue.3, pp.2062-2080, 2005.
DOI : 10.1214/105051605000000377

F. Avram, T. Chan, and M. Usabel, On the valuation of constant barrier options under spectrally one-sided exponential L??vy models and Carr's approximation for American puts, Stochastic Processes and their Applications, vol.100, issue.1-2, pp.75-107, 2002.
DOI : 10.1016/S0304-4149(02)00104-7

A. Asmussen, F. Avram, and M. R. Pistorius, Russian and American put options under exponential phase-type L??vy models, Stochastic Processes and their Applications, vol.109, issue.1, pp.79-111, 2004.
DOI : 10.1016/j.spa.2003.07.005

URL : http://doi.org/10.1016/j.spa.2003.07.005

O. E. Barndorff-nielsen, Processes of normal inverse Gaussian type, Processes of Normal Inverse Gaussian Type, pp.41-68, 1998.
DOI : 10.1007/s007800050032

O. E. Barndorff-nielsen and S. Levendorski?ilevendorski?levendorski?i, Feller processes of normal inverse Gaussian type, Feller Processes of Normal Inverse Gaussian type, pp.318-331, 2001.
DOI : 10.1088/1469-7688/1/3/303

M. Boyarchenko, Carrs randomization for finite-lived barrier options: proof of convergence " . Working paper, 2008.

S. I. Boyarchenko and S. Z. Levendorski?ilevendorski?levendorski?i, Generalizations of the Black-Scholes equation for truncated Lévy processes, 1999.

S. I. Boyarchenko and S. Z. Levendorski?ilevendorski?levendorski?i, OPTION PRICING FOR TRUNCATED L??VY PROCESSES, International Journal of Theoretical and Applied Finance, vol.03, issue.03, pp.549-552, 2000.
DOI : 10.1142/S0219024900000541

S. I. Boyarchenko and S. Z. Levendorski?ilevendorski?levendorski?i, Non-Gaussian Merton- Black-Scholes theory, World Scientific, vol.9, 2002.
DOI : 10.1142/4955

S. I. Boyarchenko and S. Z. Levendorski?ilevendorski?levendorski?i, American options: the EPV pricing model, Annals of Finance, vol.1, issue.3, pp.267-292, 2005.
DOI : 10.1007/s10436-004-0010-7

S. I. Boyarchenko and S. Z. Levendorski?ilevendorski?levendorski?i, Irreversible Decisions under Uncertainty (Optimal Stopping Made Easy) Series: Studies in Economic Theory, 2007.

S. I. Boyarchenko and S. Z. Levendorski?ilevendorski?levendorski?i, Pricing American options in regime-switching models, SIAM J. Control Optim, vol.48, p.13531376, 2009.

M. Broadie and J. Detemple, ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications, Management Science, vol.50, issue.9, pp.1145-1177, 2004.
DOI : 10.1287/mnsc.1040.0275

P. Carr, Randomization and the American Put, Review of Financial Studies, vol.11, issue.3, pp.597-626, 1998.
DOI : 10.1093/rfs/11.3.597

P. Carr and D. Faguet, Fast accurate valuation of American options, 1994.

P. Carr, H. Geman, D. B. Madan, and M. Yor, The Fine Structure of Asset Returns: An Empirical Investigation, The Journal of Business, vol.75, issue.2, pp.305-332, 2002.
DOI : 10.1086/338705

P. Carr and A. Hirsa, Why be backward?, Risk, vol.26, pp.103-107, 2003.

K. Chourdakis, Switching Levy Models in Continuous Time: Finite Distributions and Option Pricing Centre for Computational Finance and Economic Agents (CCFEA) Working Paper Available at SSRN: http://ssrn, p.838924, 2005.

R. Cont and P. Tankov, Financial modelling with jump processes, 2004.
DOI : 10.1201/9780203485217

URL : https://hal.archives-ouvertes.fr/hal-00002693

R. Cont and E. Voltchkova, A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential L??vy Models, SIAM Journal on Numerical Analysis, vol.43, issue.4, pp.1596-1626, 2005.
DOI : 10.1137/S0036142903436186

J. Crosby, N. L. Saux, and A. Mijatovi´cmijatovi´c, Approximating general classes of Lévy processes by hyperexponential jump-diffusion processes, 2008.

E. Eberlein and U. Keller, Hyperbolic Distributions in Finance, Bernoulli, vol.1, issue.3, pp.281-299, 1995.
DOI : 10.2307/3318481

E. Eberlein, U. Keller, and K. Prause, New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model, The Journal of Business, vol.71, issue.3, pp.371-406, 1998.
DOI : 10.1086/209749

G. I. Eskin, Boundary Problems for Elliptic Pseudo-Differential Equations, Nauka, Moscow (Transl. of Mathematical Monographs, vol.52, 1973.

