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Abstract key components of BEy are:
, o , , 1- A decomposition principleised to divide a complex
DAEx is a metaheuristic designed to improve the plan qual-  y1anning task into (hopefully) easier subtasks. We chose

ity and the scalability of an encapsulated planning system.
DAEx is based on a state decomposition strategy, driven by
an evolutionary algorithm, which benefits from the use of a
classical planning heuristic to maintain an ordering of atoms

a state-based decomposition strategy: A planning task is
sliced into a sequence of intermediate states that must be
reached in turn before satisfying the goal. For reasons dis-

within the individuals. The proof of concept is achieved by cussed later, these intermediate states are partial staltes
embedding the domain-independent satisficing YAHSP plan- ~ that are considered as subgoals during search. This decom-
ner and using the critical path! heuristic. Experiments position principle relies on classical reachability plangn

with the resulting algorithm are performed on a selection of heuristics. The idea of decomposing a search space in this
IPC benchmarks from classical, cost-based and temporal do-  way is not new (Korf 1987; Sebastia, Onaindia, and Marza
mains. Under the experimental conditions of the IPC, and in 2006), but as we have very minimalistic informations to
partlcglar with a un_lversal parameter setting common to all compute such a decomposition, we consider this problem as
domains, D\Evause is compared to the best planner foreach ) o yimization problem and use a specialized optimization

type of domain. Results show thanBvansp performs very - : "
well both on coverage and quality metrics. It is particularly algorithm to try to discover the best decompositions.

noticeable that BEx improves a lot on plan quality when 2- An encapsulated satisficing plannesed to solve each
compared to YAHSP, which is known to provide largely sub- subtask. In principle any PDDL planner could suit, provided
optimal solutions, making it competitive with state-of-the-art that it has a predictable behavior when applied to identi-
planners. This article gives a full account of the algorithm, cal subtasks in order to ensure the convergence of the op-
reports on the experiments and provides some insights onthe  timjzation process; Even a stochastic planner such as LPG
algorithm behavior. (Gerevini, Saetti, and Serina 2003b) could be used, by con-
trolling its randomization seed. We chose for this purpose
Introduction the YAHSP planner (Vidal 2004), which is extremely fast

) ) on many benchmark domains but suffers from poor solution
Recent advances in the design of PDDL planners have fo- qajity and scalability problems in some domains. We con-
cused on plan quality rather than on speed needed to obtaingjger particularly challenging the use of such a plannett Wi

a single solution of eventually poor quality, as witnessgd b ¢ nroposed metaheuristic be able to improve both its scal-
the 6" International Planning Competition. Planners were ability and plan quality?

given a fixed amount of running time, and their scores were
based, for each benchmark domain, on their coverage (num-
ber of solved problems) and on the quality of their solutions
with respect to various plan metrics. We think that this is an
important step towards the design of planning systems able
to tackle real-world problems, for which plan quality is gen
erally a fundamental requirement. Another way to ensure
solution quality is of course the use of optimal planners, bu
the size of the problems they can handle is by far lower than
that solved by satisficing planners.

In that perspective, we proposeaBy, a metaheuristic
aimed at (i) guiding an encapsulated planner towards a so-
lution of good quality, and (ii) increasing the scalabilaf/
that planner when facing difficult planning problems. The

3- An optimization algorithnused to drive the underlying
planner towards a solution of good quality, by controlling i
through the state-based decomposition process. We chose an
evolutionary algorithm to conduct the optimization prages
as these algorithms are known to have been very success-
ful for many optimization problems, and to ensure a high
diversification in the exploration of the search space. In-
deed, a planner such as YAHSP often sinks into unpromis-
ing subtrees, either leading to dead-ends or bad solutions,
without being able to visit better parts of the search space.
The net effect of the optimization algorithm will be to force
the planner to diversify the way it travels through the skearc
space, and concentrate it simultaneously to several €iffer
promising parts.

