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EVASIVENESS AND THE DISTRIBUTION OF PRIME NUMBERS
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Abstract. A Boolean function on N variables is called evasive if its decision-tree com-
plexity is N . A sequence Bn of Boolean functions is eventually evasive if Bn is evasive for
all sufficiently large n.

We confirm the eventual evasiveness of several classes of monotone graph properties
under widely accepted number theoretic hypotheses. In particular we show that Chowla’s
conjecture on Dirichlet primes implies that (a) for any graph H , “forbidden subgraph H”

is eventually evasive and (b) all nontrivial monotone properties of graphs with ≤ n
3/2−ǫ

edges are eventually evasive. (n is the number of vertices.)
While Chowla’s conjecture is not known to follow from the Extended Riemann Hy-

pothesis (ERH, the Riemann Hypothesis for Dirichlet’s L functions), we show (b) with the

bound O(n5/4−ǫ) under ERH.
We also prove unconditional results: (a′) for any graph H , the query complexity of

“forbidden subgraph H” is
`

n
2

´

−O(1); (b′) for some constant c > 0, all nontrivial monotone
properties of graphs with ≤ cn log n + O(1) edges are eventually evasive.

Even these weaker, unconditional results rely on deep results from number theory such
as Vinogradov’s theorem on the Goldbach conjecture.

Our technical contribution consists in connecting the topological framework of Kahn,
Saks, and Sturtevant (1984), as further developed by Chakrabarti, Khot, and Shi (2002),
with a deeper analysis of the orbital structure of permutation groups and their connection
to the distribution of prime numbers. Our unconditional results include stronger versions
and generalizations of some result of Chakrabarti et al.

1. Introduction

1.1. The framework

A graph property Pn of n-vertex graphs is a collection of graphs on the vertex set
[n] = {1, . . . , n} that is invariant under relabeling of the vertices. A property Pn is called
monotone (decreasing) if it is preserved under the deletion of edges. The trivial graph
properties are the empty set and the set of all graphs. A class of examples are the forbidden
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subgraph properties: for a fixed graph H, let QHn denote the class of n-vertex graphs that
do not contain a (not necessarily induced) subgraph isomorphic to H.

We view a set of labeled graphs on n vertices as a Boolean function on the N =
(n
2

)

variables describing adjacency. A Boolean function on N variables is evasive if its
deterministic query (decision-tree) complexity is N .

The long-standing Aanderaa-Rosenberg-Karp conjecture asserts that every nontrivial
monotone graph property is evasive. The problem remains open even for important special
classes of monotone properties, such as the forbidden subgraph properties.

1.2. History

In this note, n always denotes the number of vertices of the graphs under consideration.
Aanderaa and Rosenberg (1973) [17] conjectured a lower bound of Ω(n2) on the query

complexity of monotone graph properties. Rivest and Vuillemin (1976) [19] verified this
conjecture, proving an n2/16 lower bound. Kleitman and Kwiatkowski (1980) [10] improved
this to n2/9. Karp conjectured that nontrivial monotone graph properties were in fact
evasive. We refer to this statement as the Aanderaa-Rosenberg-Karp (ARK) conjecture.

In their seminal paper, Kahn, Saks, and Sturtevant [11] observe that non-evasiveness
of monotone Boolean functions has strong topological consequences (contracibility of the
associated simplicial complex). They then use results of R. Oliver about fixed points of
group actions on such complexes to verify the ARK conjecture when n is a prime-power.
As a by-product, they improve the lower bound for general n to n2/4.

Since then, the topological approach of [11] has been influential in solving various in-
teresting special cases of the ARK conjecture. Yao (1988) [25] proves that non-trivial
monotone properties of bipartite graphs with a given partition (U, V ) are evasive (require
|U ||V | queries). Triesch (1996) [22] shows (in the original model) that any monotone prop-
erty of bipartite graphs (all the graphs satisfying the property are bipartite) is evasive.
Chakrabarti, Khot, and Shi (2002) [3] introduce important new techniques which we use;
we improve over several of their results (see Section 1.4).

