
HAL Id: inria-00452887
https://inria.hal.science/inria-00452887v2

Submitted on 14 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bandit-Based Genetic Programming
Jean-Baptiste Hoock, Olivier Teytaud

To cite this version:
Jean-Baptiste Hoock, Olivier Teytaud. Bandit-Based Genetic Programming. 13th European Confer-
ence on Genetic Programming, Apr 2010, Istanbul, Turkey. �inria-00452887v2�

https://inria.hal.science/inria-00452887v2
https://hal.archives-ouvertes.fr

Bandit-Based Genetic Programming

J.-B. Hoock and O. Teytaud

TAO (Inria), LRI, UMR 8623(CNRS - Univ. Paris-Sud),
bat 490 Univ. Paris-Sud 91405 Orsay, France, hoock@lri.fr

Abstract. We consider the validation of randomly generated patterns
in a Monte-Carlo Tree Search program. Our bandit-based genetic pro-
gramming (BGP) algorithm, with proved mathematical properties, out-
performed a highly optimized handcrafted module of a well-known
computer-Go program with several world records in the game of Go.

1 Introduction

Genetic Programming (GP) is the automatic building of programs for solving a
given task. In this paper, we investigate a bandit-based approach for selecting
fruitful modifications in genetic programming, and we apply the result to our
program MoGo.

When testing a large number of modifications in a stochastic algorithm with
limited ressources in an uncertain framework, there are two issues:

– which modifications are to be tested now ?
– when we have no more resources (typically no more time), we must decide

which modifications are accepted.

The second issue is often addressed through statistical tests. However, when
many modifications are tested, it is a problem of multiple simultaneous hypoth-
esis testing: this is far from being straightforward; historically, this was poorly
handled in many old applications. Cournot stated that if we consider a signif-
icance threshold of 1% for differences between two sub-populations of a popu-
lation, then, if we handcraft plenty of splittings in two sub-populations, we will
after a finite time find a significant difference, whenever the two populations are
similar. This was not for genetic programming, but the same thing holds in GP:
if we consider 100 random mutations of a program, all of them being worst than
the original program, and if we have a 1% risk threshold in the statistical valida-
tion of each of them, then with probability (1−1/100))100 ' 37% we can have a
positive validation of at least one harmful mutation. Cournot concluded, in the
19th century, that this effect was beyond mathematical analysis; nonetheless this
effect is clearly understood today, with the theory of multiple hypothesis testing
- papers cited below clearly show that mathematics can address this problem.

The first issue is also non trivial, but a wide literature has been devoted to
it: so-called bandit algorithms. This is in particular efficient when no prior infor-
mation on the modifications is available, and we can only evaluate the quality
of a modification through statistical results.

Usually the principles of a Bernstein race are as follows:

– decide a risk threshold δ0;
– then, modify the parameters of all statistical tests so that all confidence

intervals are simultaneously true with probability ≥ 1− δ0;
– then, as long as you have computational resources, apply a bandit algorithm

for choosing which modification to test, depending on statistics; typically, a
bandit algorithm will choose to spend computational resources on the modi-
fication which has the best statistical upper bound on its average efficiency;

– at the end, select the modifications which are significant.

A main reference, with theoretical justifications, is [22]. A main difference here is
that we will not assume that all modifications are cumulative: here, whenever two
modifications A and B are statistically good, we can’t select both modifications
- maybe, the baseline + A + B will be worse than the baseline, whenever both
baseline+A and baseline+B are better than the baseline.

In section 2, we present non-asymptotic confidence bounds. In section 3 we
present racing algorithms. Then, section 4 presents our algorithm and its theo-
retical analysis. Section 5 is devoted to experiments.

2 Non-asymptotic confidence bounds

In all the paper, we consider fitness values between 0 and 1 for simplifying the
writing. The most classical bound is Hoeffding’s bound. Hoeffding’s bound states
that with probability at least 1 − δ, the empirical average r̂ verifies |r̂ − Er| ≤
deviationHoeffding(δ, n) where n is the number of simulations and where

deviationHoeffding(δ, n) =
√

log(2/δ)/(2n). (1)

[1, 22] has shown the efficiency of using Bernstein’s bound instead of Ho-
effding’s bound, in some settings. The bound is then deviationBernstein =

σ̂
√

2 log(3/δ)/n + 3 log(3/δ)/n, where σ̂ is the empirical standard deviation.
Bernstein’s version will not be used in our experiments, because the variance is
not small in our case; nonetheless, all theoretical results also hold with Bern-
stein’s variant.