Copyright© 2010, Association for the Advancement of Artificial DAEx builds on previous ideas implemented in DAE1
Intelligence (www.aaai.org). All rights reserved. (Schoenauer, Séant, and Vidal 2006; 2007) and DAE2



(Bibai et al. 2008), but differs from these works in several
fundamental ways. Firstly, the decomposition principle of
DAE1 was based on manipulations at the planning objects
level, building intermediate states by combining predicat
and constant symbols in a completely blind way. DAE2 in-
troduced intermediate state computation at the atom level,
but still in a blind way. DAEx benefits from a time-based
atom choice method relying on standard planning reachabil-
ity heuristics (Haslum and Geffner 2000) and pairwise mu-
tual exclusions between atoms. Secondly, DAE1 and DAE2

1999), or Voronoi Diagrams for Structural Design Applica-
tions (Morel, Hamda, and Schoenauer 2005).
EAs are metaheuristics based on a metaphor of the Dar-

winian evolution of biological populations (Eiben and Smit

2003): The interaction ofiatural selection(fitter individu-

als, with respect to the environment, survive and reproduce
more than others) andlind variations (the genetic mate-
rial is randomly modified when passed on from the parents
to their offspring during reproduction) results in tamer-
genceof individuals that are adapted to their environment.

were based on the assumption that the best results should bdn the Artificial Evolution framework, individuals are cand

obtained with an optimal planner such as CPT (Vidal and
Geffner 2006). The resulting planners were effectivelyeabl

to find very good solutions, but the cost of running YAHSP
instead of CPT for each subtask is so much lower theE

date solutions of the optimization problem at hand, the-envi
ronment is given by the value of the objective function, also
called herditness selection amounts to choosing individu-
als with a bias towards good values of the fithess, whereas

clearly explores vast parts of the search space that were outvariation operators are stochastic moves in the searclespac

of reach for DAE1 and DAE2, making it able to outperform
them both in scalability and quality. While DAE2 exhib-
ited poor performance at IPC6 —although the plan quality
for the problems it could solve was often very good, if not
the best (Bibai, Schoenauer, and &ant 2009)— BEy is
competitive with state-of-the-art planners in both cogera
and quality, as demonstrated in the experimental section.

Divide-and-Evolve

This section presents the details of the basic implementa-
tion of DAEx. As advocated in (Sebastia, Onaindia, and
Marza 2006), the first ingredient for state decomposition
is a decomposition principle. Previous works have tack-
led this issue by relying on First Principles, e.g., parti-
tioning planning problems into subproblems by parallel de-
composition (Chen, Hsu, and Wah 2006). On the oppo-
site, DAEx addresses the problem of finding a decompo-
sition of a planning task® = (A,0,I,G) by turning it
into an optimization problem: Search for a sequefce-
(8i)iefo,n+1) SUch that the plam obtained by compressing
subplansr; found by an embedded planner as solutions of
P; = (A,0,s;,8i11)ic0,n) has optimal quality. Several

that have to balance betweemploitationof the previous
good individuals, locally searching around them, anglo-
ration of the search space, by creating new individuals far
from already explored regions of the search space.

Note that selection procedures are problem-independent.
Hence, implementing an evolutionary algorithm for a new
problem only requires to define the search space (or, equiva-
lently, therepresentatiorof candidate solutions), the fithess
function, and the variation operators, that are usuallggmat
rized intomutation operatorsthat modify a singlgarentto
generate oneffspring andcrossover operatorsnvolving 2
or more parents to generate one or more offspring.

Representation for State Decomposition

In DAEy, an individual is a state decomposition for the plan-
ning task at hand, i.e., a variable length list of states. How
ever, searching the space of complete states would rapidly
result in a combinatorial explosion of the size of the search
space. Moreover, goals of a planning task are generally de-
fined as partial states. It thus seems more practical tolsearc
only ordered sequences of partial states, and to limit the
choice of possible atoms used to describe such partiakstate

crucial issues need to be addressed from the optimization However, this raises the issue of ttieoice of the atomso

point of view: Identify the search space, define an objective be used to represent individuals, among all possible atoms.
function, and choose an optimization algorithm. The three ~ Some results of previous experiments on different do-
issues are of course related: Choosing a powerful method mains of temporal planning tasks from the IPC benchmark
with proved convergence usually implies heavy restriction series (Bibai, Schoenauer, and 8ant 2009) have demon-

on the search space and the objective function, and the prac-strated the need for a very careful choice of the atoms that
titioner then has to twist the problem at hand to make the are used to build the partial states. This lead us to propose a
chosen method applicable. The opposite route was chosen innew method to build the partial states, based on the earliest
DAEyx: Avoid unnecessary restrictions on the search space time from which an atom can appear. Such time can be es-

or the objective function, and use an optimization algaonith
that is both flexible and powerful enough to be able to tackle
the resulting optimization problem.

