
HAL Id: inria-00455398
https://hal.inria.fr/inria-00455398

Submitted on 10 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Aspect-Oriented Approach to Securing Distributed
Systems

Henner Jakob, Nicolas Loriant, Charles Consel

To cite this version:
Henner Jakob, Nicolas Loriant, Charles Consel. An Aspect-Oriented Approach to Securing Distributed
Systems. Sixth ACM International Conference on Pervasive Services, Jul 2009, London, United King-
dom. ACM, pp.21–30, 2009, <10.1145/1568199.1568204>. <inria-00455398>

https://hal.inria.fr/inria-00455398
https://hal.archives-ouvertes.fr

An Aspect-Oriented Approach
to Securing Distributed Systems

Henner Jakob
INRIA

henner.jakob@inria.fr

Nicolas Loriant
INRIA

nicolas.loriant@inria.fr

Charles Consel
INRIA / LaBRI

charles.consel@inria.fr

ABSTRACT

The increasing size and complexity of distributed systems
create a need to raise the level of abstraction for their devel-
opment. This need becomes critical for pervasive comput-
ing where non-functional properties, such as security, must
be guaranteed. Architecture description languages (ADLs)
propose a promising approach to coping with the size and
complexity of pervasive computing systems. A system is de-
fined by a high-level description that may be used to produce
a programming framework. However, non-functional prop-
erties are not specifically addressed by existing ADL works.
To address this issue aspect-oriented programming is a well-
proven technique to properly modularize non-functional con-
cerns that can be dealt with by weaving dedicated code into
a program.

In this paper, we present DiaAspect, an aspect-oriented
language for an ADL. ADLs are a key to our approach be-
cause they expose features enabling an accurate coordina-
tion of aspects. We demonstrate the expressiveness of Dia-
Aspect with two examples of security policies in pervasive
computing. We also show how, combining the knowledge
of the architecture description with aspect code, improves
aspect weaving in the implementation code.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures

General Terms

Design, Languages

Keywords

Distributed systems, Security, Pervasive computing systems,
Aspect-oriented programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPS’09, July 13–17, 2009, London, United Kingdom.
Copyright 2009 ACM 978-1-60558-644-1/09/07 ...$10.00.

1. INTRODUCTION
Computing platforms are rapidly shifting from desktops

to environments populated with networked devices. These
distributed systems consist of an ever larger range of entities
that offer computing power, extensive functionalities and
network capabilities. The advent of these systems provides
services to users at anytime and everywhere, opening up a
host of application areas, ranging from home automation to
assisted living.

Non-functional properties like security typically impact
every aspect of a system. To cope with these concerns, one
must integrate them at an early stage of the system develop-
ment, as is proposed by an ADL. An ADL allows to precisely
and formally define a software architecture in terms of the
elements of the system, their behavior, their externally vis-
ible properties and the relationships among them [2]. How-
ever, non-functional properties have received limited atten-
tion in the ADL community in that, only specific concerns
have been addressed. This situation leads architects to dec-
orate an architecture description with non-functional con-
cerns, obfuscating the entire design.

Some middlewares provide support for non-functional con-
cerns. For example, in the Enterprise Java Bean (EJB) com-
ponent model [13], EJB containers provide support for se-
curity through encryption and authentication. Such compo-
nent models are either dependent on a specific middleware
or provide little development support, if any.

Aspect-oriented programming (AOP) [7] is a software en-
gineering approach to combining non-functional concerns
with software design. AOP provides techniques and tools to
systematically represent, modularize and compose concerns
that are crosscutting an entire system. While the integration
of AOP in programming languages has been heavily studied,
its usage at the architecture level is still to be explored.

This paper.
This paper presents an approach to defining non-functional

concerns alongside the description of a pervasive computing
system. These concerns are automatically mapped into the
system implementation, using an aspect-oriented approach.
Our contributions are as follows.

• We propose to extend our lightweight ADL, named
DiaSpec [5], with annotations to express non-functional
concerns, as a pervasive system architecture is being
defined. A dedicated programming framework is gen-
erated from an architecture description. Additionally,
non-functional annotations are mapped into aspect-
oriented declarations. These declarations are used by

an aspect-oriented engine to inject code into the gen-
erated framework to enforce declared non-functional
concerns.

• To enable aspects to be declared at the architecture
level, we have developed an aspect-oriented language
for ADLs, named DiaAspect. Our language provides
support to manipulate the common set of architecture
abstractions found in existing ADLs. This support
takes the form of a join point model on top of which ar-
chitectural crosscutting concerns are to be expressed.
Because our model covers features common to most
ADLs, we believe it is widely applicable.

• We describe how aspects at the architecture level al-
low powerful aspect weaving in existing middleware.
This situation is due to the fact that aspect weaving
is not performed on an arbitrary program, but on an
automatically generated framework, whose structure is
known. As a result, the aspect weaver may select the
optimal join point projection depending on the archi-
tecture specification and the aspect code.

• We validate our approach by securing the communi-
cation between components and enforcing access con-
trol. First, we show how to express the distribution
of certificates to components of a Remote Method In-
vocation (RMI) distributed system to secure the com-
munication with the secure socket layer (SSL) proto-
col. Second, we illustrate how to easily enforce access
control lists on the interfaces of the components of a
system.

Outline.
The rest of this paper is organized as follows. Section 2

presents notions and concepts of aspect-oriented software
development (AOSD) and ADL. It also introduces DiaSpec,
our lightweight ADL on which we illustrate our approach.
Section 3 introduces two security examples used through-
out the paper to illustrate our approach. In Section 4, we
describe DiaAspect, our dedicated aspect-oriented language
for the DiaSpec ADL. In Section 5, we illustrate our lan-
guage on the two examples introduced. In Section 6, we
present our implementation. We discuss related works and
conclude in Section 7 and Section 8.

