
HAL Id: inria-00453250
https://hal.inria.fr/inria-00453250v2

Submitted on 15 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scripts Use for the Synthesis and the Simulation of
VHDL Circuits and Evaluation of the Power

Consumption
Romain Michard

To cite this version:
Romain Michard. Scripts Use for the Synthesis and the Simulation of VHDL Circuits and Evaluation
of the Power Consumption. [Technical Report] RT-0381, INRIA. 2010, pp.23. �inria-00453250v2�

https://hal.inria.fr/inria-00453250v2
https://hal.archives-ouvertes.fr


appor t  
     t e ch n i qu e

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-0
38

1-
-F

R
+E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Scripts Use for the Synthesis
and the Simulation of VHDL Circuits

and Evaluation of the Power Consumption

Romain Michard

N° 0381 — version 2

initial version Février 2010 — revised version Mars 2010





Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Scripts Use for the Synthesis

and the Simulation of VHDL Circuits

and Evaluation of the Power Consumption

Romain Michard
∗

Thème : COM
Équipe-Projet Swing

Rapport technique n° 0381 � version 2 � initial version Février 2010 � revised version Mars 2010 �
20 pages

Abstract: This document presents a way of using scripts for the synthesis or the simulation of VHDL
hardware components. Moreover it explains the estimation of the power consumption of such circuits
that can be evaluated by XPower. The use of such scripts allows to automate the procedures and to deal
with many circuits without repeating the same tasks several times.
The steps presented in this document are based on scripts that are published under the GNU GPL, they
can be used and modi�ed as wanted by the user.

Key-words: VHDL, circuit, synthesis, simulation, script, automation, consumption, XPower

∗ INRIA, INSA Lyon, CITI, F-69621, France - romain.michard@inria.fr



Utilisation de scripts pour la synthèse

et la simulation de circuits VHDL

et évaluation de la puissance électrique consommée

Résumé : Ce document décrit une manière dont on peut utiliser des scripts pour synthétiser ou simuler
des composants matériels écrits dans le langage VHDL. Il explique aussi l'estimation de la consommation
de puissance électrique de ce genre de circuits qui peut être réalisée par l'outil XPower. L'utilisation
de tels scripts permet d'automatiser les di�érentes procédures et de réaliser le traitement d'une grande
quantité de circuits sans avoir à répéter les mêmes tâches plusieurs fois.
Les étapes présentées dans ce document sont toutes basées sur des scripts publiés sous GNU GPL, ils
peuvent être utilisés et modi�és à volonté selon les souhaits de l'utilisateur.

Mots-clés : VHDL, circuit, synthèse, simulation, script, automatisation, consommation, XPower



Scripts 3

Contents

License 4

1 Introduction 5

2 Synthesis 5

3 Simulation 6

3.1 Behavioral model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Post-place&route model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Test vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Power consumption estimation 7

5 Conclusion 7

References 8

Appendix 9

A Synthesis 9

B Simulation 9

RT n° 0381



4 Romain Michard

License

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

This software is to be used or modi�ed as wanted, the writer won't assume any maintenance nor any
help, however a message to tell it's used would be appreciated.

INRIA



Scripts 5

1 Introduction

This report is written to make scripts for synthesis, simulation and power consumption estimation of
VHDL circuits easy to understand and to use. Graphical user interfaces (GUIs) are generally used
to implement hardware designs from hardware description language (HDL) �les. For example all the
software tools used in this report are available in GUI modes: Xilinxr ISE Project Navigator or XPower
Analyzer, Mentor Graphicsr ModelSim, etc.

The scripts are in di�erent languages depending on what seems to be the best to achieve the aim. For
example the synthesis script is in the Perl language because it's a language that makes scripting easy,
the simulation script is written in Tcl because it's a language understood by ModelSim.