Evolutionary Algorithms
Evolutionary Algorithms (EAs) are general purpose op-

timated by any admissible heuristic function, elg., h2...
(Haslum and Geffner 2000). The start times given by the
chosen heuristic are used to restrict the candidate atoms fo
each partial state when building a sequence of partialsstate
A partial state is built at randomly chosen timestamps by
randomly choosing among several atoms that can possibly

timization algorithms that have been demonstrated to be appear at this time (this will be detailed more formally thte
highly flexible, but nevertheless robust, in handling such The sequence of states is hence built by preserving the esti-
challenging optimization problems. In particular, seVera mated chronology between atontsr(e consistency. The

EA successes have been obtained in contexts of unstruc-heuristic function:! has been used for all experiments pre-
tured search spaces, e.g. parse trees in the case of Gesented here.

netic Programming for Analog Circuit Design (Koza and al. Nevertheless, even when restricted to specific choices of



atoms, the random sampling can lead to inconsistent partial Algorithm 1 Evaluate(Ind, planner) // Fitness computation

states, because some sets of atoms camudeally exclu- Require: I, G, bmax, Imax
sivét (nmut ex in short). Whereas it could be possibletoal- 1: k«— 0; u«0; B« 0
low mut ex atoms in the partial states generated byHR, 2:cs—1; 5+ {}

and to let evolution discard them, it is more efficient to a  3: while s # G do

priori forbid them as much as possible. In practice, it is dif s < nextGoal(Ind)

ficult to decide if several atoms amaut ex. Nevertheless, i(fSOZ';abdoni) tzeg'a””er-SC"V@Svvamax)

binary mut exes can be approximated (i.e. not all pairs of St = .

mutually exclusive atoms can be discovered) with a varia- return (L, 10 - k - dist(cs, G) + length(Ind)— v)

©OND A

tion of theh? heuristic function (Haslum and Geffner 2000) . E|Segli]%ﬂfilk) >0 then////u. numt?g:)g: 3216?3{ gtlstr:as

in order to build quasi pairwise-mutex-free states (i @tes 10: B — B + bgone " J/total search steps

where no pair of atoms areut ex). 11: cs «— ExecPlafics, soly) I next initial state
Last, but not least, the useful decompositions are those 12: k—k+1 Il next intermediate goal

for which all resulting subproblems are easier to solve than 13: (Sol, Q) < Compres§(sol;)o<;<k)

the initial problem for the planner at hand. We use a purely 14: return (S0, Q + le"gth(lgd)—u+l +=B)

syntactic (asymmetric) metritist to evaluate the remaining
difficulty of solving the current planning task: For any com-
plete state:s and partial statg, dist(cs, g) is the number of
atoms ing that are not ircs. Other metrics could be envis-  ration, in order to discard subproblems that are too difficul
aged, such as information given by a reachability heuristic (ideally, that are more difficult than the original globabdjr
but the metric we used proved to be informative enough. lem). Indeed, because there can be no guarantee on the dif-
An individual DAEy is thus represented as a variable ficulty of the subproblems, it is mandatory to restrain the
length list of time-ordered partial states, where eactessat ~ embedded planner (it could also be a time boundary).

a variable length list of atoms that are not known to be pair-  In the current implementation, the embedded planner
wisemut ex. In the following,7'(a) denotes the estimated  YAHSP is constrained with anaximal number of nodes
earliest starting time of a given atomT" = {T'(a) # Ola € that it is allowed to expand for solving any of the subprob-
A} the set of all such starting timeA(s) = maz.esT(a) lems. The actual boundary has been determined by a two-
the estimated earliest starting time of a given stateor any steps process: First, while evaluating the initial popatat
atoma, M (a) denotes the set of atoms which arat ex a very large number of nodes is allowed (e.g. 100000); The
with a, according to the approximation based on fite boundary is then chosen as the median of the actual number
heuristic function. of nodes that have been used whenever a solution has been
found during these evaluations of the initial population.
Fitness Computation The embedded planner returssly, the solution of the
When addressing the planning tak= (4,0, I, G), the current subproblem, and the number of search steps (nodes,

fitness of a state decompositidh = (s;)icio.n with in the case of .YA.HSP)’dO"e that was needed to ﬁn.d it
so = I and sy, = G) ig computed(sbz/ ec[g'lli;g (,Sm o unless it fails within the boundaty,, ... and returns a failure.

