
HAL Id: inria-00456113
https://hal.inria.fr/inria-00456113

Submitted on 19 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beyond ω-Regular Languages
Mikolaj Bojanczyk

To cite this version:
Mikolaj Bojanczyk. Beyond ω-Regular Languages. 27th International Symposium on Theoretical
Aspects of Computer Science - STACS 2010, Inria Nancy Grand Est & Loria, Mar 2010, Nancy,
France. pp.11-16. �inria-00456113�

https://hal.inria.fr/inria-00456113
https://hal.archives-ouvertes.fr

Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 11-16
www.stacs-conf.org

BEYOND ω-REGULAR LANGUAGES

MIKO LAJ BOJAŃCZYK

University of Warsaw
E-mail address: bojan@mimuw.edu.pl

URL: www.mimuw.edu.pl/∼bojan

Abstract. The paper presents some automata and logics on ω-words, which capture all
ω-regular languages, and yet still have good closure and decidability properties.

The notion of ω-regular language is well established in the theory of automata. The
class of ω-regular languages carries over to ω-words many of the good properties of regular
languages of finite words. It can be described using automata, namely by nondeterministic
Büchi automata, or the equivalent deterministic Muller automata. It can be described using
a form of regular expressions, namely by ω-regular expressions. It can be described using
logic, namely by monadic second-order logic, or the equivalent weak monadic-second order
logic.

This paper is about some recent work [1, 3, 2, 4], which argues that there are other
robust classes of languages for ω-words. The following languages serve as guiding examples.

LB = {an1ban2b · · · : lim sup ni < ∞} LS = {an1ban2b · · · : lim inf ni = ∞}

Neither of these languages is ω-regular in the accepted sense. One explanation is that LS

contains no ultimately periodic word, as does the complement of LB. Another explanation
is that an automaton recognizing either of these languages would need an infinite amount
of memory, to compare the numbers n1, n2, . . .

Both of these explanations can be disputed.
Concerning the first explanation: why should ultimately periodic words be so impor-

tant? Clearly there are other finite ways of representing infinite words. A nonempty Büchi
automaton will necessarily accept an ultimately periodic word, and hence their importance
in the theory of ω-regular languages. But is this notion canonic? Or is it just an artefact
of the syntax we use?

Concerning the second explanation: what does “infinite memory” mean? After all, one
could also argue that the ω-regular language (a∗b)ω needs infinite memory, to count the
b’s that need to appear infinitely often. In at least one formalization of “memory”, the
languages LB and LS do not need infinite memory. The formalization uses a Myhill-Nerode
style equivalence. For a language L ⊆ Aω, call two finite words L-equivalent if they can be

Key words and phrases: automata, monadic second-order logic.
Author supported by ERC Starting Grant “Sosna”.

c© M. Bojańczyk
CC© Creative Commons Attribution-NoDerivs License

12 M. BOJAŃCZYK

swapped a finite or infinite number of times without L noticing. Formally, words w, v ∈ A∗

are called L-equivalent if both conditions below hold.

u1wu2 ∈ L ⇐⇒ u1vu2 ∈ L for u1 ∈ A∗, u2 ∈ Aω

u1wu2wu3w · · · ∈ L ⇐⇒ u1vu2vu3v · · · ∈ L for u1, u2, . . . ∈ A∗.

One can show that LB-equivalence has three equivalence classes, and LS-equivalence has
four equivalence classes. Therefore, at least in this Myhill-Nerode sense, the languages LB

and LS do not need infinite memory.
The rest of this paper presents some language classes which capture LB and LS, and

which have at least some of the robustness properties one would expect from regular lan-
guages. We begin with a logic.

MSO with the unbounding quantifier. Monadic second-order logic (MSO) captures
exactly the ω-regular languages. To define the languages LB and LS , some new feature is
needed. Consider a new quantifier UX ϕ(X), introduced in [1], which says that formula
ϕ(X) is satisfied by arbitrarily large finite sets X, i.e.

