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ABSTRACT. Hybrid logic extends modal logic with support for reas@nabout individual states,
designated by so-called nominals. We study hybrid logi©iéntiroad context of coalgebraic seman-
tics, where Kripke frames are replaced with coalgebras §iven functor, thus covering a wide range
of reasoning principles including, e.g., probabilisticaded, default, or coalitional operators. Specif-
ically, we establish generic criteria for a given coalgébtgybrid logic to admit named canonical
models, with ensuing completeness proofs for pure extassio the one hand, and for an extended
hybrid language with local binding on the other. We instaetiour framework with a number of
examples. Notably, we prove completeness of graded hydgid Wvith local binding.

Introduction

Modal logics have traditionally played a central role in Guuter Science, appearing, e.g., in the
guise of temporal logics, program logics such as PDL, epistéogics, and later as description
logics. The development of modal logics has seen extensiong (at least) two axes: the enhance-
ment of the expressive power of basic (relational) modaklog the one hand, and the continual
extension, beyond the purely relational realm, of the addissructures described using modal logics
on the other hand. Hybrid logic falls into the first categ@aytending modal logic with the ability
to reason about individual states in models. This featurgjnally suggested by Prior and first
studied in the context of tense logics and PDL (see [5] faenegfces), is of particular relevance in
knowledge representation languages and as such has feumdyitinto modern description logics,
where it is denoted by the letté? in the standard naming scheme [2].

Extensions along the second axis — semantics beyond Kripletiwes and neighbourhood
models — include various probabilistic modal logics, ipteted over probabilistic transition sys-
tems, graded modal logic over multigraphs [8], conditidoglcs over selection function frames [6],
and coalition logic [17], interpreted over so-called gamafes. As a unifying semantic bracket
covering all these logics and many further ones, coalgebmaidal logic has emerged ([7] gives a
survey). The scope of coalgebraic modal logic has receeinlexpanded to encompass hominals;
we refer to the arising class of logics esalgebraic hybrid logicsExisting results include a finite

1998 ACM Subject Classificatior.4.1 [Mathematical Logic and Formal Languages]: Mathéaht.ogic — modal
logic; 1.2.4 [Artificial Intelligence]: Knowledge Represttion Formalisms and Methods — modal logic, represesmati
languages.
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model result, an internalized tableaux calculus, and gene$PACE upper bounds, but are so
far limited to logics that exclude frame conditions and Iduiading [14]. What is missing from
this picture technically is a theory oamed canonical mode[5]. Named canonical models yield
not only strong completeness of the basic hybrid logic, k&t aompleteness gfure extensions
defined by axioms that do not contain propositional varslfleit may contain nominals; e.g. in
Kripke semantics, the pure axiofn)i — {1, with i anominal defines transitive frames). More-
over, named canonical models establish completeness fatanded hybrid language with a local
binding operatot, x. ¢(x), read as “the current statesatisfiess(x)”. Both pure extensions and the
language with (not addressed in [14]) are, in general, undecidable [$h@uld be noted, however,
that fragments of the language wigtover Kripke frames are decidable and as such play a rolg, e.qg.
in conjunctive query answering in description logic [114% a consequence, completeness of pure
extensions and local binding is the best we can hope for tdblishes recursive enumerability of
the set of valid formulas, and it enables automated reagpifinot decision procedures.

Specifically, we establish two separate criteria for thestexice of named models. Although
these criteria are (in all likelihood necessarily) lesseljydapplicable than some previous coalge-
braic results including those of [14], the generic resullswaus to establish new completeness
results for a wide variety of logics; in particular, we prasteong completeness of graded hybrid
logic, and ultimately an extension of the description lo§iEOQ, with the | binder over a wide
variety of frame classes.

1. Coalgebraic Hybrid Logic

To make our treatment parametric in the syntax, we fix a modailagity type A consisting of
modal operators with associated arities throughout. Ragrgcountably infinite and disjoint sets
P of propositional variables and of nominals, the sef(A) of hybrid A-formulasis given by the
grammar

wherep € P,i € NandQ© € A is ann-ary modal operator. (Alternatively, we could regardposi-
tional variablesas nullary modal operators, thus avoiding their explicittran altogether. We keep
them explicit here, following standard practice in modaito as we have to deal with valuations
anyway due to the presence of nominals.) We use the standfnitidns for the other propositional
connectives—, <, V. The set of nominals occurring in a formufais denoted byN(¢), similarly
for sets of formulas. A formula of the for@;¢ is called an@-formula Semantically, nominals
denote individual states in a model, aagp stipulates that holds at state.