2. BACKGROUND
Let us now introduce a few notions that are relevant to

the rest of the paper. We present some ADL concepts that
provide a basis to identify what is required to express aspect-
oriented programming for ADLs. These requirements are
used to define an aspect-oriented language dedicated to ADLs,
and more specifically to DiaSpec. We describe how DiaSpec
descriptions are used by a programming framework genera-
tor, named DiaGen, and the distributed system-based run-
time support for DiaSpec descriptions, named DiaEnv. Fi-
nally, we introduce requirements for AOSD at the architec-
ture level.

2.1 Architecture Description Languages
“A software architecture for a system is the structure or

structures of the system, which consist of elements, their
externally visible properties, and the relationships among

DiaSpec
architecture

DiaSpeccompiler

DiaSpectypes

prot ect ed i nt [] get Servi ces(Fi l t e
 t ry {
 Li st res = cal l (f i l t er) ;
 i f (res == nul l | | r es. si ze() == 0)
 r et urn new Rem ot eServi ceI nf o[0] ;
 Rem ot eServi ceI nf o[] res = new Li st () ;
 f or (i nt i = 0; i < res. si ze() ; i ++)
 r esAr ray[i] = res. get (i) ;
 r et urn resAr ray;
 } cat ch (I nvocat i onExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 } cat ch (Di aGenExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 }
}

prot ect ed i nt [] get Servi ces(Fi l t e
 t ry {
 Li st res = cal l (f i l t er) ;
 i f (res == nul l | | r es. si ze() == 0)
 r et urn new Rem ot eServi ceI nf o[0] ;
 Rem ot eServi ceI nf o[] res = new Li st () ;
 f or (i nt i = 0; i < res. si ze() ; i ++)
 r esAr ray[i] = res. get (i) ;
 r et urn resAr ray;
 } cat ch (I nvocat i onExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 } cat ch (Di aGenExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 }
}

prot ect ed i nt [] get Servi ces(Fi l t e
 t ry {
 Li st res = cal l (f i l t er) ;
 i f (res == nul l | | r es. si ze() == 0)
 r et urn new Rem ot eServi ceI nf o[0] ;
 Rem ot eServi ceI nf o[] res = new Li st () ;
 f or (i nt i = 0; i < res. si ze() ; i ++)
 r esAr ray[i] = res. get (i) ;
 r et urn resAr ray;
 } cat ch (I nvocat i onExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 } cat ch (Di aGenExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 }
}

Generatedframework

DiaGencore

prot ect ed i nt [] get Servi ces(Fi l t e
 t ry {
 Li st res = cal l (f i l t er) ;
 i f (res == nul l | | r es. si ze() == 0)
 r et urn new Rem ot eServi ceI nf o[0] ;
 Rem ot eServi ceI nf o[] res = new Li st () ;
 f or (i nt i = 0; i < res. si ze() ; i ++)
 r esAr ray[i] = res. get (i) ;
 r et urn resAr ray;
 } cat ch (I nvocat i onExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 } cat ch (Di aGenExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 }
}

prot ect ed i nt [] get Servi ces(Fi l t e
 t ry {
 Li st res = cal l (f i l t er) ;
 i f (res == nul l | | r es. si ze() == 0)
 r et urn new Rem ot eServi ceI nf o[0] ;
 Rem ot eServi ceI nf o[] res = new Li st () ;
 f or (i nt i = 0; i < res. si ze() ; i ++)
 r esAr ray[i] = res. get (i) ;
 r et urn resAr ray;
 } cat ch (I nvocat i onExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 } cat ch (Di aGenExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 }
}

prot ect ed i nt [] get Servi ces(Fi l t e
 t ry {
 Li st res = cal l (f i l t er) ;
 i f (res == nul l | | r es. si ze() == 0)
 r et urn new Rem ot eServi ceI nf o[0] ;
 Rem ot eServi ceI nf o[] res = new Li st () ;
 f or (i nt i = 0; i < res. si ze() ; i ++)
 r esAr ray[i] = res. get (i) ;
 r et urn resAr ray;
 } cat ch (I nvocat i onExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 } cat ch (Di aGenExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 }
}

Implementation

Specificcommunicationlayer

prot ect ed i nt [] get Servi ces(Fi l t e
 t ry {
 Li st res = cal l (f i l t er) ;
 i f (res == nul l | | r es. si ze() == 0)
 r et urn new Rem ot eServi ceI nf o[0] ;
 Rem ot eServi ceI nf o[] res = new Li st () ;
 f or (i nt i = 0; i < res. si ze() ; i ++)
 r esAr ray[i] = res. get (i) ;
 r et urn resAr ray;
 } cat ch (I nvocat i onExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 } cat ch (Di aGenExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 }
}

prot ect ed i nt [] get Servi ces(Fi l t e
 t ry {
 Li st res = cal l (f i l t er) ;
 i f (res == nul l | | r es. si ze() == 0)
 r et urn new Rem ot eServi ceI nf o[0] ;
 Rem ot eServi ceI nf o[] res = new Li st () ;
 f or (i nt i = 0; i < res. si ze() ; i ++)
 r esAr ray[i] = res. get (i) ;
 r et urn resAr ray;
 } cat ch (I nvocat i onExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 } cat ch (Di aGenExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 }
}

prot ect ed i nt [] get Servi ces(Fi l t e
 t ry {
 Li st res = cal l (f i l t er) ;
 i f (res == nul l | | r es. si ze() == 0)
 r et urn new Rem ot eServi ceI nf o[0] ;
 Rem ot eServi ceI nf o[] res = new Li st () ;
 f or (i nt i = 0; i < res. si ze() ; i ++)
 r esAr ray[i] = res. get (i) ;
 r et urn resAr ray;
 } cat ch (I nvocat i onExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 } cat ch (Di aGenExcept i on e) {
 e. pr i nt St ackTrace() ;
 r et urn nul l ;
 }
}

Deploymentprogram

DiaGen/DiaSpec program building chain Provided
Generated User code

Extensible

"uses""uses"
"uses" "uses"

"uses"

"uses"

Figure 1: The DiaSpec development process.

them” [2]. Because a software system may not be completely
represented as a single structure, it is usually modeled with
multiple views.