1.3. Prime numbers in arithmetic progressions

Dirichlet’s Theorem (1837) (cf. [5]) asserts that if gcd(a,m) = 1 then there exist in-
finitely many primes p ≡ a (mod m). Let p(m,a) denote the smallest such prime p. Let
p(m) = max{p(m,a) | gcd(a,m) = 1}. Linnik’s celebrated theorem (1947) asserts that
p(m) = O(mL) for some absolute constant L (cf. [16, Chap. V.]). Heath-Brown [9] shows
that L ≤ 5.5. Chowla [4] observes that under the Extended Riemann Hypothesis (ERH)
we have L ≤ 2 + ǫ for all ǫ > 0 and conjectures that L ≤ 1 + ǫ suffices:

Conjecture 1.1 (S. Chowla [4]). For every ǫ > 0 and every m we have p(m) = O(m1+ǫ).

This conjecture is widely believed; in fact, number theorists suggest as plausible the
stronger form p(m) = O(m(logm)2) [8]. Turán [23] proves the tantalizing result that for
almost all a we have p(m,a) = O(m logm) .

Let us call a prime p an ǫ-near Fermat prime if there exists an s ≥ 0 such that 2s | p−1

and p−1
2s ≤ pǫ.

We need the following weak form of Chowla’s conjecture:
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Conjecture 1.2 (Weak Chowla Conjecture). For every ǫ > 0 there exist infinitely many
ǫ-near Fermat primes.

In other words, the weak conjecture says that for every ǫ, for infinitely many values of
s we have p(2s, 1) < (2s)1+ǫ.

1.4. Main results

For a graph property P we use Pn to denote the set of graphs on vertex set [n] with
property P . We say that P is eventually evasive if Pn is evasive for all sufficiently large n.

Our first set of results states that the “forbidden subgraph” property is “almost evasive”
under three different interpretations of this phrase.

Theorem 1.3 (Forbidden subgraphs). For all graphs H, the forbidden subgraph property
QHn (a) is eventually evasive, assuming the Weak Chowla Conjecture; (b) is evasive for
almost all n (unconditionally); and (c) has query complexity

(n
2

)

−O(1) for all n (uncondi-
tionally).

Part (b) says the asymptotic density of values of n for which the problem is not evasive
is zero. Part (c) improves the bound

(n
2

)

− O(n) given in [3]. Parts (a) and (c) will be
proved in Section 3. We defer the proof of part (b) to the journal version.

The term “monotone property of graphs with ≤ m edges” describes a monotone prop-
erty that fails for all graphs with more than m edges.

Theorem 1.4 (Sparse graphs). All nontrivial monotone properties of graphs with at most

f(n) edges are eventually evasive, where (a) under Chowla’s Conjecture, f(n) = n3/2−ǫ for

any ǫ > 0; (b) under ERH, f(n) = n5/4−ǫ; and (c) unconditionally, f(n) = cn log n for
some constant c > 0. (d) Unconditionally, all nontrivial monotone properties of graphs
with no cycle of length greater than (n/4)(1 − ǫ) are eventually evasive (for all ǫ > 0).

Part (c) of Theorem 1.4 will be proved in Section 4. Parts (a) and (b) follow in Section 5.
The proof of part (d) follows along the lines of part (c); we defer the details to the journal
version of this paper.

We note that the proofs of the unconditional results (c) and (d) in Theorem 1.4 rely on
Haselgrove’s version [7] of Vinogradov’s Theorem on Goldbach’s Conjecture (cf. Sec. 4.2).

Recall that a topological subgraph of a graph G is obtained by taking a subgraph and
replacing any induced path u− · · · − v in the subgraph by an edge {u, v} (repeatedly) and
deleting parallel edges. A minor of a graph is obtained by taking a subgraph and contracting
edges (repeatedly). If a class of graphs is closed under taking minors then it is also closed
under taking topological subgraphs but not conversely; for instance, graphs with maximum
degree ≤ 3 are closed under taking toopological subgraphs but every graph is a minor of a
regular graph of degree 3.

Corollary 1.5 (Excluded topological subgraphs). Let P be a nontrivial class of graphs
closed under taking topological subgraphs. Then P is eventually evasive.

This unconditional result extends one of the results of Chakrabarti et al. [3], namely,
that nontrival classes of graphs closed under taking minors is eventually evasive.