3 Racing algorithms

Racing algorithms are typically (and roughly, we’ll be more formal below) as
follows:

Let S be equal to S0, some given set of admissible modifications.
while S 6= ∅ do

Select s = select() ∈ S with some algorithm
Perform one Monte-Carlo evaluation of s.
if s is statistically worse than the baseline then
S ← S \ {s} // s is discarded

else if s is statistically better than the baseline then

Accept s; S ← S \ {s} s is accepted
end if

end while

With relevant statistical tests, we can ensure that this algorithm will select
all “good” modifications (to be formalized later), reject all bad modifications,
and stop after a finite time if all modifications have a non-zero effect. We refer
to [22] for more general informations on this, or [18, 15] for the GP case; we
will here focus on the most relevant (relevant for our purpose) case. In genetic
programming, it’s very clear that even if two modifications are, independently,
good, the combination of these two modifications is not necessarily good. We will
therefore provide a different algorithm in section 4 with a proof of consistency.

4 Theoretical analysis for genetic programming

We will assume here that for a modification s, we can define:

– e(s), the (of course unknown) expected value of the reward when using modi-
fication s. This expected value is termed the efficiency of s. We will assume in
the sequel that the baseline is 0.5 - an option is good if and only if it performs
better than 0.5, and the efficiency is the average result on experiments.

– n(s), the number of simulations of s already performed.
– r(s) the total reward of s, i.e. the sum of the rewards of the n(s) simulations

with modification s.
– ub(s), an upper bound on the efficiency of s, to be computed depending on

the previous trials (ub(s) will be computed thanks to Bernstein bounds or
Hoeffding bounds).

– lb(s), a lower bound on the efficiency of s (idem).

The two following properties will be proved for some specific functions lb and
ub; the results around our BGP (bandit-based genetic programming) algorithm
below hold whenever lb and ub verify these assumptions.

– Consistency: with probability at least 1− δ0, for all calls to ub and lb, the
efficiency of s is between lb(s) and ub(s):

e(s) ∈ [lb(s), ub(s)]. (2)

– Termination: when the number of simulations of s goes to infinity, then

ub(s)− lb(s)→ 0. (3)

These properties are exactly what is ensured by Bernstein’s bounds or Hoeffd-
ing’s bounds. They will be proved for some variants of ub and lb defined below
(Lemma 1, using Hoeffding’s bound); they will be assumed in results about the
BGP algorithm below. Therefore, our results about BGP (Theorem 1) will hold
for our variants of lb and ub. Our algorithm and proof do not need a specific
function ub or lb, provided that these assumptions are verified. However, we pre-
cise below a classical form of ub and lb, in order to point out that there exists

such ub and lb; moreover, they are easy to implement. lb and ub are computed
by a function with a memory (i.e. with static variables):

Function computeBounds(s) (variant 1)
Static internal variable: nbTest(s), initialized at 0.
Let n be the number of times s has been simulated.
Let r be the total reward over those s simulations.
nbTest(s) = nbTest(s) + 1

Let lb(s) = r/n− deviationHoeffding

(
δ0/(#S × 2nbTest(s)), n

)
.

Let ub(s) = r/n+ deviationHoeffding

(
δ0/(#S × 2nbTest(s)), n

)
.

What is important in these formula is that the sum of the δ0/(#S ×
2nbTests(s)), for s ∈ S and nbTest(s) ∈ {1, 2, 3 . . . }, is at most δ0. By union
bound, this implies that the overall risk is at most δ0. The proof of the consis-
tency and of the termination assumptions are therefore immediate consequences
of Hoeffding’s bounds (we could use Bernstein’s bounds if we believed that small
standard deviations matter). A (better) variant, based on

∑
n≥1 1/n2 = π2/6 is

Function computeBounds(s) (variant 2)
Static internal variable: nbTest(s), initialized at 0.
Let n be the number of times s has been simulated.
Let r be the average reward over those s simulations.
nbTest(s) = nbTest(s) + 1

Let lb(s) = r/n−deviationHoeffding

(
δ0/(#S ×

(
π2nbTest(s)2

6

)
), n

)
.

Let ub(s) = r/n+deviationHoeffding

(
δ0/(#S ×

(
π2nbTest(s)2

6

)
), n

)
.

We show precisely the consistency of computeBounds below.

Lemma 1 (Consistency of computeBounds.). For all S finite, for all algo-
rithms calling computeBounds and simulating modifications in arbitrary order,
with probability at least 1−δ0, for all s and after each simulation, lb(s) ≤ e(s) ≤
ub(s).