bedded planner to successively solve planning ta3ks: In the latter case, the fitness is set according to line 7:
(A,0, s;,5i41). But two different situations should be dis- It aims at m|n|m|Z|r)g't'he syntactic dlstandest(cs, G) be—'
tinguished here, depending on whether the embedded p|an_tween the current initial states and the final goal, that is
ner fails on one of the subproblems (the decomposition is also the last current complete_ state that_has been reached.
then termedinfeasiblg, or not. A first design decision has ~However, because the syntactic distance is by no way an ac-
been that any unfeasible individual will get a worse fitness Curate indicator of the actual remaining difficulty, the éss
than any feasible one. Secondly, there must be some fitness@/S0 takes into account the numbeof usefulintermediate
gradient, towards feasibility for unfeasible individuadsd states, i.e. those mte'rmedlate states that require a nptyem
towards optimal plan quality for feasible ones. plan to be reached (line 8). _

The pseudo-code for the computation of the fitness is When the individual is feasible (all subprob!ems are
given in Algorithm 1. The main loop (lines 3-12) processes Solved by the embedded planner), a compression routine
the intermediate states sequentially by calling the eméedd 1S Useéd to compress all subplans (line 13), and the fitness
planner on the corresponding planning subproblems (line 5) 1S t_)asmally the_ total quality) .of the resulting global plan.
The initial state is the current state, computed by actually ~ ThiS compression is made with a standard polynomial post-
running the solution plan of the previous subproblem (line Parallelization algorithm for temporal planning, or a siep
11); indeed, remember thais only a partial state, whereas ~ Plan concatenation for sequential planning. However, as in
an initial state has to be complete. The goal is the currently the unfeasible case, it was necessary to penalize the indi-
processed partial state The last argumerdt,,... is a bound- vidual by the amount ofiselessntermediate states, in or-

ary that is planner-dependent: Its aim is to restrict théexp gﬁirofala\t/gri(rjn li‘gcgfsefzgg/"blsouat:brgglr(tar:'r?énl])?/r%e?] :I?zcir?gdaﬁd_

1Several atoms are mutually exclusive when there does not ex- Problems with the cumulated number of search st -
ist any plan that, when applied to the initial state, yields a state tually used by the embedded planner, divided by the prod-
containing them all. uct of the longest sequence of states allowgg, and the



Algorithm 2 crossover(Ing,Inds) // recombination operator Algorithm 3 addGoal(Ind) /I mutation operator

1: s, «+ IU(Ind;) ind; = (s;)1<i<n Require: r . /I neighborhood radius
2:t, «+ IU(Indy) I Indy = (t:)1<i<m %1 J= g([l, mln(length(lnd),Iaﬁt_Reatih%d(tlnd))]) g
- LS — INserts betweens; ands; 1
i I Fret (S FVSPYEE oyt
' YT Rart o on 4: Ay — {a € A| T(a) € neighbourhoot, r)}
5: Am — {} /I set of non pairwise mutex atoms
6: while A; # {} do
boundaryb,, .., leading to the formula of line 14. ; Z:EX:)U {a}
The comparison between any 2 individuals assumes thata g- Ay — A\ ({a} U M(a))
feasible individual should always be preferred to an infeas 10: N — IU([1, #A.,]) Il goal length
ble one. Two feasible individuals are compared accordingto 11: repeat
the value returned line 14 while two unfeasible individuals 12: a— IU(An) /1 uniform choice inA,,
are compared according to the value returned on line 7. 13: s — sU{a} I add tos
14: Am — A\ {a} Il remove fromA,,
ot 15: until #s =N
Variation Operators 16: insert(Inds, j) Il inserts after goal j

