Gossiping Personalized Queries

Abstract : This paper presents P3Q, a fully decentralized gossip-based protocol to personalize query processing in social tagging systems. P3Q dynamically associates each user with social acquaintances sharing similar tagging behaviours. Queries are gossiped among such acquaintances, computed on the fly in a collaborative, yet partitioned manner, and results are iteratively refined and returned to the querier. Analytical and experimental evaluations convey the scalability of P3Q for top-k query processing. More specifically, we show that on a 10,000-user delicious trace, with little storage at each user, the queries are accurately computed within reasonable time and bandwidth consumption. We also report on the inherent ability of P3Q to cope with users updating profiles and departing.
Type de document :
Communication dans un congrès
13th International Conference on Extending Database Technology, Mar 2010, Lausanne, Switzerland. 2010
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00455643
Contributeur : Xiao Bai <>
Soumis le : mercredi 21 avril 2010 - 18:21:40
Dernière modification le : mardi 16 janvier 2018 - 15:54:13
Document(s) archivé(s) le : jeudi 30 juin 2011 - 12:08:16

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00455643, version 1

Citation

Xiao Bai, Marin Bertier, Rachid Guerraoui, Anne-Marie Kermarrec, Vincent Leroy. Gossiping Personalized Queries. 13th International Conference on Extending Database Technology, Mar 2010, Lausanne, Switzerland. 2010. 〈inria-00455643〉

Partager

Métriques

Consultations de la notice

303

Téléchargements de fichiers

475