ADLs allow architects to represent and specify systems
in both human and machine readable languages. A pre-
cise semantics increases the coordination of multiple par-
ticipants while providing tools to perform verifications on
various properties and generate code and test cases.

The vast majority of ADLs use a component-and-connector
idiom to represent the software system structure. Basic
connectors, such as synchronous Remote Procedure Calls
(RPC) and asynchronous messages, may be used to develop
new connectors. In addition, ADLs may sometimes feature
code generation tools and runtime support for the deploy-
ment of distributed systems. The mandatory feature, to be
supported by a middleware, is a service discovery mecha-
nism, allowing the dynamic binding of components.

2.1.1 DiaSpec

We now give a brief overview of our lightweight ADL to
provide some background for our aspect-oriented language,
DiaAspect. Notice that DiaSpec and DiaAspect are general
enough to be introduced on top of most ADLs.

DiaSpec is an ADL that is part of a generative approach
to supporting the implementation of pervasive computing
systems. As illustrated in Figure 1, it features the Dia-
Gen compiler that takes a DiaSpec specification and pro-
duces a typed programming framework. This framework
closely guides the implementation of the software compo-
nents. DiaGen performs various verifications of both the
architecture specification and the component implementa-
tions. It partially generates a software layer, DiaEnv, to
support runtime execution. In addition to performing run-
time consistency checks, DiaEnv abstracts over the commu-
nication layer, allowing to transparently deploy a system
implementation over multiple middlewares.1

DiaSpec models software architectures in terms of com-
ponents and connectors. As illustrated in Figure 2, it is a
dedicated ADL, where component interactions are included
in component declarations. It differs from most ADLs where
component interfaces are defined with ports. Nevertheless,
this difference has no implication on our work. DiaSpec
features three built-in connectors: commands, events and
sessions.

• A command connector amounts to a synchronous RPC,
allowing a one-to-one interaction.

1Currently, DiaEnv supports Web Services, RMI, local and
SIP deployments.

component Device(String location) {}

component Sensor extends Device {}

component Actuator extends Device {}

component TemperatureSensor extends Sensor {
provides event Temperature

to AirConditioning;
provides event Temperature to FireManager;

}

component Fan extends Actuator {
provides command Speed to AirConditioning;
provides command OnOff to FireManager;

}

component FireManager {
requires command OnOff from AirConditioning;
requires command OnOff from Fan;
requires event Temperature

from TemperatureSensor;
}

component AirConditioning {
provides command OnOff to FireManager;
requires command Speed from Fan;
requires event Temperature

from TemperatureSensor;
}
icommand Speed {

void setSpeed(int speed);
}

icommand OnOff {
void on();
void off();

}

Figure 2: A DiaSpec example specification

• An event connector corresponds to the well-known pub-
lish/subscribe paradigm, in which a publisher sends
events to receivers registered for the corresponding type.

• A session connector defines an offer/answer session ne-
gotiation protocol [12], followed by a media session.

In addition to component inheritance, a component decla-
ration includes attributes that enable component instances
to be distinguished. The example in Figure 2 specifies a
simple air conditioning system in which four components
must be implemented: TemperatureSensor, Fan, FireMan-
ager and AirConditioning. The first two extend Device

and thus inherit the attribute location. This attribute is
used to refer to specific instances of components.

DiaGen and DiaEnv provide developers with a service dis-
covery mechanism that filters component instances accord-
ing to their type and their attribute values. A dedicated
implementation of this mechanism is generated in confor-
mance with the DiaSpec description. It corresponds to a
typed version of existing service discovery mechanisms.

2.2 Aspect-Oriented Programming
The decomposition of software into small, meaningful,

manageable and comprehensible parts has been a core idiom
of software engineering for decades. A proper separation of
concerns promotes reusability, traceability, adaptation, and
comprehensibility. But, the relevance of concerns may vary
with respect to roles: architects, developers and administra-
tors. It may also vary depending on the stage of the soft-
ware life cycle. Moreover, concerns may be constrained by

the implementation language being used. For example, the
object-oriented paradigm drives the decomposition of data
structures into classes.

Despite the numerous software engineering approaches to
system decomposition (e.g. libraries, modules, components,
etc.), achieving a proper decomposition, where every con-
cern is correctly modularized, is not possible in practice [14].
Some concerns are then spread out and mixed; these are said
to be crosscutting the decomposition of the system.

AOSD is a software engineering approach that focuses
on the identification and representation of crosscutting con-
cerns, and their modularization in separate units, as well as
their automated composition into a complete system.

AOP [7] is a language independent paradigm, where as-
pects encapsulate crosscutting concerns. An aspect asso-
ciates an advice, the actual code of the concern, with point-
cuts that refer to the regions in the base program where the
advice is to be applied. An aspect weaver then realizes the
coordination of the aspects with the base program, either
statically, e.g. through static code inlining, or dynamically,
e.g. using the host language’s reflection mechanism.

While a significant body of work has focused on the proper
decomposition of system architectures [1], it does not explic-
itly focus on crosscutting concerns. Properties such as secu-
rity and QoS are inherently crosscutting. Moreover, these
properties must be explicitly specified at design time to rea-
son about them.

3. ILLUSTRATING EXAMPLES
Security is a key challenge in the development of perva-

sive computing systems. Even if most middlewares provide
support for the implementation of security policies (e.g. en-
cryption and authentication) developers must properly de-
sign systems to guarantee a correct implementation of these
policies. Security typically impacts every aspect of a system.
As a result, it must be dealt with at an early stage of the
application design.

This section introduces two examples of non-functional
security concerns that crosscut a system architecture. We
revisit these examples in Section 5 to illustrate the expres-
siveness and effectiveness of our approach.

3.1 Managing Certificates for SSL communi-
cation

Authentication, confidentiality and integrity are key ob-
jectives for the security of pervasive computing systems.
Their effective implementation depends on numerous fac-
tors, such as the network type, the level of trust between
users, etc.