Corollary 1.5 follows from part (c) of Theorem 1.4 in the light of Mader’s Theorem

which states that if the average degree of a graph G is greater than 2(
k+1
2 ) then it contains

a topological Kk [13, 14].
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Theorem 1.4 suggests a new stratification of the ARK Conjecture. For a monotone
(decreasing) graph property Pn, let

dim(Pn) := max{|E(G)| − 1 | G ∈ Pn}.
We can now restate the ARK Conjecture:

Conjecture 1.6. If Pn is a non-evasive, non-empty, monotone decreasing graph property
then dim(Pn) =

(n
2

)

− 1.

2. Preliminaries

2.1. Group action

For the basics of group theory we refer to [18]. All groups in this paper are finite. For
groups Γ1,Γ2 we use Γ1 ≤ Γ2 to denote that Γ1 is a subgroup; and Γ1 ⊳ Γ2 to denote that
Γ1 is a (not necessarily proper) normal subgroup. We say that Γ is a p-group if |Γ| is a
power of the prime p.

For a set Ω called the “permutation domain,” let Sym(Ω) denote the symmetric group on
Ω, consisting of the |Ω|! permutations of Ω. For Ω = [n] = {1, . . . , n}, we set Σn = Sym([n]).
For a group Γ, a homomorphism ϕ : Γ → Sym(Ω) is called a Γ-action on Ω. The action is
faithful if ker(ϕ) = {1}. For x ∈ Ω and γ ∈ Γ we denote by xγ the image of x under ϕ(γ).
For x ∈ Ω we write xΓ = {xγ : γ ∈ Γ} and call it the orbit of x under the Γ-action. The
orbits partition Ω.

Let
(

Ω
t

)

denote the set of t-subsets of Ω. There is a natural induced action Sym(Ω) →
Sym(

(Ω
t

)

) which also defines a natural Γ-action on
(Ω
t

)

. We denote this action by Γ(t).
Similarly, there is a natural induced Γ-action on Ω×Ω. The orbits of this action are called
the orbitals of Γ. We shall need the undirected version of this concept; we shall call the
orbits of the Γ-action on

(Ω
2

)

the u-orbitals (undirected orbitals) of the Γ-action.
By an action of the group Γ on a structure X such as a group or a graph or a simplicial

complex we mean a homomorphism Γ → Aut(X) where Aut(X) denotes the automorphism
group of X.

Let Γ and ∆ be groups and let ψ : ∆ → Aut(Γ) be a ∆-action on Γ. These data
uniquely define a group Θ = Γ ⋊ ∆, the semidirect product of Γ and ∆ with respect to ψ.
This group has order |Θ| = |Γ||∆| and has the following properites: Θ has two subgroups
Γ∗ ∼= Γ and ∆∗ ∼= ∆ such that Γ∗

⊳ Θ; Γ∗ ∩ ∆∗ = {1}; and Θ = Γ∗∆∗ = {γδ | γ ∈ Γ∗, δ ∈
∆∗}. Moreover, identifying Γ with Γ∗ and ∆ with ∆∗, for all γ ∈ Γ and δ ∈ ∆ we have

γψ(δ) = δ−1γδ.
Θ can be defined as the set ∆ × Γ under the group operation

(δ1, γ1)(δ2, γ2) = (δ1δ2, γ
ψ(δ2)
1 γ2) (δi ∈ ∆, γi ∈ Γ).

For more on semidirect products, which we use extensively, see [18, Chap. 7].
The group AGL(1, q) of affine transformations x 7→ ax+b of Fq (a ∈ F

×
q , b ∈ Fq) acts on

Fq. For each d | q − 1, AGL(1, q) has a unique subgroup of order qd; we call this subgroup
Γ(q, d). We note that F

+
q ⊳ Γ(q, d) and Γ(q, d)/F+

q is cyclic of order d and is isomorphic to

a subgroup ∆ of AGL(1, q); Γ(q, d) can be described as a semidirect product (F+
q ) ⋊ ∆.
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2.2. Simplicial complexes and monotone graph properties

An abstract simplicial complex K on the set Ω is a subset of the power-set of Ω, closed under
subsets: if B ⊂ A ∈ K then B ∈ K. The elements of K are called its faces. The dimension
of A ∈ K is dim(A) = |A| − 1; the dimension of K is dim(K) = max{dim(A) | A ∈ K}. The
Euler characteristic of K is defined as

χ(K) :=
∑

A∈K,A 6=∅

(−1)dim(A).