Variation operators modify the individuals in order to ex- 17: return Ind
plore the search space. On the one hand, these operators
should ensure thergodicity of the sea(ch: Any point of _ Algorithm 4 addAtom(ind) /T mutation operator
the search space must be reachable with non-zero probabll-R — T relai babili h ad
ity from any other point using a finite number of applications qul:)lrri{llplg’ epcfl mrifn gé'xetﬁzfn da; |ggf;;§c%e?j??n%§i3¢ an atom
of variation operators. On the other hand, small modifica- : if TU([0 ’1]) < gpc th’en Il atom change
tions should be favored otherwise the evolutionary process . > . U (In"a”[%']‘g'”d)
is close to a random walk. :

. . . . : b W{be M T(b) = A(Ind[k]) A €

The crossoveroperator, as described in Algorithm 2, is — ud (@) | T() (Ind[k]) A B

. ; . (Indk] \ {a}),b € M(c)})
the basic 1-point crossover for variable length representa s Ind[k] — (Ind[k] \ {a}) U {b}
tions: In order to recombinés;)i<i<, and (¢;)i<i<m, it 6: if U([0,1]) < pa then// atom addition
uniformly chooses some statesandt, (line 2), and crosses 7 a — WH{b € A| T = A(ndk]) A Fc €
the parts of both lists that maintain the chronology between Indk],b € M(c)})
atoms in a sequence of states, obtaining one offspring. 8: Ind[k] «— Ind[k] U {a}
Four differentmutation operators have been used. As- _9: return Ind

sume parent i$517 -+ - SlastReachegd- - - Sn)y Wheresiastreached
is the last state reached by the embedded planner Algorithm 5 Generatelndividual(N) /N = individual length
(StastReached = sn1 = G if the individual is feasible, — 757 {} I/ ordered list of timestamps
i.e. if all sub-problems have been solved). At the indi- 5. epeat
vidual level, mutatioraddGoal randomly adds a state af- 3: t — IU(T)
ter state; < min(n,lastReachedas described in Algo- 4: T — T\ {t}
rithm 3: This new intermediate state may contain several 5: Insert¢, D) /I maintainD ordered
atoms ofA, and several atoms of its neighborhood of ra-  6: until #D = N . o
diusr, wheret is a time betweem\ (s;) andA(s;+1), and 7t Ind — {} /1 start building the individual
neighborhood of radius the set of2 * r + 1 immediate 8: fort € D do - _ _
times before and after including t. Reciprocally, muta- 9: " Y " I start b‘/’/'ld'ng theh'mermed'ate goal
tion delGoal removes state;, with i uniformly chosen in ﬂ: t < {a € A|T(a) =t} /latoms that can appeariat

- . : n — IU([1, #A4:]) /I number of atoms
[1,min(n, lastReached- 1)]. At the state level, mutation 75! while n £ 0 A Ay # {} do
addAtom changes or adds (or both) one random atom in q3. a — IU(A,) // uniform choice inA,
each state; (i € [1, min(n,lastReached- 1)]) as described 14- s— sU{a} // add tos
in Algorithm 4, and mutatiordelAtom removes one uni- 15: Ay — A\ ({a} U M(a)) /I remove all mutex
formly chosen atom from statg, with ¢ uniformly chosen 16: nen-—1
in [1, min(n, lastReached- 1)]. 17: Ind— Ind+ {s} // addition to the end of the sequence

18: return Ind

Initialization of the Population

The pseudo-code for the initialization is given in Algonth

5: First, the number of states is uniformly drawn between
1 and the number of estimated earliest possible start times
(algorithm 6 line 6); For every chosen time, the number .
of atoms per state is uniformly chosen between 1 and the Evolutionary Loop

number of atoms of the corresponding restriction (line 11). The first step of Algorithm 6 is the computation of the earli-
Atoms are then chosen one by one, uniformly in the allowed est start time for each atome A estimated with the given

set of atoms, and added to the individual if noit ex with
any other atom already there (lines 12 to 16).