UX ϕ(X) =
∧

n∈N

∃X
(

ϕ(X) ∧ n ≤ |X| < ∞
)

.

As usual with quantifiers, the formula ϕ(X) might have other free variables than X. We
write MSO+U for the extension of MSO where this quantifier is allowed. It is difficult
to say if U is an existential or universal quantifier, since its definition involves an infinite
conjunction of existential formulas.

Let us see some examples of formulas of MSO+U. Consider a formula block(X) which
says that X contains all positions between two consecutive b’s. To define the language LB

in the logic MSO+U, we need to say that: i) there are infinitely many b’s and ii) the size of
blocks is not unbounded. This is done by the following formula.

∀x∃y(x ≤ y ∧ b(y)) ∧ ¬UX block(X).

For the language LS , we need a more sophisticated formula. It is easier to write a formula
for the complement of LS. The formula says that there exists a set Z, which contains
infinitely many blocks, as stated by the formula

∀y∃X
(

block(X) ∧ X ⊆ Z ∧ ∀x (x ∈ X → y < x)
)

,

but the size of the blocks in X is bounded, as stated by the formula

¬UX (block(X) ∧ X ⊆ Z).

Note that the set Z is infinite. This will play a role later on, when we talk about weak
logics, which can only quantify over finite sets.

The class of languages of ω-words that can be defined in MSO+U is our first candidate
for a new definition of “regular languages”. It is also the largest class considered in this
paper – it contains all the other classes that will be described below. By its very definition,
the class is closed under union, complementation, projection, etc. The big problem is that
we do not know if satisfiability is decidable for formulas of MSO+U over ω-words, although
we conjecture it is.

Of course, decidable emptiness/satisfiability is very important if we want to talk about
“regular languages”. We try to attack this question by introducing automata models, some
of which are described below. There will be the usual tradeoffs: nondeterministic automata

BEYOND ω-REGULAR LANGUAGES 13

are closed under projections (existential set quantifiers), while deterministic automata are
closed under boolean operations.

We begin with the strongest automaton model, namely nondeterministic BS-automata,
which were introduced in [3]1.

Nondeterministic BS-automata. A nondeterministic BS-automaton is defined like an
NFA. The differences are: it does not have a set of accepting states, and it is equipped
with a finite set C of counters, a counter update function and acceptance condition, as
described below. The counter update function maps each transition to a finite, possibly
empty, sequence of operations of the form

c := c + 1 c := 0 c := d for c, d ∈ C.

Let ρ be a run of the automaton over an input ω-word, as defined for nondeterministic
automata on infinite words. The set of runs for a given input word is independent of the
counters, counter update function and acceptance condition.

What are the counters used for? They are used to say when a run ρ is accepting. For
a counter c ∈ C and a word position i ∈ N, we consider the number val(ρ, c, i), which is
the value of counter c after doing the first i transitions. (All counters start with zero.)
These numbers are then examined by the acceptance condition, which talks about their
assymptotic behavior. (This explains why nondeterministic BS-automata cannot describe
patterns usually associated with counter automata, such as anbn.) Specifically, the accep-
tance condition is a positive boolean combination of conditions of the three kinds below.

lim sup
i

val(ρ, c, i) < ∞ lim inf
i

val(ρ, c, i) = ∞ “state q appears infinitely often”

The first kind of condition is called a B-condition (because it requires counter c to be
bounded), the second kind of condition is called an S-condition (in [3], a number sequence
converging to ∞ was called “strongly unbounded”), and the last kind of condition is called
a Büchi condition.

Emptiness for nondeterministic BS-automata is decidable [3]. The emptiness procedure
searches for something like the “lasso” that witnesses nonemptiness of a Büchi automaton.
The notion of lasso for nondeterministic BS-automata is more complicated, and leads to
a certain class of finitely representable infinite words, a class which extends the class of
ultimately periodic words.