To reflect parametricity also semantically, we equip hyhgics with acoalgebraic semantics
extending the standard coalgebraic semantics of modald¢g6]: we fix throughout a-structure
consisting of an endofunctdr : Set — Set on the category of sets, together with an assignment
of ann-ary predicate lifting[] to everyn-ary modal operato®? € A, i.e. a set-indexed family of
mappings([V] x : P(X)" — P(T X)) xeset that satisfies

[Olx o (f )" =(Tf) " o [Qy
forall f : X — Y. In categorical terms[] is a natural transformatio®@” — Q o T°? where
Q : Set? — Set is the contravariant powerset functor.
In this setting,7-coalgebras play the roles &imes A T'-coalgebrais a pair(C,~) where
C is a set ofstatesand~ : C' — TC is thetransition function When-y is clear from the context,
we refer to(C,~) just asC. A (hybrid) T-modelM = (C,~, V') consists of &'-coalgebraC, )
together with ahybrid valuationV, i.e. a mapP UN — P(C) that assigns singleton sets to all
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nominalsi € N. We say thatV/ is basedon the frame(C, ). The singleton seV (i) is tacitly
identified with its unique element.

The semantics af (A) is a satisfaction relatiop= between states € C' in hybrid T-models
M = (C,~,V) and formulasp € F(A), inductively defined as follows. Fare N U P andi € N,

M,cEziff ce V() and M,c=Qoiff M,V (i) E ¢.
Modal operators are interpreted using their associatediqate liftings, that is,

M, cl=Q(¢r, .., dn) <= () € [Olc([orlar, - [¢nlar)

whereQ € Aisn-ary and¢]r = {c € C | M,c = ¢} denotes the truth-set ef relative to
M. We write M = ¢ if M,c = ¢forallc e C. Foraset® C F(A) of formulas, we write
M,c = ®if M,c = ¢forall¢ € &, andM = @ if M | ¢ for all ¢ € . We say thatd is
satisfiablein a model)M if there exists a statein M such thatM,c = ®. If A C F(A) is a set
of axioms, also referred to &mme conditionsa frame(C, ~) is an.A-frameif (C,~,V) = ¢ for
all hybrid valuationsi” and all¢ € A, and a model is avi-modelif it is based on and-frame. A
frame condition igure if it does not contain any propositional variables (it mayvikeger contain
nominals). We recall notation from earlier work:

Notation 1. As usual, application of substitutions: P — F(A) to formulas¢ is denotedpo.
For a setx of formulas and a sab of operators, we writé)¥ or O(X) for the set of formulas
arising by prefixing elements af with an operator fron0O; e.g.A(X) = {Q(¢1,...,0,) | © €
An-ary,¢1,...,¢, € ¥} andQX := {@; | i € N}(X) = {@Q;¢ | i € N,¢ € ¥}. Moreover,
Prop(Z) denotes the set of propositional combinations of elemdr#sre setZ. For¢ € Prop(Z),
we write X, 7 | ¢ if ¢ evaluates tal in the boolean algebr®(X) under a valuationr : Z —
P(X). Fory € Prop(A(Z)), the interpretatiorfy'[rx - of ¥ in the boolean algebr®(7'X') under
7 is the inductive extension of the assignméf(p1,...,p,)lrxr = [Clx(7(p1),...,7(Pn)).
We write TX, 7 |= ¢ if []rx, = TX, andt =rx, ¢ if t € [¥]rx.. A setof formulas
E C Prop(A(Z)) is one-step satisfiable.r.t. 7 if (,cz[¢]rx,» # 0. We occasionally apply this
notation to set¥ C P(X) with 7 being just inclusion, in which case mentionofs suppressed.

In the sequel, we will be interested in bdtital and global semantic consequence, where local
consequence refers to satisfaction in a single state amdlgtonsequence to satisfaction in entire
models. In fact, we consider local reasoning under globsuragtions: given a seék C F(A) of
global assumptions (8Boxin description logic terminology) and a cla8of models, we say that
¢ is a local consequence @ under global assumption® for C-models in symbols®; ¥ |=C ¢,

if for all M € C such thatM = ®, M,c = ¢ wheneverM,c = ¥ (here, both® and ¥ are
sets of arbitrary formulas, in particular not subject to egstrictions on the nesting depth of modal
operators). The standard notions of local and global caressze are regained from this general
definition by taking® or ¥ to be empty, respectively.