The proof is removed due to length constraints.
Our algorithm, BGP (Bandit-based Genetic Programming), based on the

computeBounds function above, is as follows:

BGP algorithm.
S = S0 = some initial set of modifications.
while S 6= ∅ do

Select s ∈ S // the selection rule is not specified here
// (the result is independent of it)

Let n be the number of simulations of modification s.
Simulate s n more times (i.e. now s has been simulated 2n times).

//this ensures nbTests(s) = O(log(n(s)))
computeBounds(s)
if lb(s) > 0.501 then

Accept s; exit the program.
else if ub(s) < 0.504 then
S ← S \ {s} // s is discarded.

end if
end while

We do not specify the selection rule. The result below is independent of the
particular rule.

Theorem 1 (Consistency of BGP). When using variant 1 or variant 2 of
computeBounds, or any other version ensuring consistency (Eq. 2) and termi-
nation (Eq. 3), BGP is consistent in the sense that:

1. if at least one modification s has efficiency > .504, then with probability at
least 1 − δ0 a modification with efficiency > .501 will be selected (and the
algorithm terminates).

2. if no modification has efficiency > .504, then with probability at least 1− δ0
the algorithm will
(a) either select a modification with efficiency > .501 (and terminate);
(b) or select no modification and terminate.

Remark: The constants 0.501 and 0.504 are arbitrary provided that the
latter is greater or equal to the former. The proof is removed due to length
constraints.

We have only considered |S| < ∞. The extension to S = {s1, s2, s3, . . . }
countable is straightforward but removed due to length constraints.

5 Experiments

Life is a Game of Go in which rules have been made unnecessarily complex, ac-
cording to an old proverb. As a matter of fact, Go has very simple rules, is very
difficult for computers, is central in education in many Asian countries (part of
school activities in some countries) and has NP-completeness properties for some
families of situations[12], and PSPACE-hardness for others[21], and EXPTIME-
completeness for some versions [23]. It has also been chosen as a testbed for
artificial intelligence by many researchers. The main tools, for the game of Go,
are currently MCTS/UCT (Monte-Carlo Tree Search, Upper Confidence Trees);
these tools are also central in many difficult games and in high-dimensional
planning. An example of nice Go game, won by MoGo as white in 2008 in the
GPW Cup, is given in Fig. 1 (left). Since these approaches have been defined [7,
10, 17], several improvements have appeared like First-Play Urgency [25], Rave-
values [5, 14] (see ftp://ftp.cgl.ucsf.edu/pub/pett/go/ladder/mcgo.ps for
B. Bruegman’s unpublished paper), patterns and progressive widening [11, 8],
better than UCB-like (Upper Confidence Bounds) exploration terms [20], large-
scale parallelization [13, 9, 6, 16], automatic building of huge opening books [2].
Thanks to all these improvements, our implementation MoGo already won even
games against a professional player in 9x9 (Amsterdam, 2007; Paris, 2008; Tai-
wan 2009), and recently won with handicap 6 against a professional player

Fig. 1. Left: A decisive move (number 28) played by MoGo as white, in the GPW Cup
2008. Right: An example from Senseis of good large pattern in spite of a very bad small
pattern. The move 2 is a good move.

(Tainan, 2009), and with handicap 7 against a top professional player, Zhou
Junxun, winner of the LG-Cup 2007 (Tainan, 2009). Besides impressive results
for the game of Go, MCTS/UCT have been applied to non-linear optimization
[4], optimal sailing [17], active learning [24]. The formula used in the bandit
is incredibly complicated, and it is now very hard to improve the current best
formula [20].

Here we will consider only mutations consisting in adding patterns in our
program MoGo. Therefore, accepting a mutation is equivalent to accepting a
pattern. We experiment random patterns for biasing UCT. The reader interested
in the details of this is referred to [20]. Our patterns contain jokers, black stones,
empty locations, white stones, locations out of the goban, and are used as masks
over all the board: this means that for a given location, we consider patterns like
“there is a black stone at coordinate +2,+1, a stone (of any color) at coordinate
+3,0, and the location at coordinate -1,-1 is empty”. This is a very particular
form of genetic programming. We consider here the automatic generation of
patterns for biasing the simulations in 9x9 and 19x19 Go. Please note that: (1)
When we speak of good or bad shapes here, it is in the sense of ”shapes that
should be more simulated by a UCT-like algorithm”, or ”shapes that should
be less simulated by a UCT-like algorithm”. This is not necessarily equivalent
to “good” or “bad” shapes for human players (yet, there are correlations). (2)
In 19x19 Go, MoGoCVS is based on tenths of thousands of patterns as in [8].
Therefore, we do not start from scratch. A possible goal would be to have similar
results, with less patterns, so that the algorithm is faster (the big database of
patterns provides good biases but it is very slow). (3) In 9x9 Go, there are no
big library of shapes available; yet, human expertise has been encoded in MoGo,
and we are far from starting from scratch. Engineers have spent hundreds of
hours manually optimizing patterns. The goals are both (i) finding shapes that
should be more simulated (ii) finding shapes that should be less simulated.

