
HAL Id: inria-00455349
https://hal.inria.fr/inria-00455349

Submitted on 10 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact Covers via Determinants
Andreas Björklund

To cite this version:
Andreas Björklund. Exact Covers via Determinants. Jean-Yves Marion and Thomas Schwentick.
27th International Symposium on Theoretical Aspects of Computer Science - STACS 2010, Mar 2010,
Nancy, France. pp.95-106, 2010, Proceedings of the 27th Annual Symposium on the Theoretical
Aspects of Computer Science. <inria-00455349>

https://hal.inria.fr/inria-00455349
https://hal.archives-ouvertes.fr

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 95-106
www.stacs-conf.org

EXACT COVERS VIA DETERMINANTS

ANDREAS BJÖRKLUND

E-mail address: andreas.bjorklund@yahoo.se

Abstract. Given a k-uniform hypergraph on n vertices, partitioned in k equal parts
such that every hyperedge includes one vertex from each part, the k-Dimensional Match-
ing problem asks whether there is a disjoint collection of the hyperedges which covers
all vertices. We show it can be solved by a randomized polynomial space algorithm in
O∗(2n(k−2)/k) time. The O∗() notation hides factors polynomial in n and k.

The general Exact Cover by k-Sets problem asks the same when the partition constraint
is dropped and arbitrary hyperedges of cardinality k are permitted. We show it can be
solved by a randomized polynomial space algorithm in O∗(cn

k) time, where c3 = 1.496, c4 =
1.642, c5 = 1.721, and provide a general bound for larger k.

Both results substantially improve on the previous best algorithms for these problems,
especially for small k. They follow from the new observation that Lovász’ perfect matching
detection via determinants (Lovász, 1979) admits an embedding in the recently proposed
inclusion–exclusion counting scheme for set covers, despite its inability to count the perfect
matchings.

1. Introduction

The Exact Cover by k-Sets problem (XkC) and its constrained variant k-Dimensional
Matching (kDM) are two well-known NP-hard problems. They ask, given a k-uniform hy-
pergraph, if there is a subset of the hyperedges which cover the vertices without overlapping
each other. In the kDM problem the vertices are further partitioned in k equal parts and
the hyperedges each includes exactly one vertex from each part. While being two of the
21 items of Karp’s classic list of NP-complete problems [6] for k ≥ 3, little is known on
their algorithmic side. In this paper, we present stronger worst case time bounds for these
problems by combining Lovász’ perfect matching detection algorithm via determinants [10]
with the inclusion–exclusion counting for set covers [1]. We show

Theorem 1.1. k-Dimensional Matching on n vertices can be solved by a Monte Carlo
algorithm with exponentially low probability of failure in n, using space polynomial in n,
running in O∗(2n(k−2)/k) time.

Theorem 1.2. Exact Cover by k-Sets on n vertices can be solved by a Monte Carlo al-
gorithm with exponentially low probability of failure in n, using space polynomial in n,

1998 ACM Subject Classification: F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Hypergraphs.
Key words and phrases: Moderately Exponential Time Algorithms, Exact Set Cover, k-Dimensional

Matching.

c© A. Björklund
CC© Creative Commons Attribution-NoDerivs License

96 A. BJÖRKLUND

Algorithm \ k 3 4 5 6 7 8
kDM in [1] 1.587 1.682 1.741 1.782 1.811 1.834
kDM here 1.260 1.414 1.516 1.587 1.641 1.682
XkC in [1] 1.842 1.888 1.913 1.929 1.940 1.948
XkC in [8] 1.769 1.827 1.862 1.885 1.901 1.914
XkC here 1.496 1.642 1.721 1.771 1.806 1.832

Table 1: Comparison of the base c in the O∗(cn) runtime of previous and the new algorithms.

running in O∗(cn
k) time, with c3 = 1.496, c4 = 1.642, c5 = 1.721, c6 = 1.771, c7 = 1.806, and

in general ck < 2
(

8.415k0.9−k(k − 1)0.6(k − 1.5)k−1.5
)−1/k

These bounds are large improvements over the previously known ones. In particular,
for three dimensional matching our algorithm runs in time asymptotically proportional to
the square root of the previous best algorithm’s runtime.

We hope the present paper conveys the message that inclusion–exclusion is amendable
not only to counting problems, but can at times be used more directly to settle the decision
version of a problem.