. Providence, Rhode Island: Amer, Math. Soc, 1980.

A. Hirsa and D. B. Madan, Pricing American options under variance gamma, The Journal of Computational Finance, vol.7, issue.2, 2003.
DOI : 10.21314/JCF.2003.112

L. Hörmaner, Analysis of Partial Differential Opertors, 1985.

M. Jeannin and M. Pistorius, A transform approach to compute prices and Greeks of barrier options driven by a class of L??vy processes, Quantitative Finance, vol.15, issue.6, 2009.
DOI : 10.1142/S0219024904002402

Z. Jiang and M. Pistorius, On perpetual American put valuation and first-passage in a regime-switching model with jumps, Finance and Stochastics, vol.4, issue.3, pp.331-355, 2008.
DOI : 10.1007/s00780-008-0065-9

I. Koponen, Analytic approach to the problem of convergence of truncated L??vy flights towards the Gaussian stochastic process, Physical Review E, vol.52, issue.1, pp.1197-1199, 1995.
DOI : 10.1103/PhysRevE.52.1197

S. G. Kou, A Jump-Diffusion Model for Option Pricing, Management Science, vol.48, issue.8, pp.1086-1101, 2002.
DOI : 10.1287/mnsc.48.8.1086.166

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Kou and H. Wang, First passage times of a jump diffusion process, Advances in Applied Probability, vol.15, issue.02, pp.504-531, 2003.
DOI : 10.1287/mnsc.48.8.1086.166

O. E. Kudryavtsev and S. Z. Levendorski?ilevendorski?levendorski?i, Pricing of first touch digitals under normal inverse Gaussian processes, International Journal of Theoretical and Applied Finance, issue.9 6, pp.915-949, 2006.

O. E. Kudryavtsev and S. Z. Levendorski?ilevendorski?levendorski?i, Fast and accurate pricing of barrier options under Levy processes, J. Finance and Stochastics, issue.13 4, pp.531-562, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00332224

A. E. Kyprianou and M. R. Pistorius, Perpetual options and Canadization through fluctuation theory, Annals of Applied Probability, vol.13, pp.1077-1098, 2003.

C. Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling. Series, 2009.

S. Z. Levendorski?ilevendorski?levendorski?i, PRICING OF THE AMERICAN PUT UNDER L??VY PROCESSES, International Journal of Theoretical and Applied Finance, vol.07, issue.03, pp.303-335, 2004.
DOI : 10.1142/S0219024904002463

S. Z. Levendorski?ilevendorski?levendorski?i, Early exercise boundary and option prices in L??vy driven models, Quantitative Finance, vol.4, issue.5, pp.525-547, 2004.
DOI : 10.1080/14697680400023295

S. Z. Levendorski?ilevendorski?levendorski?i, PSEUDODIFFUSIONS AND QUADRATIC TERM STRUCTURE MODELS, Mathematical Finance, vol.6, issue.1, pp.393-424, 2005.
DOI : 10.1016/S0304-4076(00)00092-0

S. Levendorskii, O. Kudryavtsev, and V. Zherder, A Note on Relative Efficiency of Some Numerical Methods for Pricing of American Options Under Levy Processes, SSRN Electronic Journal, vol.9, issue.2, p.6, 2005.
DOI : 10.2139/ssrn.610542

A. Lipton, Assets with jumps, Risk, pp.149-153, 2002.

D. B. Madan, P. Carr, and E. C. Chang, The Variance Gamma Process and Option Pricing, Review of Finance, vol.2, issue.1, pp.79-105, 1998.
DOI : 10.1023/A:1009703431535

A. Matache, P. Nitsche, and C. Schwab, Wavelet Galerkin pricing of American options on L??vy driven assets, Quantitative Finance, vol.8, issue.4, pp.403-424, 2005.
DOI : 10.1142/9789812385192

S. Metwally and A. Atiya, Using Brownian Bridge for Fast Simulation of Jump-Diffusion Processes and Barrier Options, The Journal of Derivatives, vol.10, issue.1, pp.43-54, 2002.
DOI : 10.3905/jod.2002.319189

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical recipes in C: The Art of Scientific Computing, 1992.

E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensinaler Randwerttaufgaben, Math. Ann, vol.102, 1930.
DOI : 10.1007/bf01782368

K. Sato, Lévy processes and infinitely divisible distributions, 1999.

DOI : 10.1142/S0219024904002402

P. P. Valko and J. Abate, Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion, Computers & Mathematics with Applications, vol.48, issue.3-4, pp.629-636, 2004.
DOI : 10.1016/j.camwa.2002.10.017