Let [n] := {1, 2, . . . , n} and Ω =
(

[n]
2

)

. Let Pn be a subset of the power-set of Ω, i. e., a
set of graphs on the vertex set [n]. We call Pn a graph property if it is invariant under the

induced action Σ
(2)
n . We call this graph property monotone decreasing if it is closed under

subgraphs, i. e., it is a simplicial complex. We shall omit the adjective “decreasing.”

2.3. Oliver’s Fixed Point Theorem

Let K ⊆ 2Ω be an abstract simplicial complex with a Γ-action. The fixed point complex
KΓ action is defined as follows. Let Ω1, . . . ,Ωk be the Γ-orbits on Ω. Set

KΓ := {S ⊆ [k] |
⋃

i∈S

Ωi ∈ K}.

We say that a group Γ satisfies Oliver’s condition if there exist (not necessarily distinct)
primes p, q such that Γ has a (not necessarily proper) chain of subgroups Γ2 ⊳ Γ1 ⊳ Γ such
that Γ2 is a p-group, Γ1/Γ2 is cyclic, and Γ/Γ1 is a q-group.

Theorem 2.1 (Oliver [15]). Assume the group Γ satisfies Oliver’s condition. If Γ acts on
a nonempty contractible simplicial complex K then

χ(KΓ) ≡ 1 (mod q). (2.1)

In particular, such an action must always have a nonempty invariant face.

2.4. The KSS approach and the general strategy

The topological approach to evasiveness, initiated by Kahn, Saks, and Sturtevant, is
based on the following key observation.

Lemma 2.2 (Kahn-Saks-Sturtevant [11]). If Pn is a non-evasive graph property then Pn is
contractible.

Kahn, Saks, and Sturtevant recognized that Lemma 2.2 brought Oliver’s Theorem to
bear on evasiveness. The combination of Lemma 2.2 and Theorem 2.1 suggests the following
general strategy, used by all authors in the area who have employed the topological method,
including this paper: We find primes p, q, a group Γ satisfying Oliver’s condition with these
primes, and a Γ-action on Pn, such that χ(Pn) ≡ 0 (mod q). By Oliver’s Theorem and the
KSS Lemma this implies that Pn is evasive. The novelty is in finding the right Γ.

KSS [11] made the assumption that n is a prime power and used as Γ = AGL(1, n), the
group of affine transformations x 7→ ax+b over the field of order n. While we use subgroups
of such groups as our building blocks, the attempt to combine these leads to hard problems
on the distribution of prime numbers.
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Regarding the “forbidden subgraph” property, Chakrabarti, Khot, and Shi [3] built
considerable machinery which we use. Our conclusions are considerably stronger than theirs;
the additional techniques involved include a study of the orbitals of certain metacyclic
groups, a universality property of cyclotomic graphs derivable using Weil’s character sum
estimates, plus the number theoretic reductions indicated.

For the “sparse graphs” result (Theorem 1.4) we need Γ such that all u-orbitals of Γ
are large and therefore (Pn)Γ = {∅}.

In both cases, we are forced to use rather large building blocks of size q, say, where q
is a prime such that q− 1 has a large divisor which is a prime for Theorem 1.4 and a power
of 2 for Theorem 1.3.

3. Forbidden subgraphs

In this section we prove parts (a) and (c) of Theorem 1.3.

3.1. The CKS condition

A homomorphism of a graph H to a graph H ′ is a map f : V (H) → V (H ′) such that
(∀x, y ∈ V (H))({x, y} ∈ E(H) ⇒ {f(x), f(y)} ∈ E(H ′)). (In particular, f−1(x′) is an

independent set in H for all x′ ∈ V (H ′).) Let Q
[[H]]
r be the set of those H ′ with V (H ′) = [r]

that do not admit an H → H ′ homomorphism. Let further TH := min{22t − 1 | 22t ≥
h} where h denotes the number of vertices of H. The following is the main lemma of
Chakrabarti, Khot, and Shi [3].

Lemma 3.1 (Chakrabarti et al. [3]). If r ≡ 1 (mod TH) then χ(Q
[[H]]
r ) ≡ 0 (mod 2).

3.2. Cliques in generalized Paley graphs

Let q be an odd prime power and d an even divisor of q − 1. Consider the graph
P (q, d) whose vertex set is Fq and the adjacency between the vertices is defined as follows:

i ∼ j ⇐⇒ (i− j)d = 1. P (q, d) is called a generalized Paley graph.