1.1. Previous Work

Perhaps the most famous algorithmic contribution on the subject of exact covers is
Knuth’s Dancing Links paper [7], which actually just addresses a general implementation
issue which saves a small constant factor in the natural backtracking algorithm for the
problem. About the backtracking approach on exact cover he writes “Indeed, I can’t think of
any other reasonable way to do the job in general”. While we certainly may agree depending
on how much you put in the words “reasonable” and “general”, we must point out that the
best provable worst case bounds for the problems are obtained by analyzing very different
algorithms. Björklund et al. [2] uses inclusion–exclusion and fast zeta transforms on the full
subset lattice to show that exact set covers of any n vertex hypergraph can be counted in
O∗(2n) time even when the number of hyperedges to choose from are exponential. Restricted
to k-uniform hypergraphs, Koivisto [8] proposes a simple clever dynamic programming over

subsets which show that Exact Cover by k-Sets can be solved in O∗(2n(2k−2)/
√

(2k−1)2−2ln(2))
time. The algorithm is actually capable of counting the solutions and also works for not
necessarily disjoint covers. It does, however, use exponential space. The best previous
algorithm for the problem using only polynomial space is given in [1] and has a runtime

bound in O∗((1+k/(k−1))n(k−1)/k). For k-Dimensional Matching, the best known algorithm
as far as we know is an O∗(2n(k−1)/k) time algorithm resulting from a generalization of
Ryser’s inclusion–exclusion counting formula for the permanent [12], presented in [1]. A
comparison of the bounds guaranteed by these algorithms and the ones given in this paper
is shown in Table 1 for small k.

For k = 2 the problems X2C and 2DM are better known as the problems of finding a
perfect matching in a general and bipartite graph, respectively. For these problems several
polynomial time algorithms are known. We definitely admit that it seems like an obvious
idea to try to reduce the k > 2 cases to the k = 2 case searching for faster algorithms
for larger k. Still, we believe that it is far from clear how to achieve this efficiently. In
this paper we make such an attempt by reducing the k > 2 cases to variants of one of the

EXACT COVERS VIA DETERMINANTS 97

first polynomial time algorithms for detecting the existence of perfect matchings: Lovász’
algorithm from [10] which evaluates the determinant of the graph’s Tutte matrix [13] at a
random point.

2. Our Approach

2.1. Preliminaries

We use the terminology of (multi)hypergraphs. A hypergraph H = (V,E) is a set V of
n vertices and a multiset E of (hyper)edges which are subsets of V . Note in particular that
with this definition edges may include only one (or even no) vertex and may appear more
than once. In a k-uniform hypergraph each edge e ∈ E has size |e| = k. Given a vertex
subset U ⊆ V , the projected hypergraph of H = (V,E) on U , denoted H[U] = (U,E[U]) is a
hypergraph on U where there is one edge eU in E[U] for every e ∈ E, defined by eU = e∩U ,
i.e. the projection of e on U .

We study two related problems.

Definition 2.1 (k-Dimensional Matching, kDM).

Input: A k-uniform hypergraph H = (V1 ∪ V2 ∪ · · ·Vk, E), with E ⊆ V1 × V2 × · · ·Vk.
Question: Is there S ⊆ E s.t. ∪s∈Ss = V1∪V2∪ · · ·Vk and ∀s1 6= s2 ∈ S : s1∩ s2 = ∅.

Definition 2.2 (Exact Cover by k-Sets, XkC).

Input: A k-uniform hypergraph H = (V,E).
Question: Is there S ⊆ E s.t. ∪s∈Ss = V and ∀s1 6= s2 ∈ S : s1 ∩ s2 = ∅.

For a matrix A we will by Ai,j denote the entry at row i and column j.

2.2. Determinants

The determinant of an n × n-matrix A over an arbitrary ring R can be defined by the
Leibniz formula

det(A) =
∑

σ:[n]→[n]

sgn(σ)

n
∏

i=1

Ai,σ(i) (2.1)

where the summation is over all permutations of n elements, and sgn is a function called
the sign of the permutation which assigns either one or minus one to a permutation. In this
paper we will restrict ourselves to computing determinants over fields of characteristic two,
GF(2m) for some positive integer m. In such fields every element serves as its own additive
inverse, and in particular so does the element one, and the sgn function identically maps
one to every permutation. Thus it vanishes from Eq. 2.1 in this case, and the determinant
coincides with another matrix quantity, called the permanent :

per(A) =
∑

σ:[n]→[n]

n
∏

i=1

Ai,σ(i) (2.2)

Permanents of 0–1-matrices over the natural numbers are known to count the perfect match-
ings of the bipartite graph described by the matrix. The reader may subsequently be
tempted to think that this identity of determinants and permanents over fields of char-
acteristic two is the property that makes our algorithms work. There is however nothing

98 A. BJÖRKLUND

magical about these fields in this context. Our reason for working in GF(2m) is simply that
with this choice of fields we don’t even have to define the sign function, making several of
the proof arguments later on much easier to digest. In principle though, any large enough
field will work, with slightly more complicated proofs.