Section 5.1 presents our experiments for finding good shapes in 9x9 Go.
Section 5.2 presents our experiments for finding bad shapes in 9x9 Go. Section

5.3 presents our unsuccessful experiments for finding both good and bad shapes
in 19x19, from MoGoCVS and its database of patterns as in [8]. Section 5.4
presents results on MoGoCVS with patterns removed, in order to improve the
version of MoGoCVS without the big database of pattern.

5.1 Finding good shapes for simulations in 9x9 Go

Here the baseline is MoGo CVS. All programs are run on one core, with 10 000
simulations per move. All experiments are performed on Grid5000. The selection
rule, not specified in BGP, is the upper bound as in UCB[19, 3]: we simulate s
such that ub(s) is maximal. We here test modifications which give a positive bias
to some patterns, i.e. we look for shapes that should be simulated more often.

For each iteration, we randomly generate some individuals, and test them
with the BGP algorithm. For the three first iterations, 10 patterns were ran-
domly generated; the two first times, one of these 10 patterns was validated; the
third time, no pattern was validated. Therefore, we have three version of MoGo:
MoGoCVS, MoGoCVS+P1, and MoGoCVS+P1+P2, where P1 is the pattern
validated at the first iteration and P2 is the pattern validated at the second
iteration. We then tested the relative efficiency of these MoGos as follows:

Tested code Opponent Success rate

MoGoCVS + P1 MoGoCVS 50.78%± 0.10%

MoGoCVS + P1 + P2 MoGoCVS +P1 51.2%± 0.20%

MoGoCVS + P1 + P2 MoGoCVS 51.9%± 0.16%

We also checked that this modification is also efficient for 100 000 simula-
tions per move, with success rate 52.1 ± 0.6% for MoGoCVS+P1+P2 against
MoGoCVS. There was no pattern validated during the third iteration, which
was quite expensive (one week on a cluster). We therefore switched to another
variant; we tested the case |S0| = 1, i.e. we test one individual at a time.We
launched 153 iterations with this new version. There were therefore 153 tested
patterns, and none of them was validated.

5.2 Finding bad shapes for simulations in 9x9 Go

We now switched to the research of negative shapes, i.e. patterns with a negative
influence of the probability, for a move, to be simulated. We kept |S0| = 1, i.e.
only one pattern tested at each iteration. There were 173 iterations, and two
patterns P3 and P4 were validated. We verified the quality of these negative
patterns as follows, with mogoCVS the version obtained in the section above:

Tested code Opponent Success rate

MoGoCVS + P1 + P2 + P3 MoGoCVS + P1 + P2 50.9%± 0.2%

MoGoCVS + P1 + P2 + P3 MoGoCVS 52.6%± 0.16%

MoGoCVS + P1 + P2 + P3 + P4 MoGoCVS + P1 + P2 + P3 50.6%± 0.13%

MoGoCVS + P1 + P2 + P3 + P4 MoGoCVS 53.5%± 0.16%

This leads to an overall success of 53.5% against MoGoCVS, obtained by BGP.

5.3 Improving 19x19 Go with database of patterns

In 19x19 Go, all tests are performed with 3500 simulations per move. Here also,
we tested the case |S0| = 1, i.e. we test one individual at a time. We tested
only positive biases. The algorithm was launched for 62 iterations. Unfortu-
nately, none of these 62 iterations was accepted. Therefore, we concluded that
improving these highly optimized version was too difficult. We switched to an-
other goal: having the same efficiency with faster simulations and less memory
(the big database of patterns strongly slowers the simulations and takes a lot of
simulations), as discussed below.