Consider the languages recognized by nondeterministic BS-automata. These languages
are closed under union and intersection, thanks to the usual product construction. These
languages are closed under projection (or existential set quantification), thanks to nondeter-
minism. These languages are also closed under a suitable definition of the quantifier U for
languages, see [3]. If these languages were also closed under complement, then nondetermin-
istic BS-automata would recognize all languages definable in MSO+U (and nothing more,
since existence of an accepting run of a nondeterministic BS-automaton can be described
in the logic).

Unfortunately, complementation fails. There is, however, a partial complementation
result, which concerns two subclasses of nondeterministic BS-automata. An automaton

1For consistency of presentation, the definition given here is slightly modified from the one in [3]: the
automata can move values between counters, and they can use Büchi acceptance conditions. These changes
do not affect the expressive power.

14 M. BOJAŃCZYK

that does not use S-conditions is called a B-automaton; an automaton that does not use
B-conditions is called an S-automaton.

Theorem 1 ([3]). The complement of a language recognized by a nondeterministic B-

automaton is recognized by a nondeterministic S-automaton, and vice versa.

The correspondence is effective: from a B-automaton we can compute an S-automaton
for the complement, and vice versa. The proof of Theorem 1 is difficult, because it has to
deal with nondeterministic automata. (Somewhat like complementation of nondeterministic
automata on infinite trees in the proof of Rabin’s theorem.) The technical aspects are
similar to, but more general than, Kirsten’s decidability proof [8] of the star height problem
in formal language theory. In particular, it is not difficult to prove, using Theorem 1, that
the star height problem is decidable.

Deterministic max-automata. As mentioned above, nondeterministic BS-automata are
not closed under complement. A typical approach to the complementation problem is to
consider deterministic automata; this is the approach described below, following [2].

A deterministic max-automaton is defined like a BS-automaton, with the following dif-
ferences: a) it is deterministic; b) it has an additional counter operation c := max(d, e);
and c) its acceptance condition is a boolean (not necessarily positive) combination of B-
conditions. The max operation looks dangerous, since it seems to involve arithmetic. How-
ever, the counters are only tested for the limits, and this severely restricts the way max
can be used. One can show that nondeterminism renders the max operation redundant, as
stated by Theorem 2 below. (For deterministic automata, max is not redundant.)

Theorem 2 ([2]). Every language recognized by a deterministic max-automaton is a boolean

combination of languages recognized by nondeterministic B-automata.

By Theorem 1, every boolean combination of languages recognized by nondeterministic
B-automata is equivalent to a positive boolean combination of languages recognized by
nondeterministic B-automata, and nondeterministic S-automata. Such a positive boolean
combination is, in turn, recognized by a single nondeterministic BS-automaton, since these
are closed under union and intersection. It follows that every deterministic max-automaton
is equivalent to a nondeterministic BS-automaton. Since the equivalence is effective, we get
an algorithm for deciding emptiness of deterministic max-automata. (A direct approach to
deciding emptiness of deterministic max-automata is complicated by the max operation.)

So what is the point of deterministic max-automata?
The point is that they have good closure properties. (This also explains why the max

operation is used. The version without max does not have the closure properties described
below.) Since the automata are deterministic, and the acceptance condition is closed under
boolean combinations, it follows that languages recognized by deterministic max-automata
are closed under boolean combinations. What about the existential set quantifier? If we
talk about set quantification like in MSO, where infinite sets are quantified, then the answer
is no [2]; closure under existential set quantifiers is essentially equivalent to nondeterminism.
However, it turns out that quantification over finite sets can be implemented by determin-
istic max-automata, which is stated by Theorem 3 below. The theorem refers to weak
MSO+U, which is the fragment of MSO+U where the set quantifiers ∃ and ∀ are restricted
to finite sets.