The interesting property of the determinant that we will exploit here is that although
it is defined above in Eq. 2.1 as a sum of an exponential number of terms, it admits
computation in time polynomial in n. This can be achieved for instance via the so called
LU-factorization of the matrix which almost any textbook on linear algebra will tell you.
In fact, computing the determinant is no harder than square matrix multiplication, see [3],
and hence it can be done in O(nω) field operations where ω = 2.376 is the Coppersmith–
Winograd exponent [4].

2.3. Inclusion–Exclusion for Set Covers

Let us review the inclusion–exclusion counting scheme for exact set covers presented by
Björklund and Husfeldt in [1]: Given a k-uniform hypergraph H = (V,E) and any subset
U ⊆ V , we can count the number of Exact Covers by k-Sets, denoted #XkC(H), by the
inclusion–exclusion formula

#XkC(H) =
∑

X⊆V −U

(−1)|X|W (H,U,X) (2.3)

where W (H,U,X) counts the number of ways to exactly cover U with |V |/k edges in H[U]
whose corresponding edges in H are disjoint from X. Put differently, W (H,U,X) counts
the number of ways to pick |V |/k edges from H, all having an empty intersection with
X, which cover U without any overlap. In particular, when U = ∅ it is straightforward to
compute W (H, ∅,X) by just counting the number of edges in H disjoint from X, calling this

quantity d(X), and then computing the binomial
(d(X)

m

)

. In [1], some examples where this
algorithm could be accelerated by choosing a larger U were identified where the speedup
was obtained by utilizing U ’s such that the projected hypergraph on U had low path–width.
This enabled efficient counting by dynamic programming over a path decomposition.

2.4. Moving to GF(2m)

In this paper, we find a new way to allow a large U to expedite the computation of the
formula Eq. 2.3 above. We observe that whenever the projected hypergraph contains edges
of size at most two, we can use determinants to compute the formula faster. We note that
if the problem of counting perfect matching had an efficient algorithm A, we would almost
immediately get an O∗(2n(k−2)/k) time algorithm for the kDM problem. We would simply
let U be any two of the parts in the input partition, and use A to compute W (H,U,X).
Unfortunately, counting perfect matchings even in bipartite graphs is #P-complete [14].

The key insight of the present paper circumvents the apparent obstacle formed by the
intractability of counting matchings: we only need to be able to efficiently compute some
fixed weighted sum of the matchings (with no weights set to zero). This is exactly where the
determinants come to our rescue. The price we pay is that we have to give up counting the
solutions over the natural numbers. Here we demonstrate the result through counting over
fields of characteristic two which only allow us to detect if there is a cover at all and gives us
little knowledge of their number. Furthermore, to avoid having an even number of solutions
cancel we will employ a fingerprint technique, very much in the same spirit as Williams [15]

EXACT COVERS VIA DETERMINANTS 99

recently extended the k-path detection algorithm based on an algebraic sieving method of
Koutis [9]. The fingerprint idea is to think of the computation as evaluating a polynomial
of a degree much smaller than the number of elements of its base field and then computing
it at a randomly chosen point. The fact that a polynomial cannot have more roots than
its degree assure us that with great probability we discover with this single point probing
whether the polynomial is the zero-polynomial or not. We will in fact use the multivariate
polynomial analogue, see e.g. [11].

Lemma 2.3 (Schwartz-Zippel). Let P (x1, x2, ..., xn) be a non-zero n-variate polynomial of
degree d over a field F . Pick r1, r2, ..., rn ∈ F uniformly at random, then

Pr(P (r1, r2, ..., rn) = 0) ≤ d

|F |
For now, it is sufficient to think of the inclusion–exclusion formula of Eq. 2.3 as evalu-

ating a multivariate polynomial over the base field GF(2m) for some m. In what follows we
will associate with all edges e in the input hypergraph a variable ve. Our modified version
of Eq. 2.3 reads as follows.