The distinguishing feature of the coalgebraic approachytwitt and modal logics is the para-
metricity in both the logical language and the notion of fearmoncrete instantiations of the general
framework, in other words a choice of modal operathrand aA-structureT’, capture the syntax
and semantics of a wide range of modal logics, as withessdiaeipllowing examples.

Examples 1.1. 1. The hybrid version of the modal logi&, hybrid K for short, has a single
unary modal operatdr], interpreted over the structure consisting of the powdtsettor P (which
takes a seK to its powersef? (X)) and the predicate lifting0J] x(A) = {B € P(X) | B C A}.

It is clear thatP-coalgebragC,~ : C — P(C)) are in 1-1 correspondence with Kripke frames, and
that the coalgebraic definition of satisfaction specialittethe usual semantics of the box operator.
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2. Graded hybrid logichas modal operators;, ‘in more thank successors, it holds that'. It is

interpreted over the functd? that takes a seX to the sef3(X) = X — NU{oo} of multisets over
X by [Ox] x(A) = {B € B(X) | >_,c4 B(x) > k}. This captures the semantics of graded modal-
ities overmultigraphs[8], which are precisely th&-coalgebras. A more general set of operators
is that of Presburger logid9], which admits integer linear inequalitiés, a; - #(¢;) > k among
formulas. Unlike in the purely modal case [19], hybrid myiéiph semantics visibly differs from
the more standard Kripke semantics of graded modalitietheaktter validates all formulasd; i,
i € N. However, both semantics agree if we additionally stiutad,i as a global (pure) axiom.
Thus, our completeness results for multigraph semantidgediebelow do transfer to Kripke seman-
tics. In particular they apply to many description logichiieh commonly feature both nominals
and graded modal operators in the guisgudlified number restrictions

3. Hybrid CK, the hybrid extension of the basic conditional lodid, has a single binary
modal operator=, written in infix notation. HybridCK is interpreted over the functaff that
maps a seX to the setP(X) — P(X), whose coalgebras are selection function models [6], by
putting[=] y (A, B) = { : P(X) — P(X) | f(A) C BY.

4. Classical hybrid logiqthe hybrid version of the logi& of neighbourhood frames, referred to
as (the minimal) classical modal logic in [6]) has a singleany modal operatdr] and is interpreted
over neighbourhood frameshat is, coalgebras for the functdfX = P(P(X)) (more precisely,
the double contravariant powerset functor). The semanficdassical modal logic is defined by
the lifting [O]x(4) = {S € NX | A € S}. Monotone hybrid logichas the same similarity
type, but is interpreted over upwards closed neighbouritades, or coalgebras for the functor
MX ={S € NX | S upwards closedwhere upwards closure refers to subset inclusion.

5. The syntax of coalition logic over a sitof agents is given by the similarity tygeC| | C' C
N}, and the operatd(C'] reads as “coalitio’ has a joint strategy to enforce ...". The formulas of
(hybrid) coalition logic are interpreted over game frames, coalgebras for the functor

G(X) = {(fa (Si)iGN) | HieN Si # (bvf : HieN S; — X}
(a class-valued functor, technically speaking, which haweoes not cause problems). The seman-
tics arises via the liftings

[[CT]x(A) = {(f, (Si)ien) € G(X) [ A(si)iccV(si)ienc (f((si)ien) € A}.

We proceed to present a Hilbert-style proof system for adaigic hybrid logics, which we prove
to be sound and strongly complete. This requires that thie ktghand satisfies certain coherence
conditions between the axiomatization and the semantics fadt thesameconditions as in the
purely modal case, which are easily verifiedal properties that can be verified without reference
to T-models and are already known to hold for a large variety gic®[16, 19].

Proof systems for coalgebraic logics are most convenigetheribed in terms of one-step rules,
as follows.

Definition 1.2. A one-step ruleover A is a rule¢ /1) where¢ € Prop(P) andvy € Prop(A(P))
(in fact, v» may be restricted to be a disjunctive clause, which howes/@ot relevant here). The
rule ¢/v is one-step sound T'X, 7 = 1) wheneverX,r = ¢ for a valuationr : P — P(X).
Given a sefR of one-step rules and a valuation P — P(X), a set= C Prop(A(P)) is one-step
consisten{20] if the set= U {¢)o | o : P — Prop(P);¢/v € R; X, T |= ¢o} is propositionally
consistent.