For convenient matters the system used is Windowsr (because Xilinxr ISE is available on a Windowsr

platform in this case) and the scripts are launched in a Cygwinr terminal so as to make the Linuxr

commands (as grep for example) available.
This paper is organised as follows: Section 2 describes how the whole synthesis process is handled,

Section 3 is explaining the simulation, the power consumption estimation is presented in Section 4, �nally
a conclusion is given in Section 5.

2 Synthesis

The script presented on Figure 1 is used to synthesize a VHDL source �le. The source �le is a very
simple adder presented on Figure 4. The size of the operands (the inputs and the output) is 12 bits but
it could be con�gure as anything else.

All the help for this script can be read on the Xilinxr website [6] or in the application folder
($installation_directory$\ISE\doc\usenglish\isehelp\) in several .pdf �les as cgd.pdf, devref.pdf,

manuals.pdf, sim.pdf, xst.pdf,...

Here is a description of the synthesis script:

Lines 23 to 44 The main procedure is running the di�erent subroutines depending on the options.
Lines 48 to 77 The synthesis subroutine is generating another script with all the options that will

be run by xst to synthesize the component.
Lines 69 to 75 That prints a report of the synthesis.
Lines 81 to 101 The translate subroutine produces a Native Generic Object (.ngo) after the syn-

thesis.
Lines 105 to 127 The mapping subroutine maps the logical functions on the available hardware re-

sources of the FPGA.
Lines 131 to 143 The placeroute subroutine is easily understood. It places the hardware resources

and routes wires where they are necessary.
Lines 147 to 156 The netgen subroutine back-annotates the logical design depending on the �rst

synthesis process in order to obtain a physical post-place&route model that can be accurately
simulated.

Lines 160 to 179 The extract subroutine uses the trce program to generate a static timing report
of the post-place&route model. All those extracted values can be used by the report subroutine.

Lines 183 to 214 The report subroutine creates a LATEX �le reporting whatever the user is interested
in.

Lines 218 to 272 The parsecmdline subroutine gets the di�erent command-line options and checks
whether everything is correct for the programs to run.

Lines 276 to 281 The getinputenv subroutine gets the VHDL �le name and creates all the di�erent
environment variables depending on it.

One can use a shell script as the one presented on Figure 5 to synthesize several source �les (all the
.vhd �les of the src directory in this case) with only one command. This script uses a device list as
the one presented on Figure 2 where everything is commented by a # except the line with the targeted
FPGA.

The synthesis script generates a report �le for each circuit. It would be very fastidious to read these
separate �les. Fortunately the Perl script of Figure 3 is able to merge several LATEX �les into one.

RT n° 0381



6 Romain Michard

Separate tables are merged into fewer ones of 50 lines. This program won't be detailed because of its
simplicity; it's only text reporting matters and not a technical point.

3 Simulation

All the help for this script can be read on the ModelSim website [3] or in the application folder
($installation_directory$\docs\pdfdocs\) in several .pdf �les.

To simulate a component (whatever the model is) we use this command:
vsim -c -do $simulation_file$

This command is still to be launched in a Cygwinr terminal so as to make the classical commands
available.

The $simulation_file$ variable can be changed to simulate di�erent environments. For this report
two di�erent simulations are executed: �rst the behavioral model, to ensure it's correct, then the post-
place&route one to get a signals activity report in order to evaluate the power consumption accurately.
To make it easier to handle, the script is cut into two parts: the �rst one is dealing with the component to
simulate, the second one is generating the test vectors as the same test is executed for both simulations.

3.1 Behavioral model

When designing a VHDL model of a circuit it's important to simulate it all along the design process in
order to be sure of its proper behavior. To simulate it the script represented on Figure 6 is used with
the test vectors of vect.tcl presented on Figure 8. Here is a description of this script:

Lines 15 to 17 The script is de�ning di�erent directory variables. As the script is run in a Windowsr

system, paths are written C:... but the \ is replaced by a /.
Line 19 The script is printing some information for the user to be aware of the running process.
Line 22 The working library is de�ned.
Line 25 The components are compiled.
Line 28 The my_adder component is simulated.
Lines 31 to 34 Some signals are added to the visualisation list.
Line 37 The simulation vectors of vect.tcl are executed.
Line 40 Another information printing.
Line 41 The simulation is terminating.