Lemma 2.4. Given an XkC-instance H = (V,E) and the family of all its solutions S, we
have that, for every subset U ⊆ V ,

∑

X⊆V −U

W2,f (H,U,X) =
∑

E′∈S

∏

e∈E′

vf(e)
e (2.4)

where the computation is over a multivariate polynomial ring over GF(2m), f is a function
mapping the edges to the positive integers, and

W2,f (H,U,X) =
∑

E′′

∏

e∈E′′

vf(e)
e (2.5)

where the summation is over all E′′ ⊆ E, satisfying four constraints

• Avoidance, ∀e ∈ E′′ : e ∩ X = ∅
• Cardinality, |E′′| = |V |/k
• Coverage, U ⊆ ∪e∈E′′e
• Disjointness, ∀e1 6= e2 ∈ E′′ : e1 ∩ e2 ∩ U = ∅

Proof. First, note that every E′ ∈ S fulfills all four conditions Avoidance, Cardinality,
Coverage, and Disjointness for X = ∅, but violates Avoidance for every other X, irrespective
of the choice of U . Thus, the contribution

∏

e∈E′ ve of every solution E′ is counted precisely
once.

Second, a non-solution E′′ obeying the three conditions Cardinality, Coverage, and
Disjointness, fulfills the Avoidance condition for an even number of choices of X irrespective
of U , namely for all subsets of the elements of V that the union of the sets in E′′ fails to

cover. Hence, all of these contributions
∏

e∈E′′ v
f(e)
e cancel each other since we are working

in a field of characteristic two.

Combining the two Lemmas above 2.3 and 2.4 into an algorithm choosing a random
point r1, r2, ..., r|E| ∈ GF(2m) and evaluating the left-hand sum of Eq. 2.4 in the straight-
forward fashion, we get:

Corollary 2.5. Given an XkC-instance H = (V,E) and a subset U ⊆ V , there is a Monte
Carlo algorithm which returns “No” whenever there is no cover and returns “Yes” with

100 A. BJÖRKLUND

probability at least 1 − maxe∈E f(e)|V |/(k2m) when there exists at least one, running in
time O∗(2|V |−|U |τ(W2,f , U)), where τ(W2,f , U) is the time required to evaluate any of the
polynomials W2,f (H,U,X) for X ⊆ V − U , in a random point over the base field GF(2m).

Note that by letting m be in the order of n, when f is bounded by a constant, we
get exponentially low probability of failure in n. Armed with Corollary 2.5, we can start
looking for projections U over which the computation of W2,f (H,U,X) is easy. The next
two sections will describe two examples of how we can use determinants to accelerate the
computation.

3. k-Dimensional Matching

We begin by the easier application, kDM. For this problem we can trivially find a large
vertex subset on which the projected instance is a multigraph, and in fact also bipartite: we
just use any two of the parts in the vertex partition given as input. Edmonds [5] observed
that one could relate a bipartite graphs’ perfect matchings to the determinant of a symbolic
matrix. A perfect matching is a collection of disjoint edges so that every vertex is covered by
precisely one edge. To a given a bipartite graph G = (U, V,E), n = |U | = |V |, he associated
an n × n-matrix A with rows representing vertices in U , and columns the vertices of V ,
and equated Ai,j with a variable vij if (i, j) ∈ E and zero otherwise. He showed that the
determinant of A is non-zero iff G has a perfect matching. We will use essentially the same
result, with the small exception that we need to deal with multiple edges between a vertex
pair, making sure all contributes. Formally

Definition 3.1. Given a hypergraph H = (V,E) and a subset U ⊆ V such that the
projected hypergraph H[U] is a bipartite multigraph on two equally sized vertex parts
U1 ∪ U2 = U , its Edmonds matrix, denoted E(H,U1, U2), is defined by

E(H,U1, U2)i,j =
∑

e=(i,j)∈E[U]
i∈U1,j∈U2

ve

where again, ve is a variable associated with the edge e.

We formulate our Lemma in terms of a special case of XkC instead of kDM directly to
capture a more general case.

Lemma 3.2. For a XkC-instance H = (V,E) and two equally sized disjoint vertex subsets
U1, U2 ⊆ V such that the projected hypergraph H[U1 ∪ U2] is a bipartite multigraph,

det(E(H,U1, U2)) =
∑

M∈M

∏

e∈M

ve (3.1)

where the computation is over a multivariate polynomial ring over GF(2m) for some m and
the summation is over all perfect matchings M in H[U1 ∪ U2].