One-step sound rules are sound, and we will assume oneestadreess tacitly in the sequel. Com-
pleteness hinges on variants of the notion of one-step airmEss [19], which we define further
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below. As the notion of one-step rule does not involve hybeatures, suitable rule sets can just be
inherited from the corresponding modal systems; for grddgits, conditional logics, and many
others, such rule sets are found, e.g., in [22, 21]. We réoallthe one-step complete rule set for
(hybrid) K consists of the rules

a alNb—c

Oa Oa AOb — Oc -
A set’R of one-step rules now gives rise to a Hilbert systém by adjoining propositional tautolo-
gies and the hybrid axioms, and closing under modus ponglesapplication, an@-necessitation.
Formally, we write® +,r ¢ for a set® of formulas, theglobal assumptiongor the TBoX, and a
formula¢ if ¢ is contained in the smallest set that

e contains® and all instances of propositional tautologies
e contains all instances @f-introductioni A ¢ — @;¢ and make-or-break

together with all instances of the axiom$y; |, -Q;¢ <« Q;=¢, Q;(p A ) — (Q;i A
@Z’QZ))), @1, Q;5 @j’i, Qk A @jp — @;p; and

e is closed under instances @fgeneralizatiorp/Q;p, instances of rules ik, and modus
ponens.

The second group of axioms ensures thatj := @Q;j defines an equivalence relation on nominals
and thatQ; distributes over propositional connectives. The (mobdrxtaptures the fact that the
truth set of am-formula is either empty or the whole model; in the case oftayH’, it is equivalent

to the standard back axiof®;¢p — JQ;¢.

We write ®; ¥ . ¢ if there areyq,...,¢, € ¥ suchthatd ,r V1 A -+ A, — ¢.
Thatis,®; ¥V k. ¢ if there is a proof ofp from global assumptiong that additionally assumes
V¥ locally. As we assume that all one-step rulesdrare one-step sound, soundness for both local
and global consequence is immediate: we hbyv& =C ¢ (for C the class of all models) whenever
®: U -z ¢. In [14], a criterion has been given f@fR to beweakly completei.e. complete for
the case where both the TBdxand the setl of local assumptions are empty. Here, we extend
this result to combined stromgobal and strongocal completeness, i.e. to cover both an arbitrary
TBox and an arbitrary set of local assumptions, evefiRf is extended with pure frame conditions
and local binding.

2. Strong Completeness of Pure Extensions

Pure completeness is a celebrated result in hybrid logicCf&pter 7.3]. In a nutshell, adding
pure axioms to an already complete proof system for the dydxtension of the modal logi&
(Example 1.1), one retains completeness with respect wdke of frames that satisfy the additional
axioms. In contrast to arbitrary modal axioms, pure axiom&ak contain propositional variables,
and therefore define — in the classical setting of hylfid- first-order frame conditions. Here, we
show that the same theorem is valid for a much larger classyafd, namely all coalgebraic hybrid
logics satisfying one of two suitable sets of conditions.r #e sake of readability, we restrict
the technical development (not the examples) to the casearfylwoperators from now on until
Section 2.2.

Definition 2.1. If A is a set of pure formulas an® is a set of one-step rules, we write
O: U Frrainame ¢ If there areys, ... 4, € ¥ such thatyy A ..., — ¢ is LR-derivable



650 L. SCHRODER AND D. PATTINSON

from assumptions i where additionally all substitution instances of axiomsdiand the rule

";% ¢ N(9))

may be used in deductions. As before, we Wilté 1z 4+ Name @ If P;0 F R A+ Name P-
In the above system, the rullame’) @;¢/¢ (i ¢ N(¢) and the rule

Qj(p =) .
_ N

are derivable. The system is clearly sound for both globdllacal consequence over-models in
the same sense thdR is sound ovefl-models.

Definition 2.2. Let A C F(A) be a set of pure axioms, and &t C F(A) be a TBox. A set
U C F(A)is (LRA+ Name)-®-inconsistentf there arey, . .., ¢, € ¥ such that® -,z 41 Name
=(11 A -+ A thy,). Otherwise,U is (LR.A + Name)-®-consistent A subset of@F(A), i.e. a
set of @-formulas, is called a\Box (again borrowing terminology from description logic). A
maximally(LR.A+Name)-®-consistent ABoiks a maximal elemenk” among thé LR.A+Name)-
d-consistent ABoxes, ordered by inclusion. For suchi ,awe write S = {K; | « € N}, where
K;={p e F(A) | Q¢ e K}, and putVg (i) = {K;} = {K; € Sk | i € K,}.