Lemma 3.2. If (q − 1)/d ≤ q1/(2h) then P (q, d) contains a clique on h vertices.

This follows from the following lemma which in turn can be proved by a routine appli-
cation of Weil’s character sum estimates (cf. [1]).

Lemma 3.3. Let a1, . . . , at be distinct elements of the finite field Fq. Assume ℓ | q−1. Then

the number of solutions x ∈ Fq to the system of equations (ai + x)(q−1)/ℓ = 1 is q
ℓt ± t

√
q.

Let Γ(q, d) be the subgroup of order qd of AGL(1, q) defined in Section 2.1.

Observation 3.4. Each u-orbital of Γ(q, d) is isomorphic to P (q, d).
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Corollary 3.5. If q−1
d ≤ q1/(2h) then each u-orbital of Γ(q, d) contains a clique of size h.

3.3. ǫ-near-Fermat primes

The numbers in the title were defined in Section 1.3. In this section we prove Theo-
rem 1.3, part (a).

Theorem 3.6. Let H be a graph on h vertices. If there are infinitely many 1
2h -near-Fermat

primes then QHn is eventually evasive.

Proof. Fix an odd prime p ≡ 2 (mod TH) such that p ≥ |H|. If there are infinitely many
1
2h -near-Fermat primes then infinitely many of them belong to the same residue class mod p,

say a+ Zp. Let qi be the i-th 1
2h -near-Fermat prime such that qi ≥ p and qi ≡ a (mod p).

Let r′ = na−1 (mod p) and k′ =
∑r′

i=1 qi. Then k′ ≡ n (mod p) and therefore n = pk + k′

for some k.
Now in order to use Lemma 3.1, we need to write n as a sum of r terms where r ≡ 1

(mod TH). We already have r′ of these terms; we shall choose each of the remaining
r − r′ terms to be p or p2. If there are t terms equal to p2 then this gives us a total of
r = t+(k− tp)+r′ terms, so we need t(p−1) ≡ k+r′ (mod TH). By assumption, p−1 ≡ 1
(mod TH); therefore such a t exists; for large enough n, it will also satisfy the constraints
0 ≤ t ≤ k/p,

Let now
Λ1 :=

(

(F+
p2

)t × (F+
p )k−tp

)

⋊ F
×
p2

acting on [pk] with t orbits of size p2 and k−pt orbits of size p as follows: on an orbit of size
pi (i = 1, 2) the action is AGL(1, pi). The additive groups act independently, with a single
multiplicative action on top. F

×
p2

acts on F
+
p through the group homomorphism F

×
p2

→ F
×
p

defined by the map x 7→ xp−1. Let Bj denote an orbit of Λ1 on [kp]. Now the orbit of any

pair {u, v} ∈
(Bj

2

)

is a clique of size |Bj| ≥ p ≥ h, therefore a Λ1-invariant graph cannot
contain an intra-cluster edge.

Let di be the largest power of 2 that divides qi − 1. Let Ci be the subgroup of F
×
qi of

order di. Let Λ2 :=

r′
∏

i=1

Γ(qi, di), acting on [k′] with r′ orbits of sizes q1, . . . , qr′ in the obvious

manner.
From Lemma 3.2 we know that the orbit of any {u, v} ∈

([qi]
2

)

must contain a clique of
size h. Hence, an invariant graph cannot contain any intra-cluster edge.

Overall, let Γ := Λ1 ×Λ2, acting on [n]. Since qi ≥ p, we have gcd(qi, p
2 − 1) = 1. Thus,

Γ is a “2-group extension of a cyclic extension of a p-group” and therefore satisfies Oliver’s
Condition (stated before Theorem 2.1). Hence, assuming QHn is non-evasive, Lemma 2.2
and Theorem 2.1 imply

χ((QHn )Γ) ≡ 1 (mod 2).

On the other hand, we claim that the fixed-point complex (QHn )Γ is isomorphic to Q
[[H]]
r .

The (simple) proof goes along the lines of Lemma 4.2 of [3]. Thus, by Lemma 3.1 we have

χ(Q
[[H]]
r ) ≡ 0 (mod 2), a contradiction.
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3.4. Unconditionally, QHn is only O(1) away from being evasive

In this section, we prove part (c) of Theorem 1.3.