3.2 Post-place&route model

It could be interesting to simulate the post-place&route model. The main utility is to generate the signals
activity report �le (.saif) for the power consumption estimation to be accurate. The structure of the
script is the same as the one for the behavioral model. The di�erences are described in the following:

Line 25 The compiled �le is circ.sim.vhd (in this case) generated by the place&route process.
Line 37 The .sdf �le is giving information on the delays in the circuit, it's generated by the place&route

process and is necessary for this simulation.
Line 38 Every ports and internal signals are looked at to know the associated activity.
Line 43 The output activity report �le is generated in an SAIF format now the simulation is done.

At this point a signal setup time violation error could happen, the reason is not completely clear and the
best way to avoid it was to change the targeted FPGA back in the synthesis step (for example a Virtex4
instead of a Spartan3).

3.3 Test vectors

The test vectors are written in a separate �le as it's simpler to use the same vectors for both the behavioral
and the post-place&route models. The script of Figure 8 can be described as follows:

Line 17 A parameter is de�ned for the size of the signals.

INRIA



Scripts 7

Lines 20 to 43 Several conversion functions are de�ned. All are not used for this simulation (as the
bits2int function or the bin2dec one) but they could be helpful for others.

Lines 46 to 53 A mathematical function is de�ned to easily compute the power of a number.
Lines 56 to 66 The simulation loop is controlling the input signals during the simulation.
Line 65 A report �le is generated to check whether everything is going as expected.

4 Power consumption estimation

Now the .saif �le is generated, an accurate power consumption evaluation is available by Xilinxr

XPower if a constraint �le (.pcf �le provided by the map program) is provided. To run this estimation
this command can be run:

xpwr circ.par.ncd -s circ_xpower.saif circ.pcf

The circ.par.ncd and circ_xpower.saif �les are generated by the previous steps.
This estimation produces a report that is printed on the standard output and in the circ.par.pwr

�le.
Reducing the power consumption is something that really matters nowadays and it should be an

important e�ort when designing hardware circuits. This method allows to know how much power the
circuit could consume. It's only an estimation of this consumption but tools seem very accurate today,
they have improved a lot in the past years and the accuracy is increasing. The best would obviously be
to build the hardware circuit and to measure its consumption in real conditions but it would be more
painful to do and it would ask some tools (as a hardware platform for the benchmarks and measures,...).
The solution presented in this document is a good trade-o� to evaluate the consumption of a circuit with
few needs.

5 Conclusion

This paper explains a scripted solution to simulate, synthesize and estimate the power consumption of
a VHDL source circuit description. This method is not the only one. For example a solution named
Athena [5] exists, it is created for cryptographic computing circuits when the presented method is more
generic and it needs the installation of a complete program when this one only uses the standard CAD
tools. Furthermore it is only synthesizing the circuit, no simulation nore any power consumption are
available.

All the websites helping for that matter are listed in the References section.
This report is to be modi�ed or completed if other precisions seem to be important to note or if

changes happen.

RT n° 0381



8 Romain Michard

References

[1] Tcl Developer Xchange. http://www.tcl.tk.

[2] CPAN. The Perl Programming Language. http://www.perl.org.

[3] Mentor Graphicsr. Modelsimr website. http://model.com.

[4] Red Hat. Cygwin website. http://www.cygwin.com.

[5] CERG: Cryptographic Engineering Research Group of the George Mason University. Athena. http:
//cryptography.gmu.edu/athena/.

[6] Xilinxr. ISE design tools documentation website. http://www.xilinx.com/tools/designtools.

htm.