For the construction of a named model, we now fix a maxim@aliiz.A+Name)-®-consistent ABox
K. Later, we will takeK to be a maximally consistent extension of a givendsef formulas, where
we may assume, thanks to the ridame’), that® C @F(A). We note the following trivial facts:

(Name)

(NameCong)

Lemma 2.3. We have)o € K; for all v € A and all substitutiongr, and moreovers U ¢ C K.
Our goal is the construction of named canonical models ifidh@ving sense:
Definition 2.4. A named canonical-modelis a model(Sk, v, Vi) such that
1K) €[V iff V¢ € K;
for every nominali, where¢ = {K; € Sk | ¢ € K;}.
It is clear that named canonical models are countable, as #ne only countably many nominals.

Lemma 2.5(Truth lemma for named canonical model)M = (Sk,~, Vi) is a named canonical
K-model andp is a hybrid formula, then for everi(; € Sk,

Hence,M = ®, and M is an.4-model.

The last clause of the truth lemma follows from Lemma 2.3 ctiueial point being that satisfaction
of all substitution instances od implies frame satisfaction aofl because every state in the model
is denoted by some nominal. We now establish two criterigHerexistence of named canonical
models. The first criterion assumes a stronger form of oge-@mpleteness than the second, which
instead demands that the modalities leoended
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2.1. Pure Completeness for Strongly One-Step Complete Lars

The construction of named models hinges on the followingponaif pastedness, which assures that
nominals interact correctly across the whole model. Fordése of the section, we fix a one-step
complete rule seR, a setA of pure axioms, and a sét C F(A) of global assumptions, and we
write ‘consistent’ instead of LR.A + Name)-d—consistent’.

Definition 2.6. An ABox K is 0-pastedif wheneverQ;(¢ < 1) € K for all nominalsj, then
@;(V¢p — Q) € K for all nominalsi.

It is clear thatK can induce a nhamed model only i is 0-pasted. The construction of pasted
ABoxes requires a Henkin-like extension of the logical laage by adding new nominal&ener-
ally, we denote byF(A)™ an extended language with countably many new nominals m&aamg
in 7(A). We note the fact (slightly glossed over in the literaturei this extension is conservative:

Lemma 2.7. If ¥ C F(A) is consistent, the® remains consistent ifF(A)*.

Lemma 2.8 (Extended Lindenbaum lemma forPasted Sets)if ¥ C F(A) is consistent, then
there exists @-pasted maximally consistent AB&X C @F(A)* and a nominal in F(A)* such

(The proof of the above version of the Lindenbaum lemma usesna 2.7, and exploits tiéame’
rule to introduce the nominal) As we are aiming for strong completeness results, (wead&)step
completeness as employed in weak completeness proofs firslegnodels [14, 19] is no longer
adequate. Accordingly, our first criterion assumes a sepogndition:

Definition 2.9. A rule setR is strongly one-step compleiifor every setX, every one-step con-
sistent subset d?rop(A(P(X))) is one-step satisfiable.

Lemma 2.10(Named existence lemma, Version 1) K is 0-pasted andR is strongly one-step
complete, then there exists a named canoni¢ahodel.

In summary, we have:

Theorem 2.11.If R is strongly one-step complete, then every extensiofifofby pure axioms
is both globally and locally strongly complete over coutéabybrid models when equipped with
the Name rule. That is, if®, ¥ C F(A) and¢p € F(A), then®; ¥ -,z 4iname ¢ Whenever
®: ¥ = ¢, whereC is the class of countablg-models.

Proof. As usual, we show that evefy.R.A + Name)-®-consistent sel C F(A) is satisfiable in

a countable4-model M such thatM = ® (where satisfiability is clearly invariant under passing
from F(A) to F(A)™). The extended Lindenbaum lemma yield8-pasted maximally consistent
subset ABoxK C F(A)* and a nominal in F(A)* such thatd; ' C K. By the named existence
lemma, we find a named, hence countable, canoicatodel M = (Sk,~, Vi), and by the truth
lemma (Lemma 2.5)) is an.A-model, M = ®, andM, K; = V. n

Remark 2.12. In the literature (e.g. [3, Theorem 7.29]), the above cotepless theorem is some-
times phrased as “completeness with respect to named modelsmodels where every state is
the denotation of some nominal; such models also playedteateole in the early development of
hybrid logic by the Sofia school (see e.g. [15]). In detaiis tineans that every state of the model
is the denotation of a nominah a language extended with countably many new nominétgs
extension is necessary, as otherwise the consistert-get n € N} would be satisfiable in a
model where every state is named by a nominad N of the original language, which is clearly
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impossible. Completeness with respect to models where/ etate is named by a nominal in an
extended language, on the other hand, is an immediate aserses) of completeness with respect
to countable models.