Let us consider the example of the RPC. It is a well-
known mechanism to perform remote computations and to
exchange messages in distributed systems. RMI is the Java
application programming interface that performs the object-
oriented equivalent of an RPC. While RMI offers a simple
programming interface, it provides no security guarantee:
RMI is built on top of the Java remote method protocol,
which exchanges serialized Java objects in clear.

In this situation, good practices to achieve a secure design
require the use of a secure channel. SSL is a wide spread pro-
tocol used to secure transmission in distributed systems. It
performs authentication and encryption. Operationally, SSL
requires participants to store certificates of trusted entities.
Fortunately, the RMI API provides support for RMI over

register(cert)

Fans(certs)

on

off

setSpeed

Sensor

Temperature
getFans

Air

Conditioning

on

off

getServices

register

Registry

store certificates Injected code

Fan

add certificateadd certificates verify certificate

setSpeed

ACK

ACK

Figure 3: Example of the distribution of certificates

SSL. In practice, developers pass a reference to a TrustStore
containing certificates of trusted entities to the RMI API
that transparently performs authentication and encryption.

This approach is suitable for the client/server model, where
every client has to hold the server certificate and the server
to eventually have all client certificates. However, its ap-
plication to multi agent systems, where distributed enti-
ties (dis)appear and (un)register dynamically, requires ad-
ditional code to manage certificates.

In the example depicted in Figure 3, three components
AirConditioning, Fan and TemperatureSensor are declared.
The component Fan provides the interface setSpeed required
by the component AirConditioning to regulate the temper-
ature. Upon instantiation, instances of a component must
register to the Registry and pass their certificates. In this
example, a new instance of TemperatureSensor registers to
the server. The Registry must then verify the certificate
before the service can be successfully registered.

Whenever an instance of AirConditioning wants to in-
voke setSpeed, it must first obtain an instance of a Fan

from the service discovery service. The Registry then re-
turns proxies on instances of Fans with their certificates.
AirConditioning may then communicate with any of these
Fans via SSL.

As illustrated in Figure 3, the management of certificates
for SSL communications typically crosscuts multiple aspects
of a distributed system, e.g. registration and discovery, in
both the component code and the built-in services (DiaEnv).

3.2 Enforcing Access Control Lists
The use of SSL connections combined with signed certifi-

cates allows the middleware to enforce authentication and
encryption of communications in a distributed system. Nev-
ertheless, the security provided by SSL communication is
coarse grained. In a pervasive computing system, every en-
tity must verify each access at a fine-grained level. The fact
that an entity is authenticated does not mean that it has
access to all resources.

For example in Figure 4, the AirConditioning may change
the speed of a Fan by using the setSpeed method. This is
a valid action and thus allowed by the AuthorizationEn-

forcer. On the contrary, the use of the on or off method
should be denied. These methods should only be available
for the FireManager (Figure 2, line 15). Even if DiaGen
generates a programming framework for the AirCondition-

ACK

Conditioning

Air

on
off

Yes

Fan

on

off

setSpeed

register

getServices

Registry

add certificates

getAEs

isAllowed?
Enforcer

Authorization

isAllowed

AEs(cert)

setSpeed

Figure 4: Enforcement of Access Control Lists

ing that only exposes a limited view of the Fan (where only
used interfaces are accessible), a malicious developer might
escape the programming framework and craft a request to
access every interface exposed by the Fan component.

To forbid such uncontrolled access, the system must en-
force access control lists upon requests on provided oper-
ations. As shown in Figure 4, the access list enforcement
logic should be externalized from components. That is, on
reception of requests, the receiver must query the access
controller to verify that the caller is allowed to request a
particular action from the callee.

Again, the implementation of the access control enforce-
ment impacts multiple regions of the architecture; that is,
every interface entry points.

4. THE DIAASPECT LANGUAGE
This section presents DiaAspect, an aspect-oriented lan-

guage for the DiaSpec ADL. It first describes the join point
model. A join point refers to a region in the DiaSpec archi-
tecture description and/or DiaSpec generated programming
framework, where aspect code is injected.

Afterwards, we present our pointcut language. Pointcuts
represent the occurrence of one or more join points. A point-
cut is a predicate; it may or may not match the current join
point. In addition, a pointcut may expose information spe-
cific to the underlying join points at runtime.

Finally, we introduce the DiaAspect language.

4.1 The Join Point Model
The DiaAspect join point model defines the set of events

of interest in a system architecture description and its asso-
ciated generated programming framework. AOP events are
represented as messages in DiaEnv. For the sake of con-
ciseness, only messages of interest between components of
a DiaSpec architecture specification are listed here. Each
listed message corresponds to two distinct join points in our
model: one at the message emitter and one at the receiver.
Figure 5 illustrate our model.

Components Registration.
The register, respectively unregister, message occurs

when a component instance notifies a registry of the arrival
of a component instance, respectively departure, in/from the
system. Both the register and unregister messages have

Component DiaEnv Component

register(comp sig)

register r

RegistrationRegistration

discover(comp sig)

discover r

DiscoveryDiscovery

command(signature)

command r(ret type)

CommandsCommands

subscribe(comp sig,Evt t)

subscribe r

publish(Evt t)

event(comp sig,Evt t)

Publish / SubscribePublish / Subscribe

offer(SType)

answer(SType)

ack(SType)

terminate(SType)

SessionsSessions

Figure 5: DiaAspect Join Point Model

one argument, the signature of the component arriving/leav-
ing. Our model distinguishes the component issuing the
(un)register message from the actual component that is ar-
riving/leaving. The register_r, respectively unregister_r,
message corresponds to the acknowledgment from the Di-
aSpec registry to a component, after a register, respectively
unregister, message. These messages have no argument.

Component Discovery.
The discover message occurs when a component instance

queries a registry for a component. A discovery is parame-
terized with the partial signature of the component to search
for, that is, the component type and the attributes on which
to apply a filter. On reply, the DiaSpec registry emits a dis-

cover_r message containing an array of components.

Commands.
The command message matches the call or the reception of

a command. The corresponding join point takes the follow-
ing arguments: the method’s name, the argument’s types
and the return type. The command_r join point matches
command reply and has a single argument, the return type
of the method.