INRIA



Scripts 9

Appendix

A Synthesis

This script is represented on Figure 1, it's based on what Arnaud Tisserand wrote and is written in the
Perl language. I would like to really thank Arnaud for what he did.

B Simulation

These scripts are Tcl ones because it's the language used by Modelsim.

RT n° 0381



10 Romain Michard

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

5 #
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

10 #
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/.

#!/usr/bin/env perl
15

my $device, $optim_target, $optim_effort;
my $filename, $prefix, $path, $suffix; 
my $mult_style;
my $per, $size;

20

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

parsecmdline();
getinputenv();

25

if ($opt_v) {
    print " device: ", $device, " , optimization: ", $optim_target, 
          " , effort: ", $optim_effort, " , mult_style: ", $mult_style, 
          " \n";

30     if ($opt_p) { print " clock period constraint: ", $opt_p, " \n";}
}

synthesis(); # x.vhdl => x.ngc (report xst.srp)
translate(); # x.ngc => x.ngd (report x.bld)

35 mapping(); # x.ngd => x.map.ncd (report x.map.mrp)    
placeroute(); # x.map.ncd  => x.par.ncd (report x.par)
netgen(); # x.par.ncd => x.sim.vhd
extract(); # x.par.ncd => x.twr (<−report)

40 if ($opt_t) {
report();

}
system " rm −rf *.bld *.ucf *.twr *.mrp *.ngm *.pad *.par *.ngc *.ngd *.xpi *.unroutes *.csv *.xml *.lst *.srp *.xrpt 
*.script xst *.map *.ptwx *.nlf *.twx *pad.txt xlnx_* *.map.ncd";
exit(0);

45

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sub synthesis {
    my $script = " run\n";

50     $script .= " −ifn $ARGV[1]\n−ifmt VHDL\n";
    $script .= " −ofn $prefix.ngc\n−ofmt NGC\n";
    $script .= " −p $device\n";
    $script .= " −opt_mode $optim_target\n";
    $script .= " −mult_style $mult_style\n";

55     if ($optim_effort =~ /high/i) {$script .=  " −opt_level 2\n";}
    else {$script .= " −opt_level 1\n";}

    open xstscript, " > xst.script" or die;
    print xstscript " $script\n";

60     close xstscript;
    
    my $cmd = " xst.exe −ifn xst.script";
    system $cmd;

65     if ($opt_v) {
print " −−−−− synthesis −−−−−\n";
print " xst: $script\n";
print " cmd: $cmd\n";
open report, " < xst.srp" or die;

70 while (<report>) {
if (/number of slices/i) { print $_; }
if (/number of mult18x18s/i) { print $_; }
if (/minimum period/i) { print $_; }

INRIA



Scripts 11

}
75 close report;

    }
}

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80

sub translate {
    my $cmd = " ngdbuild.exe −p $device";
    if ($opt_p) {

open ucffile, " > ./$prefix.ucf" or die;
85 print ucffile " NET \"clk\" TNM_NET = \"clk\";\n";

print ucffile " TIMESPEC \"TS_clk\" = PERIOD \"clk\" $opt_p ns HIGH 50 %;\n";
close ucffile;
$cmd .= "  −intstyle ise −uc $prefix.ucf";

    }
90     else {

$cmd .= "  −i";
    }
    
    $cmd .= "  $prefix.ngc";

95

    if ($opt_v) {
print " −−−−− translate −−−−−\n";
print " cmd: $cmd\n";

}
100     system $cmd;

}

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

105 sub mapping  {
    my $cmd = " map.exe  −p $device";
    $cmd .= "  −o $prefix.map.ncd $prefix.ngd";
    if ($opt_p) {$cmd .= "  $prefix.pcf";}
    

110     if ($opt_v) {
print " −−−−− mapping −−−−−\n";
print " cmd: $cmd\n";

}
    system $cmd;

115

    open report, " < ./$prefix.map.mrp" or die;
    while (<report>) {

if (/number of occupied slices/i) {
print $_;