Example 2.13. The previous theorem establishes strong completenedssrésupure extensions

of all hybrid logics with neighbourhood semantics (Exampl&.4) that are defined by rank-1 ax-
ioms [20], i.e. modal formulas where the nesting depth of atiids is uniformly equal td (such

as the monotonicity axiorml(a A b) — [Jb). For the monotonic cases, i.e. extensions of monotonic
hybrid logic, these results are essentially known [24], levthey seem to be new for the non-
monotonic cases, i.e. extensions of classical hybrid lagiccontaining the monotonicity axiom,
including, e.g., various deontic logics [12]. Moreover theorem newly proves strong complete-
ness of the hybridization of coalition logic, as Theorem &.217] essentially states that coalition
logic satisfies strong one-step completeness.

2.2. Pure Completeness for Bounded Logics

The condition of strong one-step completeness used in thegus section is a comparatively rare
phenomenon [20]; the strength of the condition becomes trighe fact that, unlike in the classical
case of Kripke semantics, the above did not require a notionpgastedness [5]. We proceed to
present an alternative approach for the case where one deesh analogue of th@4ste-1) rule

— this is the case if the operators dreundedi.e., their satisfaction hinges, in each case, on only
finitely and boundedly many states of a model.

Definition 2.14. A modal operatok? is k-boundedfor k£ € N with respect to a\-structureT” if for
every setX and everyA C X,

[[Q?]]X(A) = UBQA,#ng [[Q?]]X(B)'
(This implies in particular tha® is monotonic.) We say that is bounded w.r.t7" if every modal
operator® in A is ky-bounded for soméo.

The boundedness of an operator can now be internalized Iogleal deduction system. In partic-
ular, for k-bounded operatorf®, one has th@aste rule
Qj oA - ANQydANQQO(L V-V jg) =t

Q; Q¢ — ¢
with the side condition that thej. are pairwise distinct fresh nominals. We write
D FrRA+Name+Paste @ If @ IS derivable from assumptions i in the systemCR + Name where
additionally the rule(PasteQ(k)) may be used in deductions férbounded operator$. This in-
duces the notion dfCR.4+ Name + Paste)-®-consistency, which we briefly refer to as consistency
as we fix®, A, andR throughout. Again, the system is clearly sound, fe¥ = ¢ whenever
O: U R AtNametPaste @, WhereC is the class ofd-models.

(PasteQ(k))

Examples 2.15. 1. Hybrid K. The modal operato is 1-bounded. The arising paste rule
(Paste((1)) is precisely the rulépaste() of [4].
2. Graded hybrid logic.The modal operatod,, is (k + 1)-bounded. One thus has a paste rule
Qo N---NQj dNQOR(JLV -V Jrg1) —
Q;0r¢ —

(PasteQr(k+ 1))

with side conditions as before.
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3. Positive Presburger hybrid logicA Presburger operator’ a; - #(_;) > k (Example 1.1) is
k-bounded if thes; are positive. E.g., this still allows expressing the stamingenerally believed
to be valid in the German national football league, that entdzat has at least7 points will not be
relegateds - #win + 1 - #tdraw > 37 — —relegated.

The generalized-pastedness condition for bounded operators is as follows.

Definition 2.16. Let A be bounded. An ABoxX is 1-pastedif wheneverQ is k-bounded and
@,Q¢ € K,then{Q; ¢,...,Q; ¢, Q;Q(j; V---Vji)} C K for some nominalgy, ..., ji.

Again, itis clear that ifA is bounded, thei’& can induce a named model only Bfis 1-pasted. Itis
easy to see that iR is one-step complete andis bounded (in fact already ® derives monotony
for every© € A), then everyl-pasted set is alse-pasted (Definition 2.6).

Lemma 2.17(Extended Lindenbaum lemma ft#pasted sets)Let A be bounded. It C F(A) is
consistent, then there existlgpasted maximally consistent AB&x C @F(A)* and a nominal
in F(A)* such that@, ¥ C K, whereF(A)* is as in Section 2.1.