Event Subscription.
The subscribe message matches the subscription of a

component instance to an event queue. Subscriptions have
two arguments, the signature of the publisher and the type
of events the subscribers are interested in. Note that the
publisher (the parameter) is not the same component as the
receiver of the subscription message. Indeed, in DiaSpec,
a subscriber subscribes to the DiaEnv, not directly to the
publisher. The response corresponds to the subscribe_r

message that has no argument.

Events Publishing and Reception.
The publish message occurs when a component publishes

an event. It is parameterized with respect to the event type
and received by a registry. Consequently, the registry emits
an event message to each subscriber. That message has two
parameters, the signature of the publisher and the event
type.

Sessions.
There are four kinds of session messages exchanged dur-

ing the life-cycle of a session: offer, answer, ack and ter-

minate. Each message has one parameter: the type of the
session. That is, the type of the data that has been negoti-
ated during the session establishment process.

4.2 The Aspect Language
Figure 6 presents the partial BNF of the DiaAspect lan-

guage. We chose a syntax similar to AspectJ, an aspect-
oriented system for Java. The benefits of reusing an existing
syntax are well-known from both a user and an implementer
perspective. The latter perspective is illustrated in Section 6
where AspectJ is shown to greatly simplify the implementa-
tion of our language.

Our language associates pointcuts with advice written in
Java. An advice holds the implementation of crosscutting
concerns and pointcuts select join points where an advice
is to be executed. We first present our pointcut language.

Then, we introduce the runtime API supporting advice im-
plementation with the information relative to join points
matched at runtime.

4.2.1 The Pointcut Language

In the aspect-oriented paradigm, pointcuts act as join
point selectors. In addition, to capture the occurrence of one
or more join points, pointcuts may expose runtime informa-
tion specific to these join points. The DiaAspect language
proposes six kinds of pointcuts for which we distinguish two
categories:

• Architectural pointcuts. These directly relate to arti-
facts defined by the architect in the system specifica-
tion. That is, component declaration and component
relationships (connectors).

• Built-in pointcuts. These correspond to built-in ser-
vices provided by the DiaSpec runtime. That is, com-
ponent registration, etc.

The following lists the pointcut featured in DiaAspect.
We previously stated that a join point may catch the emis-
sion and/or reception of messages between DiaSpec compo-
nents. Accordingly, pointcuts in DiaAspect distinguish join
points on the emitter and/or the receiver side. If a point-
cut is preceded by the send, respectively recv, keyword, it
matches only the join point on the emitter, respectively re-
ceiver, side. If no keyword precedes, join points on both
sides are matched.

register The register pointcut (Figure 6, line 27) matches
the occurrence of register join points and the cor-
responding register_r join points, where the regis-
tered component matches the signature given as a pa-
rameter. For example, the pointcut recv register

(Service (..)) matches every register join points
received, where the component instance extends the
Service component.

unregister The unregister pointcut (Figure 6, line 29)
captures the occurrence of unregister join points and
the corresponding unregister_r join points, where the
registered component matches the signature given as a
parameter. For example, the pointcut send unregis-

ter (* (..)) matches every unregister join point.

discover The discover pointcut (Figure 6, line 31) matches
the discover and corresponding discover_r join points
given a partial component signature (that is, the type
of the component requested and the attributes on which
the results are filtered). For example, the pointcut
recv discover (WebCam (Location loc == "Room B",

..)) matches the reception of every discovery oper-
ation for components of type WebCam with a specific
location attribute.

command The command pointcut (Figure 6, line 35) cap-
tures all command and their respective command_r join
points for a given method signature. For example, the
pointcut command (* OnOff.*(..)) catches every call
of commands defined in the OnOff interface.

subscribe The subscribe pointcut (Figure 6, line 33) in-
tercepts all subscribe calls and their respective sub-

scribe_r joinpoints for a given component signature

and event type. For example, the pointcut recv sub-

scribe (* (..), Time) matches every subscription to
an event of type Time, regardless of the publisher.

publish The publish pointcut (Figure 6 line 37) matches
the occurrence of publish join points for a given event
type. For example, the pointcut publish (Alert)

matches every published Alert event.

event The event pointcut (Figure 6 line 38) catches the oc-
currence of event join points for a given event type and
a publisher signature. For example, the pointcut send
event (Sensor (..), *) matches the sending of any
kind of event following the publication by a publisher
extending Sensor.

session The session pointcuts (offer, accept, ack and
terminate) (Figure 6, line 38) match the occurrence of
session join points matching a session type. For exam-
ple, the pointcut recv session:terminate(*) catches
the reception of every session termination.

Pointcuts select join points that correspond to messages
exchanged between component instances. Pointcuts filter
join points on their types and the values of their arguments.
In our language, an aspect may further filter the messages of
interest by specifying additional clauses alongside pointcuts.

from and to As stated before, join points selected by point-
cuts relate to messages exchanged between DiaSpec
components. Hence, pointcut arguments correspond
to the specific content of these messages. In addition to
filtering join points according to message type and con-
tent, one can further restrict the collected join points
by using the from and to clauses. Given a component
signature, the from, respectively to, clause (Figure 6
line 23) restricts collected join points to those emitted,
respectively received, by components matching the sig-
nature in that clause. In pointcut && from(Service-

(Location *, ..)), join point matching is limited to
those emitted by components extending Service and
with at least one attribute of type Location.

if To allow aspect developers to further specify the region
where to trigger advice, DiaAspect features an if clause
similar to the one of AspectJ. The advice only executes
if the given expression holds true. That expression
must be a Java boolean expression that may refer to
the DiaAspect runtime API and variables bound in the
pointcut definition.

4.2.2 The Runtime API

An advice in DiaAspect is developed in Java. To support
developers in writing advice, DiaAspect features a runtime
API that exposes similar features to those in AspectJ.

The proceed method is similar to the one in AspectJ. It is
a virtual method that has the same signature as the point-
cut matched, and is used in around aspects. Its execution
evaluates the join point matched by the aspect. For exam-
ple, inside an aspect on the sending of a register message,
the execution of the proceed method in the advice resumes
the execution of the register.