Theorem 3.7. For every graph H there exists a number CH such that the query complexity
of QHn is ≥

(n
2

)

− CH .

Proof. Let h be the number of vertices of H. Let p be the smallest prime such that p ≥ h
and p ≡ 2 (mod TH). So p < f(H) for some function f by Dirichlet’s Theorem (we don’t
need any specific estimates here). Since p − 1 ≡ 1 (mod TH), we have gcd(p − 1, TH) = 1
and therefore gcd(p − 1, pTH) = 1. Now, by the Chinese Remainder Theorem, select the
smallest positive integer k′ satisfying k′ ≡ n (mod pTH) and k′ ≡ 1 (mod p−1). Note that
k′ < p2TH . Let k = (n− k′)/(pTH); so we have n = kpTH + k′.

Let N ′ =
(n
2

)

−
(k′

2

)

. Consider the following Boolean function BH
n on N ′ variables.

Consider graphs X on the vertex set [n] with the property that they have no edges among
their last k′ vertices. These graphs can be viewed as Boolean functions of the remaining
N ′ variables. Now we say that such a graph has property BH

n if it does not contain H as a
subgraph.
Claim. The function BH

n is evasive.
The Claim immediately implies that the query complexity of QHn is at least N ′, proving the

Theorem with CH =
(k′

2

)

< p4T 2
H < f(H)4T 2

H .

To prove the Claim, consider the groups Λ := (F+
p )kTH ⋊ F

×
p and Γ := Λ× Zk′. Here Λ

acts on [pkTH ] in the obvious way: we divide [pkTH ] into kTH blocks of size p; F
+
p acts on

each block independently and F
×
p acts on the blocks simultaneously (diagonal action) so on

each block they combine to an AGL(1, p)-action. Zk′ acts as a k′-cycle on the remaining k′

vertices. So Γ is a cyclic extension of a p-group (because gcd(p − 1, k′) = 1).
If BH

n is not evasive then from Theorem 2.1 and Lemma 2.2, we have χ
(

(BH
n )Γ

)

= 1.

On the other hand we claim that, (BH
n )Γ ∼= Q

[[H]]
r , where r = kTH + 1. The proof of

this claim is exactly the same as the proof of Lemma 4.2 of [3]. Thus, from Lemma 3.1, we

conclude that χ(Q
[[H]]
r ) is even. This contradicts the previous conclusion that χ(Q

[[H]]
r ) = 1.

Remark 3.8. Specific estimates on the smallest Dirichlet prime can be used to estimate
CH . Linnik’s theorem implies CH < hO(1), extending Theorem 3.7 to strong lower bounds
for variable H up to h = nc for some positive constant c.

4. Sparse graphs: unconditional results

We prove part (c) of Theorem 1.4.

Theorem 4.1. If the non-empty monotone graph property Pn is not evasive then

dim(Pn) = Ω(n log n).
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4.1. The basic group construction

Assume in this section that n = pαk where p is prime. Let ∆k ≤ Σk. We construct the
group Γ0(p

α,∆k) acting on [n].
Let ∆ = (F×

pα ×∆k). Let Γ0(p
α,∆k) be the semidirect product (F+

pα)k ⋊∆ with respect

to the ∆-action on (F+
pα)k defined by

(a, σ) : (b1, . . . , bk) 7→ (abσ−1(1), . . . , abσ−1(k)).

We describe the action of Γ0(p
α,∆k) on [n]. Partition [n] into k clusters of size pα each.

Identify each cluster with the field of order pα, i.e., as a set, [n] = [k] × Fpα. The action of
γ = (b1, . . . , bk, a, σ) is described by

γ : (x, y) 7→ (σ(x), ay + bσ(x)).

An unordered pair (i, j) ∈ [n] is termed an intra-cluster edge if both i and j are in the
same cluster, otherwise it is termed an inter-cluster edge. Note that every u-orbital under
Γ has only intra-cluster edges or only inter-cluster edges. Denote by mintra and minter the
minimum sizes of u-orbitals of intra-cluster and inter-cluster edges respectively.