Proof. By definition of the determinant 2.1, the summation is over all products of n of the
matrix elements in which every row and column are used exactly once. Transferred to the
associated bipartite graph, this corresponds to a perfect matching in the graph since rows
and columns represent the two vertex sets respectively. Moreover, the converse is also true,
i.e. for every perfect matching there is a permutation describing it. Hence the mapping is

EXACT COVERS VIA DETERMINANTS 101

one-to-one. The inner product counts all choices of edges producing a matching described
by a permutation σ since:

n
∏

i=1

Ei,σ(i) =

n
∏

i=1

∑

e=(i,σ(i))

ve =
∑

M∈M(σ)

∏

e∈M

ve (3.2)

where M(σ) is the set of all perfect matchings e1, e2, ..., en such that ei = (i, σ(i)).

3.1. The Algorithm

Now we are ready to prove Theorem 1.1. Given an input instance H = (V1, V2, ..., Vk, E)
to the kDM problem where V1, V2, ..., Vk describe the vertex partition of the n vertices, we
simply let U = V1 ∪ V2 in the algorithm described by Corollary 2.5, with f mapping one
to every edge. To compute W2,f (H,U,X) we construct the Edmonds matrix of the hyper-
graph H restricted to its edges disjoint to X, projected on U , with the variables replaced
by the random sample point (r1, r2, ..., r|E|) chosen. Next we compute its determinant.
The correctness follows from Lemma 3.2, after noting that every perfect matching in a
projected hypergraph contains n/k disjoint edges. The runtime bound is easily seen to be

O∗(2n(k−2)/k) since |U | = |V1| + |V2| = 2n/k.

4. Exact Cover by k-Sets

Next we proceed to the XkC problem. In comparison to the kDM we are faced with a
number of additional obstacles on our way to a similar result.

• First, a projection will typically capture edges differently, some will have large pro-
jections and some no at all.

• Second, in particular the projected edges will probably not form a multigraph.
• Third, even if they did it may not be a bipartite one.

For the first obstacle, we will prove that it is sufficient to find a projection on which
at least one cover’s edges all leave projected edges of size two or less. This is basically
an extension of the idea for the XkC algorithm in proposition 10 in [1]. There, a vertex
subset U is picked uniformly at random of a carefully chosen size, and in the projected
hypergraph only the edges which leave a projection of size one or less are kept. Then the
inclusion–exclusion formula Eq. 2.3 is used after noting that W (H,U,X) is now easy to
compute. The process is repeated a number of times dictated by the size of U . The best
size to use is a trade-off of the resulting summation runtime and the probability that a cover
is projected gracefully in the sense that all its edges are kept after the projection.

For the second obstacle, in addition to handling multiple edges we also need to count
perfect matchings in which loops, i.e. edges connecting a vertex to itself, count as covering
the vertex of its endpoints. Since this means that not all perfect matchings will involve
the same number of edges, we have to take special care to make the determinants useful.
We use polynomial interpolation to solve for the contributions of matchings of the same
size separately to be able to fulfill the Cardinality constraint for W2,f in Corollary 2.5. To
this end we introduce an auxiliary variable s parametrizing the matrices and use several
determinant calculations.

For the third obstacle, we will use a variation of a result generalizing Edmonds’ due to
Tutte [13]. He showed that even for general not necessarily bipartite graphs one can make

102 A. BJÖRKLUND

a connection between its perfect matchings and the determinant of a symbolic matrix,
although twice as large matrices in both directions are required. To a given a graph G =
(V,E), n = |V | he associates an n × n-matrix A with rows and columns representing the
vertices, and assigns Ai,j = vi,j for i < j and Ai,j = −vi,j for i > j with vi,j a variable
for each edge (i, j) ∈ E. The remaining entries are set to zero. The determinant of A is
non-zero iff G has a perfect matching.

We define matrices similar to Tutte’s:

Definition 4.1. Given a hypergraph H = (V,E) and a subset U ⊆ V such that in the
projected hypergraph H[U] all edges have size at most two, its Tutte matrix of index s,

denoted T(s)(H,U), is defined by

T(s)(H,U)i,j =

{
∑

ve : e ∈ E[U], e = (i, j), i 6= j
s
∑

ve : e ∈ E[U], e = (i, j), i = j

Lemma 4.2. For a XkC-instance H = (V,E) and a vertex subset U ⊆ V such that in the
projected hypergraph H[U], every edge has size at most two,

det(T(s)(H,U)) =
∑

M∈M

sΛ(M)
∏

e∈M

vp(e)
e (4.1)

where the computation is over a multivariate polynomial ring over GF(2m) for some m, the
summation is over all perfect matchings M in H[U], Λ(M) is the number of loops in the
matching M , and p(e) = 1 if e is a loop and p(e) = 2 otherwise.