120 s/^[ \t]*number of occupied slices:[ \t]*//i;
s/ out.*\n//i;
$size = $_; 

}
if (/number of mult18x18s/i) { print $_;}

125     }
    close report;
}

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130

sub placeroute {
    my $cmd = " par.exe  −w";
    if ($optim_effort =~ /high/i) {$cmd .= "  −ol high";}
    else {$cmd .= "  −ol std";}

135     $cmd .= "  $prefix.map.ncd $prefix.par.ncd";
    if ($opt_p) { $cmd .= "  $prefix.pcf"; }
    
    if ($opt_v) {

print " −−−−− place&route −−−−−\n";
140 print " cmd: $cmd\n";

}
    system $cmd;
}

145 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sub netgen {

RT n° 0381



12 Romain Michard

    my $cmd = " netgen.exe −w −rpw 100 −tpw 0 −sim −ofmt vhdl";
    $cmd .= "  −pcf $prefix.pcf $prefix.par.ncd $prefix.sim.vhd";

150

    if ($opt_v) {
print " −−−−− netgen −−−−−\n";
print " cmd: $cmd\n";

}
155     system $cmd;

}

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

160 sub extract {
    my $cmd = " trce.exe  $prefix.par.ncd";
    if ($opt_p) {$cmd .= "  $prefix.pcf";}
    if ($opt_v) {

print " −−−−− extract −−−−−\n";
165 print " cmd: $cmd\n";

}
    system $cmd;
    
    open report, " < ./$prefix.par.twr" or die " error opening report file : $!\n";

170     while (<report>) {
if (/minimum period/i) {

print $_;
s/^[ \t]*minimum period:[ \t]*//i;
s/ns.*//i;

175 $per = ceil($_*10)/10;
}

    }
    close report;
}

180

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sub report {
my $rep_file=" $prefix.tex";

185 print " Reporting in $rep_file\n";
open rep, " > $rep_file";

    my $preamble = <<EOF;
\\documentclass{article}
\\usepackage{fullpage}

190

\\begin{document}

\\begin{table}[!ht]
\\begin{center}

195 \\begin{tabular}{|*{3}{r|}}
\\hline
\\textbf{Circuit}&\\textbf{period}&\\textbf{slices}\\\\
\\hline
\%−−−−−start data

200 EOF
    my $str =" $prefix&$per&$size\\\\\n\\hline\n";
    my $end = <<EOF;
\%−−−−−end data
\\end{tabular}

205 \\end{center}
\\end{table}
\\end{document}
EOF

210 print rep $preamble;    
    print rep $str;

print rep $end;
close rep;

}
215

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sub parsecmdline {
use POSIX;

220     use Getopt::Std;

INRIA



Scripts 13

    getopts(" p:m:tsovx"); # parse the command line options

    my $usage = <<EOF;
225 Usage: xlnx [−p period] [− s] [−o] [−m style] [−v] [−x] [−t] device_file vhdl_fil

e
Description:

apply Xilinx synthesis (XST) and implementation tools 
on the vhdl_file with the device in device_file

Options:
230 −p constraint period [ns]

−s speed optimization (default is area)
−o high optimization effort (default is low)
−m multiplieur style [auto, block, lut, pipe_lut] (default 

is auto)
−v verbose mode (all commands and intermediate results)

235 −t report results in a texfile
EOF

    # 2 mandatory args: device_file (arg 0) vhdl_file (arg 1)
    if ($#ARGV != 1) { die $usage;}

240

    # check devicefile
    −e $ARGV[0] or die " device file $ARGV[0] not found\n";

    # check vhdlfile
245     −e $ARGV[1] or die " vhdl file $ARGV[1] not found\n";

# set device
    open device, " < $ARGV[0]" or die;
    while (<device>) {

250 if ((!/^[ \t]*\#/i) && (!/^[ \t]*$/i)) {
s/^[ \t]*//;
s/[ \t\n]*$//;
$device = " $_";