As in AspectJ, DiaAspect also provides an advice-visible
variable thisJoinPoint. It exposes reflective information
about the join point that triggered the advice. We extended

aspect around recv discover (* (..))
&& to (registry) {

RemoteServiceInfo [] rsis = proceed ();
for (RemoteServiceInfo rsi: rsis) {

rsi.setCert(registry.fetchCert ());
}

returns rsis;
}

aspect around send discover (* (..)
&& from (service) {

Proxy[] proxies = (Proxy []) proceed ();
for (Proxy p: proxies) {

service.storeCert(
p.getRemoteServiceInfo (). getCert ());

}
return proxies;

}

Figure 7: DiaAspect code managing certificates in a
RMI with SSL distributed system (excerpt)

the thisJoinPoint to expose the architecture specific in-
formation about the current join point in addition to Java
semantic information about it. For example, in the case of
an aspect on a command call, thisJoinPoint.getCaller-
Signature() returns the signature of the caller component.

Because aspects may be developed independently of the
DiaSpec implementation code, developers can not benefit
from the support of a generated programming framework
when writing advice. Still, to allow developers to publish
events and execute commands, we expose the Processor

API, that acts as a front-end to the generated framework.
Hence, developers may write an advice that interacts with
DiaSpec components, while still benefiting from runtime co-
herency checks provided by the framework.

5. EXAMPLES OF CROSSCUTTING CON-

CERNS REVISITED WITH DIAASPECT
This section revisits the two concerns discussed in Sec-

tion 3 to illustrate DiaAspect and to show that it allows
such concerns to be concisely modularized at the architec-
ture level. We first return to the management of certificates
to implement SSL communications. Afterwards, we revisit
the enforcement of access control lists.

5.1 Managing Certificates for SSL Communi-
cations

Figure 7 presents the DiaAspect code that implements
the distribution of certificates for SSL encrypted commu-
nications. The first aspect augments the behavior of the
DiaEnv registry on service discovery to pass the certificates
of the discovered services to the requesting component. The
second aspect intercepts discoveries to store those certifi-
cates locally.

5.2 Enforcing Access Control Lists
Figure 8 contains the DiaAspect code to enforce access

control lists on interfaces declared in a DiaSpec architecture.
It contains a single aspect that intercepts any receiving Dia-
Spec command call (line 1). We assume that a component
AuthorizationEnforcer performs the actual enforcement of
an access rule. As a result, the pointcut must not match
when the receiver is an AuthorizationEnforcer to avoid an
infinite recursion (line 2).

aspect around recv call (* *::* (..))
&& to (! AuthorizationEnforcer ()) {

AuthorizationEnforcerProxy ae =
getAuthorizationEnforcer ();
if (ae != null

&& ae.isAllowed(thisJoinPoint))
{ return proceed (); }
throw new

DiaGenSecurityException(thisJoinPoint);
}

Figure 8: DiaAspect code enforcing access control
lists (excerpt)

On the first invocation, the advice code (lines 2 to 10)
obtains an AuthorizationEnforcer instance using service
discovery through the DiaAspect runtime API. The advice
calls the isAllowed method on the AuthorizationEnforcer
(line 5). Depending on the result, the advice either throws
a DiaGenSecurityException, notifying the caller of the fail-
ure, or proceeds with the original command call.

6. IMPLEMENTATION
Weaving is the process of coordinating the aspect code

with non-aspect code, i.e. the base program. In our ap-
proach, the aspect code refers to the architecture descrip-
tion. However, instead of weaving the architecture descrip-
tion, we inject aspects in the implementation code: the
programming framework generated by DiaGen and DiaEnv.
This approach exploits an architecture description to adapt
the weaving process to a given generated implementation
support.

This section first describes the structure and organization
of the Java framework generated for a DiaSpec specification.
Then, we present how DiaAspect aspects are translated into
AspectJ aspects, that are woven into the implementation
code.

6.1 The DiaSpec Generated Framework Or-
ganization

Given a software architecture declaration, the DiaGen com-
piler generates a typed framework on which to develop the
distributed application.

For each command interface declaration, DiaGen includes
a Java interface defining those commands. Similarly, each
type of events, a component may subscribe to, creates a Java
interface defining a listener to that event. For each compo-
nent definition, DiaGen includes an abstract class whose im-
plementation must provide a method definition for the pro-
vided commands and event listeners. In addition, for each
couple of components sharing provided/required connectors,
DiaGen generates a proxy interface of the providing compo-
nent that exposes a limited view of its functionalities to the
requiring component. Proxies only provide the methods of
the connected interfaces. For example, given the command
interface OnOff defined in Figure 2, DiaGen generates a Java
interface (Figure 9) that must be declared by both abstract
classes Service and ServiceProxy.

To ensure implementation independence from a specific
middleware, DiaGen and DiaEnv introduce an abstract layer,
as depicted in Figure 10. This abstraction layer makes a
DiaSpec implementation and its corresponding generated
framework completely reusable to different middlewares. As

diaaspect ::= (aspect_def | pointcut_def)*;

aspect_def ::=
’aspect ’ ID (’before ’|’after ’|’around ’) ’(’ signature ’)’
(’returns ’ type)? throw? ’:’ pointcut_ref advice;

pointcut_ref ::= ID | pointcut_def;

advice ::= ’{’ /* Java code + thisJoinPoint + proceed */ ’}’

pointcut_def ::= ’pointcut ’ ’ID ’(’ signature ’)’ ’:’ pointcut ’;’;

pointcut ::= (’send ’ | ’recv ’)?
(

register
| unregister
| discover
| subscribe
| command
| publish
| event
| session