Theorem 3 ([2]). Deterministic max-automata recognize exactly the languages that can be

defined in weak MSO+U.

BEYOND ω-REGULAR LANGUAGES 15

Other deterministic automata. There is a natural dual automaton to a determinis-
tic max-automaton, namely a deterministic min-automaton, see [4]. Instead of max this
automaton uses min; instead of boolean combinations of B-conditions, it uses boolean com-
binations of S-conditions. While the duality is fairly clear on the automaton side, it is less
clear on the logic side: we have defined only one new quantifier U, and this quantifier is
already taken by max-automata, which capture exactly weak MSO+U.

The answer is to add a new quantifier R, which we call the recurrence quantifier. If
quantification over infinite sets is allowed, the quantifier R can be defined in terms of U and
vice versa; so we do not need to talk about the logic MSO+U+R. For weak MSO, the new
quantifier is independent. So what does this new quantifier say? It says that the family of
sets X satisfying ϕ(X) contains infinitely many sets of the same finite size:

RX ϕ(X) =
∨

n∈N

∃∞X
(

ϕ(X) ∧ |X| = n
)

.

If the quantifier U corresponds to the complement of the language LB (it can say there
are arbitrarily large blocks); the new quantifier R corresponds to the complement of the
language LS (it can say some block size appears infinitely often).

Theorem 4 ([4]). Deterministic min-automata recognize exactly the languages that can be

defined in weak MSO+R.

The proof shares many similarities with the proof of Theorem 3. Actually, some of
these similarities can be abstracted into a general framework on deterministic automata,
which is the main topic of [4]. One result obtained from this framework, Theorem 5 below,
gives an automaton model for weak MSO with both quantifiers U and R.

Theorem 5 ([4]). Boolean combinations of deterministic min-automata and deterministic

max-automata recognize exactly the languages that can be defined in weak MSO+U+R.

The framework also works for different quantifiers, such as a perodicity quantifier (which
binds a first-order variable x instead of a set variable X), defined as follows

Px ϕ(x) = the positions x that satisfy ϕ(x) are ultimately periodic.

Closing remarks. Above, we have described several classes of languages of ω-words, de-
fined by: the logics with new quantifiers and automata with counters. Each of the classes
captures all the ω-regular languages, and more. Some of the models are more powerful,
others have better closure properties; all describe languages that can reasonably be called
“regular”.

There is a lot of work to do on this topic. The case of trees is a natural candidate, some
results on trees can be found in [6, 7]. Another question is about the algebraic theory of
the new languages; similar questions but in the context of finite words were explored in [5].

References

[1] M. Bojańczyk. A Bounding Quantifier. In Computer Science Logic, pages 41–55, 2004.
[2] M. Bojańczyk. Weak MSO with the Unbounding Quantifier. In Symposium on Theoretical Aspects of

Computer Science, pages 233–245, 2009.
[3] M. Bojańczyk and T. Colcombet. ω-Regular Expressions with Bounds. In Logic in Computer Science,

pages 285–296, 2006.

16 M. BOJAŃCZYK

[4] M. Bojańczyk and S. Toruńczyk. Deterministic Automata and Extensions of Weak MSO. In Foundations

of Software Technology and Theoretical Computer Science, 2009.
[5] T. Colcombet. The Theory of Stabilisation Monoids and Regular Cost Functions. In International Col-

loquium on Automata, Languages and Programming, 2009.
[6] T. Colcombet and C. Löding. The Nondeterministic Mostowski Hierarchy and Distance-Parity Automata.

In International Colloquium on Automata, Languages and Programming 2008: 398-409
[7] T. Colcombet and C. Löding. The Nesting-Depth of Disjunctive mu-calculus for Tree Languages and the

Limitedness Problem. In Computer Science Logic, pages 416-430, 2008
[8] D. Kirsten. Distance desert automata and the star height problem. Theoretical Informatics and Applica-

tions, 39(3):455–511, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