5.4 Improving 19x19 Go without database of patterns

We therefore removed all the database of patterns; the simulations of MoGo
are much faster in this case, but the resulting program is nonetheless weaker
because simulations are far less efficient (see e.g. [20]). Fig. 1 (right) presents
a known (from Senseis http://senseis.xmp.net/?GoodEmptyTriangle#toc1)
difficult case for patterns: move 2 is a good move in spite of the fact that locally
(move 2 and locations at the east, north, and north east) form a known very
bad pattern (termed empty triangle), termed empty triangle, and is nonetheless
a good move due to the surroundings.

We keep |S0| = 1, 127 iterations. There were six patterns validated, vali-
dated at iterations 16, 22, 31, 57, 100 and 127. We could validate these patterns
Q1,Q2,Q3,Q4,Q5,Q6 as follows. MoGoCVS+AE means MoGoCVS equipped
with the big database of patterns extracted from games between humans.

Tested code Opponent Success rate

MoGoCVS + Q1 MoGoCVS 50.9%± 0.13%
MoGoCVS + Q1 + Q2 MoGoCVS + Q1 51.2%± 0.28%
MoGoCVS + Q1 + Q2 + Q3 MoGoCVS + Q1 + Q2 56.7%± 1.50%
MoGoCVS + Q1 + ... + Q4 MoGoCVS + Q1 + Q2 + Q3 52.1%± 0.39%
MoGoCVS + Q1 + ... + Q5 MoGoCVS + Q1 + ... + Q4 51.1%± 0.20%
MoGoCVS + Q1 + ... + Q6 MoGoCVS + Q1 + ... + Q5 54.1%± 0.78%

MoGoCVS + Q1 + Q2 MoGoCVS 53.4%± 0.50%
MoGoCVS + Q1 + Q2 + Q3 MoGoCVS 57.3%± 0.49%
MoGoCVS + Q1 + ... + Q4 MoGoCVS 59.4%± 0.49%
MoGoCVS + Q1 + ... + Q5 MoGoCVS 58.6%± 0.49%
MoGoCVS + Q1 + ... + Q6 MoGoCVS 61.7%± 0.49%

MoGoCVS MoGoCVS + AE 26.6%± 0.20%
MoGoCVS + Q1 MoGoCVS + AE 27.5%± 0.49%
MoGoCVS + Q1 + Q2 MoGoCVS + AE 28.0%± 0.51%
MoGoCVS + Q1 + Q2 + Q3 MoGoCVS + AE 30.9%± 0.46%
MoGoCVS + Q1 + ... + Q4 MoGoCVS + AE 32.1%± 0.43%
MoGoCVS + Q1 + ... + Q5 MoGoCVS + AE 30.9%± 0.46%
MoGoCVS + Q1 + ... + Q6 MoGoCVS + AE 32.8%± 0.47%

An important property of BGP is that all validated patterns are confirmed by
these independent experiments. We see however that in 19x19, we could reach

roughly 30% of success rate against the big database built on human games
(therefore our BGP version uses far less memory than the other version); we will
keep this experiment running, so that maybe we can go beyond 50 %. Nonethe-
less, we point out that we already have 60 % against the version without the
database, and the performance is still increasing (improvements were found at
iterations 16,22,57,100,122,127, with regular improvements - we have no plateau
yet) - therefore we successfully improved the version without patterns, which is
lighter (90% of the size of MoGoCVS is in the database).

6 Conclusions

We proposed an original tool for genetic programming. This tool is quite conser-
vative: it is based on a set of admissible modifications, and has strong theoretical
guarantees. Interestingly, the application of this theory to GP was successful,
with in particular the nice property that all patterns selected during the GP run
could be validated in independent experiments. We point out that when humans
test modifications of MoGo, they usually test their algorithms based on simple
confidence intervals, without taking into account the fact that, as they test mul-
tiple variants, one of these variants might succeed just by chance - it happened
quite often that modifications accepted in the CVS were later removed, causing
big delays and many non-regression tests. This is in particular true for this kind
of applications, because the big noise in the results, the big computational costs
of the experiments, imply that people can’t use p-values like 10−10 - with BGP,
the confidence intervals can be computed at a reasonnable confidence level, and
the algorithm takes care by itself of the risk due to the multiple simultaneous
hypothesis testing. In 9x9 Go, BGP outperformed human development, and the
current CVS of MoGo is the version developped by BGP. In 19x19 Go, we have
an improvement over the default version of MoGo, but not against the version
enabling the use of big databases - we nonetheless keep running the experiments
as the success rate is still increasing and we had a big improvement for light
versions.

Acknowledgements.

Experiments presented in this paper were carried out using the Grid’5000 ex-
perimental testbed, being developed under the INRIA ALADDIN development
action with support from CNRS, RENATER and several Universities as well as
other funding bodies (see https://www.grid5000.fr).