We denote by m′
k the minimum size of an orbit in [k] under ∆k and by m′′

k the minimum
size of a u-orbital in [k]. We then have:

mintra ≥
(

pα

2

)

×m′
k, minter ≥ (pα)2 ×m′′

k

Let mk‘ := min{m′
k,m

′′
k} and define m∗ as the minimum size of a u-orbital in [n]. Then

m∗ = min{mintra,minter} = Ω(p2αmk) (4.1)

4.2. Vinogradov’s Theorem

The Goldbach Conjecture asserts that every even integer can be written as the sum of
two primes. Vinogradov’s Theorem [24] says that every sufficiently large odd integer k is the
sum of three primes k = p1 + p2 + p3. We use here Haselgrove’s version [7] of Vinogradov’s
theorem which states that we can require the primes to be roughly equal: pi ∼ k/3. This
can be combined with the Prime Number Theorem to conclude that every sufficiently large
even integer k is a sum of four roughly equal primes.

4.3. Construction of the group

Let n = pαk where p is prime. Assume k is not bounded. Write k as a sum of t ≤ 4
roughly equal primes pi. Let ∆k :=

∏

i Zpi where Zpi denotes the cyclic group of order pi
and the direct product is taken over the distinct pi.

∆k acts on [k] as follows: partition k into parts of sizes p1, . . . , pt and call these parts
[pi]. The group Zpi acts as a cyclic group on the part [pi]. In case of repetitions, the same
factor Zpi acts on all the parts of size pi.

We follow the notation of Section 4.1 and consider the group Γ0(p
α,∆k) with our specific

∆k. We have mk = Ω(k) and hence we get, from equation (4.1):

Lemma 4.2. Let n = pαk where p is a prime. For the group Γ0(p
α,∆k), we have m∗ =

Ω(p2αk) = Ω(pαn), where m∗ denotes the minimum size of a u-orbital.
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4.4. Proof for the superlinear bound

Let n = pαk where pα is the largest prime power dividing n; so pα = Ω(log n); this
will be a lower bound on the size of u-orbitals. Our group Γ will be of the general form
discussed in Section 4.1.
Case 1. pα = Ω(n2/3).
Let Γ = Γ0(p

α, {1}). Following the notation of Section 4.1, we get m′
k = m′′

k = 1, and this

yields that m∗ = Ω((pα)2) = Ω(n4/3) = Ω(n log n). Oliver’s condition is easily verified for
Γ.
Case 2. k = Ω(n1/3).
Consider the Γ := Γ0(p

α,∆k) acting on [n] where ∆k is as described in Section 4.3. The
minimum possible size m∗ of a u-orbital is Ω(npα) by Lemma 4.2. Finally, since pα =
Ω(log n), we obtain m∗ = Ω(n log n).

If all pi are co-prime to pα − 1 then F
×
pα ×∆k becomes a cyclic group and Γ becomes a

cyclic extension of a p-group.
Since pi = Ω(k) = Ω(n1/3) for all i and pα = O(n2/3), size considerations yield that at

most one pi divides pα − 1 and p2
i does not. Suppose, without loss of generality, p1 divides

pα − 1. Let pα − 1 = p1d, then d must be co-prime to each pi. Thus, ∆ = (Zp1 × Zd) ×
(Zp1 × . . .×Zpt) = (Zd×Zp2 × . . .×Zpr)× (Zp1 ×Zp1). Thus, ∆ is a p1-group extension of
a cyclic group. Hence, Γ satisfies Oliver’s Condition (cf. Theorem 2.1).

Remark 4.3. For almost all n, our proof gives a better dimension lower bound of Ω(n1+ 1+o(1)
ln ln n ).

5. Sparse graphs: conditional improvements

In this section we prove parts (a) and (b) of Theorem 1.4.

5.1. General Setup

Let n = pk + r, where p and r are prime numbers. Let q be a prime divisor of (r − 1).
We partition [n] into two parts of size pk and r, denoted by [pk] and [r] respectively. We
now construct a group Γ(p, q, r) acting on [n] as a direct product of a group acting on [pk]
and a group acting on [r], as follows:

Γ = Γ(p, q, r) := Γ0(p,∆k) × Γ(r, q)

Here, Γ0(p,∆k) acts on [pk] and is as defined in Section 4.3, and involves choosing a partition
of k into upto four primes that are all Ω(k).

