Bandit-Based Genetic Programming

Jean-Baptiste Hoock 1 Olivier Teytaud 2, 1
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We consider the validation of randomly generated patterns in a Monte-Carlo Tree Search program. Our bandit-based genetic programming (BGP) algorithm, with proved mathematical properties, outperformed a highly optimized handcrafted module of a well-known computer-Go program with several world records in the game of Go.
Document type :
Conference papers
Complete list of metadatas

Cited literature [25 references]  Display  Hide  Download

https://hal.inria.fr/inria-00452887
Contributor : Jean-Baptiste Hoock <>
Submitted on : Tuesday, June 14, 2011 - 1:33:23 PM
Last modification on : Thursday, April 5, 2018 - 12:30:12 PM
Long-term archiving on : Sunday, December 4, 2016 - 3:41:01 PM

File

pattern.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00452887, version 2

Collections

Citation

Jean-Baptiste Hoock, Olivier Teytaud. Bandit-Based Genetic Programming. 13th European Conference on Genetic Programming, Apr 2010, Istanbul, Turkey. ⟨inria-00452887v2⟩

Share

Metrics

Record views

588

Files downloads

308