Proof. By definition of the determinant 2.1, the summation is over all products
∏n

i=1 T
(s)
i,σ(i)

for a permutation σ. Call a permutation σ good if ∀i : σ(σ(i)) = i holds, and bad otherwise.
We will argue that only good permutations contribute to the sum. To see why, consider a
bad σ. Then there exists a smallest i such that σ(σ(i)) = j 6= i. Look at the cyclic sequence
{ci} where c0 = i and ck+1 = σ(ck) for k > 0. Let L > 2 be the smallest positive integer
such that cL = i (Note that there must be one and that all ci in between must by distinct
since every element in 1 through n is mapped to exactly once). Next define a cycle reversal
operation D mapping bad permutations on bad permutations by letting D(σ) be identical to
σ except in the points c1 through cL, where instead D(σ)(ci) = ci−1. Now first observe that
the reversal operation is dual in the sense that D(D(σ)) = σ and that D(σ) 6= σ since L > 2,
and hence every bad permutation can be uniquely paired with another bad permutation.
Second note that the contribution of a bad permutation is identical to the contribution of
its dual, since the Tutte matrices are symmetrical. Thus, since we are counting in a field of
characteristic two, they cancel each other.

Next we continue to observe that the good permutations describe precisely the structure
of all possible perfect matchings in a multigraph: i’s such that σ(i) 6= i describe ordinary
two-vertex edges in the matching, and i’s such that σ(i) = i describe loops.

The inner product of Eq. 2.1 reads

n
∏

i=1

T
(s)
i,σ(i) =

∏

i,i=σ(i)

s
∑

e=(i,i)

ve

∏

i,i6=σ(i)

∑

e=(i,σ(i))

ve

 =
∑

M∈M(σ)

sΛ(M)
∏

e∈M

ve (4.2)

where M(σ) is the set of all directed perfect matchings e1, e2, ..., en described by the good
permutation σ for which ei = (i, σ(i)).

Now consider a directed perfect matching e1, e2, ..., en such that for some j, ej 6= eσ(j),
and refer to it as being bad. We will see that all of these cancel in very much the same way

EXACT COVERS VIA DETERMINANTS 103

as the bad permutations did. Namely, again find the smallest j for which this is the case,
and define a reversal operation Rσ mapping bad directed perfect matchings onto themselves
by exchanging ej and eσ(j). Since this operation pairs up the bad directed perfect matchings
(Rσ({ei}) 6= {ei} and Rσ(Rσ({ei})) = {ei}) and we work in a field of characteristic two,
their contributions cancel. Thus we are left with only good permutations and good directed
perfect matchings. The latter can be thought of as undirected perfect matchings in which
every non-loop edge is included twice in the product.

To find the contributions of matchings of the same size separately, think of the match-
ings partitioned in groups M0,M1, ...,Mn according to the number of loops of the match-
ing. We can rewrite the determinant in Lemma 4.2 as

det(T(s)(H,U)) =
n
∑

i=0

siMi (4.3)

where Mi =
∑

M∈Mi

∏

e∈M v
p(e)
e are the quantities we seek. The right hand side of Eq. 4.3

is a degree n polynomial in s and thus we can solve for M0,M1, ...,Mn by computing
det(T(s)(H,U)) in n different choices of s, and use Lagrange’s interpolation formula to
recover the sought values. In fact, either there are no matchings with an odd number
of loops or no matchings with an even number of loops depending on the parity of |U |.
Consequently, the evaluation of n/2 points suffices, but we disregard from this optimization
possibility for simplicity. Once we have the Mi’s we are close to be able to compute W2,f

efficiently according to the following Lemma:

Lemma 4.3. Given a XkC instance H = (V,E) and a U ⊆ V such that for all edges
e ∈ E,|e ∩ U | ≤ 2, f(e) = 2 if |e ∩ U | = 2 and 1 otherwise, and any X ⊆ V − U ,

W2,f (H,U,X) =

|U |
∑

i=0

Z(
|V |
k

− ⌊|U | + i

2
⌋)Mi (4.4)

where Mi =
∑

M∈Mi

∏

e∈M v
p(e)
e are the contribution of all matchings Mi containing

exactly i loops in the projected hypergraph of H on U restricted to the edges disjoint to X,
and

Z(i) =
∑

E′⊆Z
|E′|=i

∏

e′∈E′

ve′ (4.5)

with Z defining the set of edges e disjoint to X also having an empty intersection with U .