}
255     }

    close device;

    # period option
    if ($opt_p) {

260 if ($opt_p < 1) { die " not possible clock period\n";}
    }
        
    # optimization options
    if ($opt_s) {$optim_target = " speed";}

265     else {$optim_target = " area";}
    
    if ($opt_o) {$optim_effort = " high";}
    else {$optim_effort = " low";}
    

270     if ($opt_m) {$mult_style = $opt_m;}
    else {$mult_style = " auto";}
}

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
275

sub getinputenv {
    use File::Basename;

   $filename = $ARGV[1];
280     ($prefix,$path,$suffix) = fileparse($filename," \.vhd?");

}

Figure 1: Perl script for the synthesis

RT n° 0381



14 Romain Michard

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

5 #
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

10 #
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/.

#ISE 11.3
15

# Spartan 3A (sg: −4, −5)
#xc3s50a−ft256−4
#xc3s200a−ft256−4
#xc3s400a−ft256−4

20 #xc3s700a−ft256−4
#xc3s1400a−ft256−4

# Spartan 3AN (sg: −4, −5)
#xc3s50an−tqg144−4

25 #xc3s200an−ftg256−4
#xc3s400an−fgg400−4
#xc3s700an−fgg484−4
#xc3s1400an−fgg676−4

30 # Spartan 3E (sg: −5, −4)
#xc3s100e−cp132−4
#xc3s250e−ft256−4
#xc3s500e−ft256−4
#xc3s1200e−ft256−4

35 #xc3s1600e−fg320−4

# Spartan 3 (sg: −5, −4)
xc3s50−pq208−4
#xc3s200−ft256−4

40 #xc3s400−ft256−4
#xc3s1000−ft256−4
#xc3s1500−fg456−4
#xc3s2000−fg456−4
#xc3s4000−fg676−4

45 #xc3s5000−fg676−4
#xc3s1000l−fg456−4
#xc3s1500l−fg456−4
#xc3s4000l−fg900−4

50 # Spartan 6 (sg: −3, −2)
#xc6slx9−ftg256−2
#xc6slx16−ftg256−2
#xc6slx25−ftg256−2
#xc6slx45−fgg676−2

55 #xc6slx75−csg484−2
#xc6slx100−csg484−2
#xc6slx150−csg484−2
#xc6slx25t−fgg484−2
#xc6slx45t−fgg484−2

60 #xc6slx75t−fgg676−2
#xc6slx100t−fgg676−2
#xc6slx150t−fgg676−2

# Virtex 4 (sg: −12, −11, −10)
65 #xc4vlx15−ff668−11

#xc4vlx25−ff668−11
#xc4vlx40−ff668−11
#xc4vlx60−ff668−11
#xc4vlx80−ff1148−11

70 #xc4vlx100−ff1148−11
#xc4vlx160−ff1148−11
#xc4vlx200−ff1513−11
#xc4vsx25−ff668−11
#xc4vsx35−ff668−11

INRIA



Scripts 15

75 #xc4vsx55−ff1148−11
#xc4vfx12−ff668−11
#xc4vfx20−ff672−11
#xc4vfx40−ff672−11
#xc4vfx60−ff672−11

80 #xc4vfx100−ff1517−11
#xc4vfx140−ff1517−11

# Virtex 5 (sg: −3, −2, −1)

85 #xc5vlx30−ff676−2
#xc5vlx50−ff676−2
#xc5vlx85−ff676−2
#xc5vlx110−ff676−2
#xc5vlx155−ff1760−2

90 #xc5vlx220−ff1760−2
#xc5vlx330−ff1760−2
#xc5vlx20t−ff323−2
#xc5vlx30t−ff323−2
#xc5vlx50t−ff1136−2

95 #xc5vlx85t−ff1136−2
#xc5vlx110t−ff1136−2
#xc5vlx155t−ff1136−2
#xc5vlx220t−ff1738−2
#xc5vlx330t−ff1738−2