) (&& from(component_signature)? (&& to(component_signature)?
(&& if (expression))?
;

register ::= ’register ’ ’(’ component_signature ’)’;

unregister ::= ’unregister ’ ’(’ component_signature ’)’;

discover ::= ’discover ’ ’(’ component_signature ’)’;

subscribe ::= ’subscribe ’ ’(’ component_signature ’,’ event_type ’)’

command ::= ’command ’ ’(’ command_signature ’)’;

publish ::= ’publish ’ ’(’ event_type ’)’;
event ::= ’event ’ ’(’ component_signature ’,’ event_type ’)’;
session ::= ’session ’ ’:’

(’*’ | ’offer ’ | ’answer ’ | ’ack ’ | ’terminate ’)
’(’ session_type ’)’;

component_signature ::= pattern ’(’ (arg_sig (’,’ arg_sig)*)? ’)’;
arg_sig ::= (pattern pattern) | ’..’; /* AspectJ like */
command_signature ::=

type pattern ’.’ pattern ’(’ (arg_sig (’,’ arg_sig)*)? ’)’;
event_type ::= pattern;
session_type ::= pattern;

pattern ::= /* AspectJ like string pattern */

Figure 6: DiaAspect BNF

public interface OnOff {
void on () throws DiaGenRemoteException;
void off() throws DiaGenRemoteException;

}

Figure 9: The Java interface generated for the OnOff
command interface declared in Figure 2

of today, DiaSpec supports local, RMI, Web Services and
SIP technologies, in addition to our simulation environment
DiaSim [4].

Given this structure, a received message first passes through
the specific communication layer that formats it in a unified
form before passing it to the core layer. The core layer un-
marshals the message content to extract the sender informa-
tion, the message type, (e.g. command, command return,
event, etc), and its content. The extracted information is
passed to the generated framework, which in turn dispatches
it to the appropriate component proxy and finally to the

Generated Framework
Implementation

DiaGen Core

Communication Layer
Comm. layer facade

SIP, RMI, WS, local, etc.
DiaGen stack
architecture

DiaSpec
architecture

Application
developer
Software
architect

Figure 10: DiaSpec/DiaGen generated code struc-
ture.

component implementation. Similarly, command calls and
event publishing follow the inverse path. One can note that
this particular implementation offers multiple regions to in-
tercept similar join points. The next section shows how to
benefit from this strategy to optimize aspect weaving.

6.2 DiaAspect Aspects Weaving
The DiaAspect language describes aspects that coordi-

nate join point regions. These join points refer to artifacts,
i.e. components, connectors and built-in services, which are
defined in a DiaSpec architecture description and its run-
time environment (Section 4). An advice is defined purely
in Java (exception made of the proceed keyword). The com-
pilation and weaving process must connect the architecture
pointcuts with the generated framework and the implemen-
tation code. To do so, DiaAspect aspects are translated into
AspectJ code that is woven into the generated code and Dia-
Env.

Translating DiaAspect aspects into AspectJ code amounts
to projecting the DiaAspect join point model into the pro-
gramming framework generated by DiaGen. DiaAspect point-
cuts are translated into AspectJ method call pointcuts on
the methods of the Java interfaces generated by DiaGen.
For example, the DiaAspect pointcut

command (* OnOff::* (..))

intercepts any command declared in the command interface
OnOff and is translated into the following AspectJ pointcut,

call(* spec.package.name.interfaces.OnOff.*

(..)).

The translation of the DiaAspect from and to clauses de-
pends on the pointcut type, i.e. send or recv pointcuts. In
the case of send type pointcuts, for example in

send command(* *::* (..)) && from(Manager())

&& to(Service)

the from clause is translated to limit AspectJ pointcut match-
ing, to callers extending the abstract Java class Manager.
This is done by using the following AspectJ code

this(spec.package.name.components.Manager)

and the following the invocation

this(spec.package.name.proxies.ServiceProxy)

This results in restricting the object on which a method
is called to ServiceProxy classes.

In the case of a recv, the pointcut is limited to a caller of
type proxy. In addition, the object on which the method is
called must extend the corresponding abstract class.

Figure 11 presents the AspectJ code generated for the Dia-
Aspect code from the example on enforcing access control
lists. The DiaAspect aspect in Figure 8 is translated into an
AspectJ aspect. That aspect is woven around the execution
of the commandReceived method that is called whenever a
DiaSpec command call is received by a component instance
providing that command. The pointcut limits the match-
ing to classes, extending the Service class (the base class
for every component) and excluding components of type Au-
thorizationEnforcer. The advice code is left unchanged.

The generated framework is composed of multiple layers.
Depending on the aspect code, it is possible to modify the

Object around () throws DiaGenException:
call(Object commandReceived(

RemoteServiceInfo , String , Object ...)
throws DiaGenException)
&& target(Service +)
&& target (! AuthorizationEnforcer +){

AuthorizationEnforcerProxy ae =
getAuthorizationEnforcer ();

if (ae[0] != null
&& ae.isAllowed(thisJoinPoint)) {

return proceed(rsi , callee , method);
}
throw
new DiaGenSecurityException(thisJoinPoint);

}

Figure 11: AspectJ code generated for the Di-
aAspect aspect from the example on enforcing ac-
cess control lists (excerpt)

aspect projection (weaving) to shortcut these layers. This
is done to optimize performance of the applications. For
example, consider a DiaAspect aspect intercepting all re-
ceiving calls for a given command. Instead of weaving the
aspect in the generated framework layer, we can inject it
directly into the communication layer (i.e. RMI, Web Ser-
vice, etc). When the advice code does not call the proceed

method, this optimization avoids unmarshalling the call up
to the application layer. Similarly, weaving can be special-
ized depending on the specific communication layer and of
the aspect code.

7. RELATED WORK
This section briefly reviews approaches related to the mod-

eling of crosscutting concerns in architecture design and in
pervasive computing.

Multi-dimensional separation of concerns [14] shows how
the software artifacts, corresponding to different concerns
(a.k.a. hyperslices), can be merged to generate a full ap-
plication. This is the approach chosen by subject-oriented
programming [3], where hyperslices are pieces of code (e.g.
partial class hierarchies). AOP [7] is quite similar, but it is
asymmetric: it considers the structure of a base program and
it provides pointcut languages to specify where another code
crosscuts the base program and the corresponding pieces
should be woven.