Proof. The Mi’s count the contribution of all ways to cover U with the edges which leaves
a non-empty projection on U and the Z(i)’s count the contribution of all ways to choose

edges leaving an empty projection. Note that a matching from Mi involves exactly ⌊ |U |+i
2 ⌋

edges if it exists. The right hand side of Eq. 4.4 convolutes over all ways their total number
of edges could equal |V |/k in order to meet the Cardinality constraint in Corollary 2.5.

The only piece missing is a simple way to evaluate Z(i), and we note that it can be
done by dynamic programming through a simple recursion. Number the edges in Z defined
in Lemma 4.3 arbitrarily as e1, e2, ..., ep, set Zi = {e1, e2, ..., ei}, and define

z(i, j) =
∑

E′⊆Zj

|E′|=i

∏

e′∈E′

ve′ (4.6)

104 A. BJÖRKLUND

These can be solved for by

z(i, j) =

1 : i = j = 0
0 : i = 0 or j = 0

z(i − 1, j − 1)vej + z(i, j − 1) : otherwise
(4.7)

and we finally compute Z(i) through Z(i) = z(i, p).

4.1. The Algorithm

We are ready to prove Theorem 1.2. First we describe the algorithm. Given an input
instance H = (V,E) to the XkC problem, we compute two parameters t and I depending
on k. These are given by the calculations in the next section 4.2. We repeat the following
procedure until we detect a cover, in which case we report so, or have tried unsuccessfully
I times, in which case we report that no cover was found:

Algorithm 4.4.

(1) Choose a tn-sized subset U ⊆ V uniformly at random.
(2) Construct HU = (V,EU) where EU = {e|e ∈ E, |e ∩ U | ≤ 2}.
(3) Run the summation algorithm in Corollary 2.5 on HU , using U , and let f(e) = 2 if

|e ∩ U | = 2 and 1 otherwise. Use the method of the previous section 4 to compute
W2,f (HU , U,X), i.e.

(a) Construct the Tutte matrices T(s) of HU [U] restricted to its edges which are
disjoint to X for s = gi, 0 ≤ i ≤ |U | where g is a generator of the multiplicative
group in GF(2m).

(b) Compute the determinants of T(s).
(c) Use Lagrange interpolation to solve for the Mi’s via Eq. 4.3.
(d) Calculate the Z(i)’s by Eq. 4.7.
(e) Evaluate Eq. 4.4.

Given that the random U is such that all edges in some exact cover S are kept in
HU , the previous Section 4 verifies its correctness: Lemmas 4.2 and 4.3 together with the
observation that gi for 1 ≤ i ≤ |U | are all distinct points, assures us that step (3) of the
algorithm works. We are left with deciding t and I to make it very likely that some exact
solution is kept at least once and tune them to get the best possible runtime.

4.2. Runtime Analysis

Our runtime analysis hinges on the probability that any fixed solution S to the XkC
instance H = (V,E) when projected on a subset U ⊆ V chosen uniformly at random from
the tn-sized subsets of V for some fraction t of the vertices, gets all its edges to leave a
small projection on U , namely ∀e ∈ S : |e ∩ U | ≤ 2. We denote this event by ε(t). If
we repeat the process I times, the probability that none of the I independent random
selections for U is successful in the sense that they retain S after the projection, is at

most (1 − Pr(ε(t)))I < e−Pr(ε(t))I . Consequently, we need I = log(ǫ−1)Pr(ε(t))−1 to get
probability at least 1− ǫ for one or more of the I selections to be successful. Thus we may
use ǫ = c−n for some constant c > 1 to get an exponentially low probability in n of failure
without increasing the number of repetitions I by more than a polynomial factor.

EXACT COVERS VIA DETERMINANTS 105

k τ12 τ2 t I1/n ck

3 0.961 0.679 0.547 1.092 1.496
4 0.936 0.613 0.387 1.073 1.642
5 0.921 0.583 0.301 1.060 1.721
6 0.912 0.565 0.246 1.050 1.771
7 0.905 0.554 0.208 1.043 1.806
8 0.900 0.546 0.181 1.038 1.832

Table 2: Numerically found parameters τ12 and τ2 which approximately minimizes ck.