Γ(r, q) is defined as the semidirect product F
+
r ⋊ Cq, with Cq viewed as a subgroup of

the group F
×
r . It acts on [r] as follows: We identify [r] with the field of size r. Let (b, a) be

a typical element of Γr where b ∈ Fr and a ∈ Cq. Then, (b, a) : x 7→ ax+ b.
Thus, Γ = Γ(p, q, r) acts on [n]. Let m∗ be the minimum size of the orbit of any edge

(i, j) ∈
([n]

2

)

under the action of Γ. One can show that

m∗ = Ω(min{p2k, pkr, qr}). (5.1)

We shall choose p, q, r carefully such that (a) the value of m∗ is large, and (b) Oliver’s
condition holds for Γ(p, q, r).
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5.2. ERH and Dirichlet primes

The Extended Riemann Hypothesis (ERH) implies the following strong version of the
Prime Number Theorem for arithmetic progressions. Let π(n,D, a) denote the numer of
primes p ≤ n, p ≡ a (mod D). Then for D < n we have

π(n,D, a) =
li(n)

ϕ(D)
+O(

√
x lnx) (5.2)

where li(n) =
∫ n
2 dt/t and the constant implied by the big-Oh notation is absolute (cf. [16,

Ch. 7, eqn. (5.12)] or [2, Thm. 8.4.5]).
This result immediately implies “Bertrand’s Postulate for Dirichlet primes:”

Lemma 5.1 (Bertrand’s Postulate for Dirichlet primes). Assume ERH. Suppose the se-
quence Dn satisfies Dn = o(

√
n/ log2 n). Then for all sufficiently large n and for any an

relatively prime to Dn there exists a prime p ≡ an (mod Dn) such that n
2 ≤ p ≤ n.

5.3. With ERH but without Chowla

We want to write n = pk + r, where p and r are primes, and with q a prime divisor of
r − 1, as described in Section 5.1. Specifically, we try for:

p = Θ(n1/4),
n

4
≤ r ≤ n

2
, q = Θ(n1/4−ǫ)

We claim that under ERH, such a partition of n is possible.
To see this, fix some p = Θ(n1/4) such that gcd(p, n) = 1. Fix some q = Θ(n1/4−ǫ).

Now, r ≡ 1 (mod q) and r ≡ n (mod p) solves to r ≡ a (mod pq) for some a such that

gcd(a, pq) = 1. Since pq = Θ(n1/2−ǫ), we can conclude under ERH (using Lemma 5.1)
that there exists a prime r ≡ a (mod pq) such that n

4 ≤ r ≤ n
2 . This gives us the desired

partition. One can verify that our Γ satisfies Oliver’s Condition. Equation (5.1) gives

m∗ = Ω(n5/4−ǫ). This completes the proof of part (b) of Theorem 1.4.

5.4. Stronger bound using Chowla’s conjecture

Let a and D be relatively prime. Let p be the first prime such that p ≡ a (mod D).
Chowla’s conjecture tells us that p = O(D1+ǫ) for every ǫ > 0. Using this, we show m∗ =

Ω(n3/2−ǫ).
We can use Chowla’s conjecture, along with the general setup of Section 5.1, to obtain

a stronger lower bound on m∗. The new bounds we hope to achieve are:

p = Θ(
√
n), n1−2.5δ ≤ r ≤ n1−0.5δ, q = Θ(n1/2−δ)

Such a partition is always possible assuming Chowla’s conjecture. To see this, first fix
p = Θ(n1/2), then fix q = Θ(n1/2−2δ) and find the least solution for r ≡ 1 (mod q) and
r ≡ n (mod p), which is equivalent to solving for r ≡ a (mod pq) for some a < pq. The
least solution will be greater than pq unless a happens to be a prime. In this case, we add
another constraint, say r ≡ a+1 (mod 3) and resolve to get the least solution greater than
pq. Note that n1−2.5δ ≤ r ≤ n1−0.5δ. Now, from Equation (5.1), we get the lower bound of

m∗ = Ω(n3/2−4δ). This completes the proof of part (a) of Theorem 1.4.
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[23] Turán, P.: Über die Primzahlen der arithmetischen Progression. Acta Sci. Math. (Szeged) 8 (1936/37)

226–235.
[24] Vinogradov, I. M.: The Method of Trigonometrical Sums in the Theory of Numbers (Russian). Trav.

Inst. Math. Stekloff 10, 1937.
[25] Yao, A. C.: Monotone bipartite properties are evasive. SIAM J. Comput. 17 (1988), 517–520.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.