100 #xc5vsx35t−ff665−2
#xc5vsx50t−ff665−2
#xc5vsx95t−ff1136−2
#xc5vsx240t−ff1738−2
#xc5vfx30−ff665−2

105 #xc5vfx70−ff665−2
#xc5vfx100−ff1738−2
#xc5vfx130−ff1738−2
#xc5vfx200−ff1738−2
#xc5vtx150−ff1759−2

110 #xc5vtx240−ff1759−2

# Virtex 6 (sg: −3, −2, −1)

#xc6vlx75t−ff784−2
115 #xc6vlx130t−ff784−2

#xc6vlx195t−ff784−2
#xc6vlx240t−ff784−2
#xc6vlx365t−ff1759−2
#xc6vlx550t−ff1759−2

120 #xc6vlx760−ff1760−2
#xc6vsx315t−ff1156−2
#xc6vsx475t−ff1156−2
#xc6vhx250t−ff1154−2
#xc6vhx255t−ff1155−2

125 #xc6vhx380t−ff1155−2
#xc6vhx565t−ff1923−2
#xc6vcx75t−ff784−2
#xc6vcx130t−ff784−2
#xc6vcx195t−ff784−2

130 #xc6vcx240t−ff784−2

Figure 2: Text with the di�erent available FPGA architectures

RT n° 0381



16 Romain Michard

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

5 #
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

10 #
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/.

#!/usr/bin/env perl
15

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
system " ls *.tex > tex.lst";
open lst, " <tex.lst";
open out, " >syn−merge.tex";

20 my $nb = 0;
my $cond = 0;
my $rep;
begin();
while(<lst>){

25 if($_ =~ m/[a−z].*/ and $_ !~ m/syn−merge.tex/){
$rep = $_;
print " $nb $rep";
open rep, " < $rep";
while(<rep>){

30 if($_ =~ m/%−−−−−s/){
$cond = 1;

}
elsif($cond == 1 and $_ =~ m/%−−−−−e/){

$cond = 2;
35 }

elsif($cond == 1){
print out $_;

}
}

40 close rep;
$nb++;
if($nb == 51){

$nb = 1;
cut();

45 }
};

}
end();
close lst;

50 close out;
exit(0);

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sub begin

55 {
    my $preamble = <<EOF;
\\documentclass{article}
\\usepackage{fullpage}

60 \\begin{document}

\\begin{table}[!ht]
\\begin{center}
\\begin{tabular}{|*{3}{r|}}

65 \\hline
\\textbf{circuit}&\\textbf{period}&\\textbf{slices}\\\\
\\hline
EOF

70 print out $preamble;
}

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sub end

INRIA



Scripts 17

75 {
    my $end = <<EOF;
\\end{tabular}
\\end{center}
\\end{table}

80

\\end{document}
EOF

print out $end;
85 }

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sub cut
{

90     my $cut = <<EOF;
\\end{tabular}
\\end{center}
\\end{table}

95

\\begin{table}[!ht]
\\begin{center}
\\begin{tabular}{|*{4}{r|}}
\\hline

100 \\textbf{circuit}&\\textbf{period}&\\textbf{slices}\\\\
\\hline
EOF

print out $cut;
105 }

Figure 3: Perl programm for the reports merging

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_signed.all;

5

entity my_adder is
port( x : in std_logic_vector(11 downto 0);

y : in std_logic_vector(11 downto 0);
clk : in std_logic;

10 q : out std_logic_vector(11 downto 0));
end entity;

architecture arch of my_adder is
signal x1 : std_logic_vector (11 downto 0);
signal x2 : std_logic_vector (11 downto 0);

15 signal y1 : std_logic_vector (11 downto 0);
signal y2 : std_logic_vector (11 downto 0);
signal q1 : std_logic_vector (11 downto 0);
signal q2 : std_logic_vector (11 downto 0);

begin
20 inReg: PROCESS(clk,x)

BEGIN
IF clk’event AND clk=’1’ THEN

x1<=x;
x2<=x1;

25 y1<=y;
y2<=y1;
q1<=q2;
q<=q1;

END IF;
30 END PROCESS inReg;

q2<=x2+y2;
end architecture;

Figure 4: The VHDL source �le

RT n° 0381



18 Romain Michard

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

5 #
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

10 #
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/.