Bounded operators now allow us to use a weaker version ost@pecompleteness. Instead of
requiring that all one-step consistent sets are one-stighighle, we may restrict thnite extensions
of propositional variables.

Definition 2.18. We say thatR is strongly finitary one-step completefor every setX, every
one-step consistent subsetRybp(A(Pg, (X))) is one-step satisfiable.

Clearly, any strongly one-step complete rule set is alsngty finitary one-step complete, but the
example of graded hybrid logic witnesses that the conversmi true. We note that the weaker
criterion still fails for probabilistic logics due to inhemt non-compactness [23]; probabilistic logics
also fail to be bounded, as a given probabifitg [0, 1] can be split into any number of summands.
Together with boundedness, the above condition enablesoadeersion of the named existence
lemma.

Lemma 2.19(Named existence lemma, Version 2 A is boundedR is strongly finitary one-step
complete, andy is 1-pasted, then there exists a named canonicamnodel.

Summarizing the above, we have the following extended cetapéss result.

Theorem 2.20. Let A be bounded, and IR be strongly finitary one-step complete. Then every
extension ofZR by pure axioms is globally and locally strongly completeras@untable hybrid
models when equipped with tNeme andPaste rules. In other words, i, ¥ C F(A), ¢ € F(A),
andC is the class of all countablgl-models, them®; U b7 44 Name+Paste ¢ Wheneved; U =C ¢,

The proof follows the same route via extended Lindenbaumrlamexistence lemma, and truth
lemma as for Theorem 2.11.

Example 2.21. By Example 2.15 and the fact that the known complete axiaatdins of the
associated modal logics are in fact strongly finitary omg-stomplete, the previous theorem proves
completeness of pure extensions of hylbkid graded hybrid logic, and positive Presburger hybrid
logic. Except for the standard case of hybAd these results seem to be new. In particular, we
obtain completeness of pure extensions of graded (or pestiiesburger) hybrid logic defining the
following frame classes in multigraph semantics:

e The class oKripke framesseen as the class of multigraphs where the transition plicity
between two individual states is always at mbsfiefined by the pure axiomi.
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e The class ofeflexivemultigraphs, defined by the pure axiam- {qi.

¢ The class ofransitivemultigraphs, defined by the pure axiofgl,i — ¢ni, n > 0.

e The class oBymmetrianultigraphs, i.e., those where the transition multipjidiom z to y
always equals the one fropto x, which is defined by the pure axioms\ ¢j — @;i.

Other frame classes of interest, see e.g. [3, Section AB8]e characterized similarly by translating
the corresponding frame conditions from Kripke to multgrasemantics.

2.3. The Mixed Case

In some cases, the two methods laid out in the precedingossctian be combined for modal
operators with several arguments that adhere, in each iofafggiments, to one of the respective
sets of semantic conditions. For the sake of readabilityfomaulate this explicitly only for the
mixed binary case with a single modal operator, i.e. we assurthis section that = {Q} with

@ binary; the generalization to arbitrary numbers of arguisieseveral modal operators etc. should
be obvious, and essentially only requires more elaboratgelogy and notation.

Definition 2.22. We say thatR is (strongly, strongly finitary) one-step complétevery one-step
consistent subset &frop(A(P(X) x Ppn(X))) is one-step satisfiable. Moreover, we say thas
k-bounded in the second arguméat k < N if for every setX and all4, B C X, [V] (A, B) =

Uccazo<k [V]x (4, C).
In the same manner as for Theorems 2.11 and 2.20, we derive:

Theorem 2.23.If R is (strongly, strongly finitary) one-step complete dfds k-bounded in the
second argument, then every extensiod Bf by pure axioms is both locally and globally strongly
complete over countable hybrid models when equipped wathppropriateName and Paste rules.

Example 2.24. Hybrid CK (Example 1.1) is easily seen to be (strongly, strongly figjtane-step
complete, and the operator defined from the conditional operater by a > b 1< —(a = —b)

is 1-bounded in the second argument. By the above, it followsdbhary pure extension of hybrid
CK is strongly complete over countable hybrid selection fiomcimodels. E.g. we may define
the class of conditional frames where all expressible d¢mmd induce transitive relations by pure
axioms(¢ > ¢ > i) — (¢ > i). Such frames satisfy also the dual axiom (using a propositio
variablea) (¢ = a) — (¢ = (¢ = a)), an axiom for duplicating conditional assumptions. Simila
statements apply to a combination of graded and conditlogal (obtainable compositionally using
the methods of [21]), which has operators of the farme>;. b “if a, then one normally has more
thank instances ob".