DAOP-ADL [10] is an XML-based architecture descrip-
tion language that integrates aspects as first class entities
of architecture description. The interconnection of aspects
with components in DAOP-ADL is specified as evaluation
rules on the interfaces of the architecture. Similarly, Pessemier
et al. integrate aspect entities in the Fractal ADL, by ex-
tending the component membrane to support aspect weav-
ing [9]. PRISMA [8] is an ADL that integrates an aspect-
oriented approach directly in the component-and-connector
approach: aspects are modeled as components, allowing di-
rect reuse of consistency checks and code generation tools.
In comparison to these works, our aspect language DiaAspect
is not limited to the artifacts of the ADL but also allows
aspects to coordinate with the built-in services, like compo-
nent registration and discovery provided by the generated
framework.

Ren and Taylor present an extension of xADL, a XML
ADL, for modeling security at the architecture level [11].

Their extension permits architects to control component in-
stantiation, interface access, and data flow by annotating the
components and connectors. Vigil [6] is a pervasive comput-
ing middleware that enforces a trust-based security policy.
To this end, it exposes services such as a certificate con-
troller, a role assignment manager and a security agent. It
also augments communication stubs with policy enforcement
code. In comparison to this work, our approach allows to
inject the necessary code to enforce such policies without
modifying the system architecture. Moreover, by specifying
these changes at the architecture level, our implementation
is reusable with multiple middleware.

8. CONCLUSION AND FUTURE WORK
This paper presented our approach to expressing non-

functional properties of system architectures using an aspect-
oriented approach. The specification of these properties,
e.g. security and QoS, impacts every aspect of a software
system and cannot be properly expressed in the traditional
component-and-connector idiom.

To overcome this limitation, we proposed DiaAspect, an
aspect-oriented language dedicated to distributed ADLs and
their runtime support. We developed DiaAspect on top of
both the component-and-connector idiom, and common run-
time services provided by relevant ADLs. We showed that
DiaAspect is expressive enough to implement concrete solu-
tions on two widespread security problems: the distribution
of certificates to encrypt communication and the enforce-
ment of access control lists in distributed systems.

We presented the implementation of the DiaAspect aspect
weaver. It injects aspect code into the programming frame-
work generated for DiaSpec specifications. We implemented
our weaving process by translating DiaAspect code into as-
pects written in AspectJ, a well-known aspect-oriented sys-
tem for the Java programming language. We also demon-
strated how our translation scheme allows to modify the
DiaAspect pointcuts projection to optimize the woven code
according to an architecture specification and the structure
of generated frameworks.

In the future, we plan to extend the DiaAspect point-
cut model to capture new join points; currently, our point-
cut language only captures join points related to the re-
lationships between components or to the runtime built-in
services. A number of join points would be of particular
interest: component declaration, component instantiation,
connector declaration, etc.

Also, we plan to integrate features similar to AspectJ
inter-type declaration, for the attributes of DiaSpec compo-
nents and their connectors. Another line of work we intend
to explore is to define a structural and runtime model of
aspect injection in system specification without introducing
new artifacts in the ADL. This would allow us to transpar-
ently reuse static and runtime consistency checks performed
by the DiaSpec tool suite.

9. REFERENCES
[1] J. Araujo, E. Baniassad, P. Clements, A. Moreira,

A. Rashid, and B. Tekinerdoğan. Early aspects: The
current landscape. Technical report, Lancaster
University, 2005.

[2] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley Professional,
1997.

[3] W. Harrison and H. Ossher. Subject-oriented
programming: a critique of pure objects. In OOPSLA
’93: Proceedings of the 8th annual conference on
Object-oriented programming systems, languages, and
applications, pages 411–428, New York, NY, USA,
1993. ACM.

[4] W. Jouve, J. Bruneau, and C. Consel. DiaSim: A
parameterized simulator for pervasive computing
applications (demo). In PERCOM’09: Proceedings of
the 7th IEEE Conference on Pervasive Computing and
Communications, Galveston, Texas, USA, 2009. Demo.

[5] W. Jouve, N. Palix, C. Consel, and P. Kadionik. A
SIP-based programming framework for advanced
telephony applications. In IPTComm’08: Proceedings
of the 2nd Conference on Principles, Systems and
Applications of IP Telecommunications, Heidelberg,
Germany, 2008. LNCS. Best Student Paper Award.

[6] L. Kagal, T. Finin, and A. Joshi. Trust-based security
in pervasive computing environments. Computer,
34(12):154–157, 2001.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP, pages
220–242, 1997.

[8] J. Pérez, N. Ali, J. A. Carśı, I. Ramos, B. Álvarez,
P. Sanchez, and J. A. Pastor. Integrating aspects in
software architectures: PRISMA applied to robotic
tele-operated systems. Inf. Softw. Technol.,
50(9-10):969–990, 2008.

[9] N. Pessemier, L. Seinturier, and L. Duchien.
Components, ADL & AOP: Towards a common
approach. In Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE) at
ECOOP’04, 2004.

[10] M. Pinto, L. Fuentes, and J. M. Troya. DAOP-ADL:
an architecture description language for dynamic
component and aspect-based development. In GPCE
’03: Proceedings of the 2nd international conference
on Generative programming and component
engineering, pages 118–137, New York, NY, USA,
2003. Springer-Verlag New York, Inc.

[11] J. Ren and R. N. Taylor. A secure software
architecture description language. In Workshop on
Software Security Assurance Tools, Techniques, and
Metrics, 2005.

[12] J. Rosenberg and H. Schulzrinne. An offer/answer
model with session description protocol (SDP). RFC
3264 (Proposed Standard), 2002.

[13] Sun Microsystems. Entreprise Java beans
specification, 2007.

[14] P. Tarr, H. Ossher, W. Harrison, and J. Stanley
M. Sutton. N degrees of separation: multi-dimensional
separation of concerns. In ICSE ’99: Proceedings of
the 21st international conference on Software
engineering, pages 107–119, Los Alamitos, CA, USA,
1999. IEEE Computer Society Press.