#!/usr/bin/sh
15 for i in src/*.vhd; do

echo $i;
perl xlnx.pl −p 10 −v −o −m lut −t device.txt $i;
done;

Figure 5: The shell script

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

5 #
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

10 #
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/.

#directories definition
15 set PROOT E:/Work/INSA/synchro/work/Divers/scripts/sim

set PVHDL $PROOT
set PSIM  $PROOT

puts " Simulation starting"
20

#work library definition
vlib $PSIM/work

#components compilation
25 vcom −work $PSIM/work $PVHDL/circ.vhd

#component simulation
vsim my_adder

30 #visualisation signals
    add list −unsigned clk
    add list −unsigned x
    add list −unsigned y
    add list −unsigned q

35     
#simulation vectors
    do vect.tcl
    
#end

40 puts " Simulation ending"
quit −f

s

Figure 6: Tcl script for the simulation of the behavioral model

INRIA



Scripts 19

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

5 #
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

10 #
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/.

#directories definition
15 set PROOT E:/Work/INSA/synchro/work/rt−scripts/sim

set PVHDL $PROOT
set PSIM  $PROOT

puts " Simulation starting"
20

#work library definition
vlib $PSIM/work

#components compilation
25 vcom −work $PSIM/work $PVHDL/circ.sim.vhd

#component simulation
vsim my_adder

30 #visualisation signals
    add list −unsigned clk
    add list −unsigned x
    add list −unsigned y
    add list −unsigned q

35     
#for XPower
vsim −t 1ps −sdfmax " /my_adder=circ.sim.sdf"  −lib work my_adder
power add −ports −internal *

40 #simulation vectors
    do vect.tcl

power report −bsaif $PROOT/circ_xpower.saif
    

45 #end
puts " Simulation ending"
quit −f

Figure 7: Tcl script for the simulation of the post�place&route model and the generation of the SAIF
�le

RT n° 0381



20 Romain Michard

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

5 #
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

10 #
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/.

#test vectors
15

#parameters
set x_size 12

#conversion fonctions
20 proc int2bits {i {digits {} }} {

binary scan [ binary format I1 $i] B* x
   set len [ string length $x]

set low [ expr $len−$digits]
set bitvalue [ string range $x $low $len]

25 }
      
proc bits2int {bits} {

set res 0
foreach i $bits {

30 set res [ expr {$res*2+$i}]
}
set res

}

35 proc bin2dec {num} {
set num h[ string map {1 i 0 o} $num]

    while {[ regexp {[io]} $num]} {
       set num\
         [ string map {0o 0 0i 1 1o 2 1i 3 2o 4 2i 5 3o 6 3i 7 4o 8 4i 9 ho h hi 
h1}\

40            [ string map {0 o0 1 o1 2 o2 3 o3 4 o4 5 i0 6 i1 7 i2 8 i3 9 i4} $num]
]
    }
    string range $num 1 end
}
  

45 #power fonction        
proc pwer {base p} {
    set result 1
    while {$p > 0} {
        set result [ expr $result * $base]

50         set p [ expr $p − 1]
    }
    return $result
}

55 #simulation
for { set x 1} {$x<[pwer 2 $x_size]} { set x [ expr $x+111]} {

puts  $x
force x [int2bits $x 12]
force y [int2bits [ expr {$x * 2}] 12]

60 force clk 0
run 5 ns
force clk 1
run 5 ns

65 write list res.lst
}

#end

Figure 8: Tcl script to generate the test vectors

INRIA



Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803