The semantics of conditional logics in general has com@exifications, involving, e.g., pref-
erence orderings or systems of spheres (see, e.g., [10apBlication of our methods to conditional
logics beyondCK is the subject of further investigation. We note that purapleteness of a hybrid
extension of Lewis’ logic of counterfactuals has been distadd recently [18].

3. Local Binding

We next investigate completeness of a stronger hybrid g that includes thg binder, which
binds a state variable to the current state. Concretely/io gormulas of the form| i. ¢, wherein
the nominali is locally bound (for compactness of presentation, we givehe usual distinction
between nominals and state variables). Given a modal sityikype A, we write 7| (A) for the
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ensuing extension af (A). The reading of the formulé i.¢ is “¢ holds for the current statd.
The satisfaction relation in the extended logic is definedyadditional clause for thgbinder,

(Cor, V) ElLigiff (C,v,V]c/i]) ¢
wherec is a state in a coalgebr@ andV'[c/i] is obtained froml/ by modifying the value of to c.
The semantics of thg binder immediately translates into the axiom scheme (sgd44)

(DA)  @i((l j. ¢) < oli/J]).
Given a setR of A-rules, a setb C F|(A) of formulas and a sed C QF (A) of pure ax-
ioms, we write® -,z 4+ Name+Paste+DA ¢ fOr the extension of the associated provability predicate
F R A+Name+Paste With (DA). Using (DA), one easily proves an extension of the truth lemma for
named models (Lemma 2.5) # (A), so that the completeness results for pure extensions ghrove
before (Theorems 2.11, 2.20, and 2.23) transfer immeglizdel’|. We make this explicit for the
bounded case:

Theorem 3.1. If A is bounded andR is strongly finitary one-step complete, then every purenexte
sion of £, is strongly locally and globally complete over countabldtiy models. In other words,
;U =C ¢ iff @; W FrratNamerPasterDA ¢ forall ¢ € F(A) and all ®, ¥ C F(A), whereC is
the class of all countablel-models.

Remark 3.2. As noted in [24], the named model construction more geneyaids completeness
for any locally definableextension of the hybrid language, i.e. any extension whesgaticsat
named states defined by a formula similar tA).

Example 3.3. Continuing Example 2.15, Theorem 3.1 reproves not only ti@ completeness

of pure extensions of hybri& with |, but also the completeness of pure extensions of graded (or
positive Presburger) hybrid logic with This extends easily to the multi-agent case, or, in descrip
tion logic terminology, to description logics with multgtoles. As, moreover, both a role hierarchy
and transitivity of roles can be defined using pure axiomsthue arrive at a complete axiomati-
zation of an extension of the description loglg{O Q with satisfaction operators arjd which has
been used in connection with conjunctive query answeridd fnd allows, e.g., talking about the
number of stepchildren of a stepmother, in continuatiorhefdtepmother example from [13], .

4. Conclusions

We have laid out two criteria for the existence of named caramodels in coalgebraic hybrid
logics — one that applies to cases where one has an analogiue s6-called Pastefule of stan-
dard hybrid logic, and one which applies to cases where oes dot need any such rule. While
the latter means essentially that the logic is equipped avitieighbourhood semantics, the former
requires that all modal operators of the logic are boundedthere is always only a bounded num-
ber of states relevant for their satisfaction at each pddr main novel example of this type is
graded hybrid logic (and an extension of it using certainsBueger modalities [9]). The named
model construction entails completeness of pure exteasama completeness of extended hybrid
languages with the local bindé¢r(of which the I-me construct of [13] is a single-variabletries
tion), which we thus obtain as new results for, e.g., hybadlition logic, hybrid classical modal
logic, several hybrid deontic logics, hybrid conditionagjic, graded hybrid logic, and an extension
of the description logiSHOQ. An open question that remains is the existence of so-caltiub-
dox axiomatizations [4] in the presence |gfas well as to find an analogue of the characterization
result of [24] stating that a variant of the Pastedle characterizes the Kripke models among the
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topological models of4. A further topic of investigation is to find decidable fragm of the lan-
guage with|; we note slightly speculatively that the fragment used B phay, in our terminology,
be seen as requiring that a suitably defined NNF of a formuldaites only positive occurrences of
bound nominals under bounded modal operators.
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