To bound the probability of the event, we count the number of good tn-sized subsets
of the vertices. This is a binomial sum (actually a trinomial one) over the number of edges
in the solution S which gets a projection of size two:

∑

t1+2t2=tn

(

n/k

t1

)(

n/k − t1
t2

)(

k

2

)t2(k

1

)t1

(4.8)

To lower bound this sum of all non-negative terms, we will use just one of them. Let
N = n/k and parametrize tn = τ12N + τ2N where τ12 is the fraction of sets in the solution
S which gets at least one of its elements chosen, and τ2 is the fraction of sets that gets two.

Then, we bound our probability as the quotient of the single term lower bound on the
number of good sets and the number of all sets

(n
tn

)

to

Pr(ε(t)) ≥
(N
τ12N

)(τ12N
τ2N

)

kτ12N (k − 1)τ2N

2τ2N
(kN
(τ12+τ2)N

) (4.9)

The runtime of Corollary 2.5 is O∗(2n−tn) given our polynomial time algorithm for com-
puting W2,f . Omitting polynomial factors, Algorithm 4.4 for XkC has to run for Pr(ε(t))−1

different choices of U in the worst case. Let Tk,t denote the final runtime, and expand the
binomials of Eq. 4.9 to get:

Tk,t ≤
2n−tn

Pr(ε(t))
≤ 2kN−τ12N (τ2N)!(N − τ12N)!(τ12N − τ2N)!(kN)!

N !kτ12N (k − 1)τ2N (kN − τ12N − τ2N)!(τ12N + τ2N)!
(4.10)

If we replace the factorials with Stirling’s approximation n! ∈ θ(
√

n(n/e)n) and divide
(N/e)k+1 out of both numerator and denominator, we are left with a slightly less intimi-
dating expression

Tk,t ≤
(

2(k−τ12)τ τ2
2 (τ12 − τ2)

τ12−τ2(1 − τ12)
1−τ12

kτ12−k(k − 1)τ2(k − τ12 − τ2)k−τ12−τ2(τ12 + τ2)τ12+τ2

)N

(4.11)

Rewriting this as Tk,t ≤ cn
k we see that ck can be obtained as the k:th root of the

expression within the brackets in Eq. 4.11. Solving numerically for the choices of τ12 and τ2

that minimizes ck we find that the minimum moves slightly with increasing k, see Table 2.
The minimum, however, lies in a quite flat neighborhood within a large vicinity of the actual
minimum, and comparable bounds not too far from the best possible with our technique are
obtained with fixed parameters for all k by, say, τ12 = 0.9 and τ2 = 0.6. With this choice of
parameters in Eq. 4.11 we obtain the general bound in Theorem 1.2.

106 A. BJÖRKLUND

Acknowledgements

This research was supported in part by the Swedish Research Council project ”Exact
Algorithms”.

References

[1] A. Björklund and T. Husfeldt. Exact Algorithms for Exact Satisfiability and Number of Perfect Match-
ings. Algorithmica 52(2): 226-249, 2008.

[2] A. Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via inclusion–exclusion. SIAM Journal on
Computing Vol.39, No.2: 546-563, 2009.

[3] J. R. Bunch and J. E. Hopcroft. Triangular factorization and inversion by fast matrix multiplication,
Mathematics of Computation, 28: 231236, 1974.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Sym-
bolic Computation, 9:251-280, 1990.

[5] J. Edmonds. Systems of distinct representatives and linear algebra. Journal of Research of the Natural
Bureau of Standards, 71B, 4:241–245, 1967.

[6] R. Karp. Reducibility Among Combinatorial Problems. Complexity of Computer Computations. New
York: Plenum. pp. 85-103, 1972.

[7] D. E. Knuth. Dancing Links, arXiv: cs/0011047, 2000.
[8] M. Koivisto. Partitioning into Sets of Bounded Cardinality. Proceedings of the 7th IWPEC, 2009.
[9] I. Koutis. Faster Algebraic Algorithms for Path and Packing Problems. 35th ICALP, pp. 575–586, 2008.

[10] L. Lovász. On determinants, matchings and random algorithms. Fundamentals of Computing Theory.
Akademia-Verlag, Berlin, 1979.

[11] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press, 1995.
[12] H. J. Ryser. Combinatorial Mathematics. Carus Math. Monographs, no. 14. Math. Assoc. of America,

Washington, DC, 1963.
[13] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society, 22:107–

111, 1947.
[14] L. G. Valiant. The Complexity of Computing the Permanent. Theor. Comput. Sci. 8: 189–201, 1979.
[15] R. Williams. Finding Paths of Length k in O∗(2k) Time. Information Processing Letters 109(6):315–318,

2009.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