References

1. J.-Y. Audibert, R. Munos, and C. Szepesvari. Use of variance estimation in the
multi-armed bandit problem. In NIPS 2006 Workshop on On-line Trading of
Exploration and Exploitation, 2006.

2. P. Audouard, G. Chaslot, J.-B. Hoock, J. Perez, A. Rimmel, and O. Teytaud. Grid
coevolution for adaptive simulations; application to the building of opening books
in the game of go. In Proceedings of EvoGames, 2009.

3. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the multiarmed
bandit problem. Machine Learning, 47(2/3):235–256, 2002.

4. A. Auger and O. Teytaud. Continuous lunches are free plus the design of optimal
optimization algorithms. Algorithmica, page 2009.

5. B. Bruegmann. Monte carlo go, 1993.

6. T. Cazenave and N. Jouandeau. On the parallelization of UCT. In Proceedings of
CGW07, pages 93–101, 2007.

7. G. Chaslot, J.-T. Saito, B. Bouzy, J. W. H. M. Uiterwijk, and H. J. van den Herik.
Monte-Carlo Strategies for Computer Go. In P.-Y. Schobbens, W. Vanhoof, and
G. Schwanen, editors, Proceedings of the 18th BeNeLux Conference on Artificial
Intelligence, Namur, Belgium, pages 83–91, 2006.

8. G. Chaslot, M. Winands, J. Uiterwijk, H. van den Herik, and B. Bouzy. Progressive
strategies for monte-carlo tree search. In P. Wang et al., editors, Proceedings of
the 10th Joint Conference on Information Sciences (JCIS 2007), pages 655–661.
World Scientific Publishing Co. Pte. Ltd., 2007.

9. G. Chaslot, M. Winands, and H. van den Herik. Parallel Monte-Carlo Tree Search.
In Proceedings of the Conference on Computers and Games 2008 (CG 2008), 2008.

10. R. Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
P. Ciancarini and H. J. van den Herik, editors, Proceedings of the 5th International
Conference on Computers and Games, Turin, Italy, 2006.

11. R. Coulom. Computing elo ratings of move patterns in the game of go. In Computer
Games Workshop, Amsterdam, The Netherlands, 2007.

12. M. Crasmaru. On the complexity of Tsume-Go. 1558:222–231, 1999.

13. S. Gelly, J. B. Hoock, A. Rimmel, O. Teytaud, and Y. Kalemkarian. The paral-
lelization of monte-carlo planning. In Proceedings of the International Conference
on Informatics in Control, Automation and Robotics (ICINCO 2008), pages 198–
203, 2008. To appear.

14. S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In ICML
’07: Proceedings of the 24th international conference on Machine learning, pages
273–280, New York, NY, USA, 2007. ACM Press.

15. J. H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM J.
Comput., 2(2):88–105, 1973.

16. H. Kato and I. Takeuchi. Parallel monte-carlo tree search with simulation servers.
In 13th Game Programming Workshop (GPW-08), November 2008.

17. L. Kocsis and C. Szepesvari. Bandit-based monte-carlo planning. In ECML’06,
pages 282–293, 2006.

18. J. R. Koza. Genetic Programming: On the Programming of Computers by means
of Natural Evolution. MIT Press, Massachusetts, 1992.

19. T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6:4–22, 1985.

20. C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel, O. Teytaud, S.-
R. Tsai, S.-C. Hsu, and T.-P. Hong. The Computational Intelligence of MoGo
Revealed in Taiwan’s Computer Go Tournaments. IEEE Transactions on Compu-
tational Intelligence and AI in games, pages 73–89, 2009.

21. D. Lichtenstein and M. Sipser. Go is polynomial-space hard. J. ACM, 27(2):393–
401, 1980.

22. V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical Bernstein stopping. In
ICML ’08: Proceedings of the 25th international conference on Machine learning,
pages 672–679, New York, NY, USA, 2008. ACM.

23. J. M. Robson. The complexity of go. In IFIP Congress, pages 413–417, 1983.
24. P. Rolet, M. Sebag, and O. Teytaud. Optimal active learning through billiards

and upper confidence trees in continous domains. In Proceedings of the ECML
conference, 2009.

25. Y. Wang and S. Gelly. Modifications of UCT and sequence-like simulations for
Monte-Carlo Go. In IEEE Symposium on Computational Intelligence and Games,
Honolulu, Hawaii, pages 175–182, 2007.