Algorithm 6 DAEX(popSize, OffSpringSize, MaxGen, MaxChddcross
Pmut, WaddGoat WdelGoah WaddAtom Wdelatom, Bmax, Imaxs 7'y De, pa)
Require: planneri // embedded planner and heuristic function
1: forall a € Ado
: T(a) < h(a)
3T —{T(a)#0]|ac A}
4: pop— {}
5: repeat
6: pop«— popU {GeneratelndividualU ([1, #7)})
7
8
9

/l compute earliest start time
// start times set
/I empty population

: until #pop = popSize

: repeat
: offspring«— {}
10: repeat
11: Ind, « TU(pop)
12: if TU([0, 1]) < perossthen
13: Ind; « IU(pop)
14: Newind« crossover(Ing,Ind,)
15: else
16: Newind« Ind;
17: if IU([0, 1]) < pmu then
18: f « IUueightedaddGoal, addAtom, delGoal, delAtom,
WaddGoal WdelGoab WaddAtom WdelAtom)
19: Newind«— APPLY(f, Newind)
20: offspring— offspringu {Newind}
21: until #offspring = OffSpringSize
22: for all Ind € popuU offspringdo
23: Evaluate(Ind, planner)
24: pop«< SurvivalSelection(pop offspring)

25: until #gen> MaxGen OR nolmprovementSince(MaxChgt)
26: return Evaluate(pop.Bestindividual, planner).Sol

heuristic. The sef” which gathers all potential start times
will be used later in a mutation operator. The initial popu-
lation is then set up by simply repeating calling the Gener-
atelndividual function up to the desired size. Then comes th
main evolution loop (line 8). The offspring set is populated
with individuals from the population of the previous genera
tion either as is or as the result of a crossover between two in
dividuals and/or as the result of a mutation. The mutation is
chosen non-uniformally (according to a weight) among four
operators. All individuals are then evaluated before being
submitted to the survival selection, which selects the f@pu
tion of the next generation from the parents+offspringg(lin
24). The evolution stops either after a maximum number

tracks. In order to select test domains, we have chosen for
temporal planning tasks and planning with costs, all IPC6
domains that can be takled by YAHSP and several other do-
mains from previous IPC competitions for which we have
reference valués For STRIPS problems, test domains were
chosen according to their complexity as defined by (Helmert
2008), with the goal of having different types of complexity
The complete list of domains is given with the results in Ta-
ble 1: In total, 736 problems have been used.

Furthermore, the results of AEvansp have been com-
pared with those of the best state of the art planners: LAMA
(Richter, Helmert, and Westphal 2008), updated version,
LPG (Gerevini, Saetti, and Serina 2003a; 2003b), and TFD
(Eyerich, Mattniiller, and Rdger 2009), updated version
which, according to the authors, outperforms all state-of-
the-art temporal planning systems, plus of course the em-
bedded planner itself YAHSP (Vidal 2004).

Performance Measures

Experiments were done using a Intel(R) Xeon(R) CPU
X5355 2.66GHz computer with a 2Gb cache and a 16 Gb
RAM, running Linux. All algorithms are given at most 30
minutes of CPU time for each run on each problem instance.
Theircoverageis then measured by the number of instances
solved in each domain. The quality of the plans are evalu-
ated using IPC rules. For a given instaricéet Q7 be the
reference plan quality. The quality ratio for each planser i
defined byQ@;/Q;. Thequality score of a planner for do-
mainD is the sum over all instancesDfof the quality ratios
of this planner. The planner with the highest quality scere i
designated as the best performer on the domain. Note that
if a planner cannot find a plan for a given instance after 30
minutes, its quality ratio is set to O for this instance.
However, DEvansp and LPG are stochastic algorithms,
and no firm conclusion can be drawn from a single run.
Hence 11 independent runs have been performed on each
instance in order to assess their robustness. Tdwier-
ageper domain is defined as the total number of instances
that have been solved at least once. alierage coverage
of LPG and D:Eyansp for a given domairD is defined as

Ez—>01 wheren; is the number of successful runs (i.e.,
iim; >0

that found a plan) for instanceof D. The average cov-

of generations or when no improvement has been observed erage hence lies if0, 11], the higher the better. Finally,
since a given number of generations. Lastly one of the best the average quality of LPG and DA\Eyansp for domainD

individuals is evaluated to produce the best solution found

Experimental Results

DAEx? has been implemented within the Evolving Objects
framework, an open source, template-based, ANSI C++
evolutionary computation library. Experiments have been
conducted in order to assess the behavior aER over
different kinds of planning tasks: classical planning sk

cost-based planning (actions with costs), and simple tem-

poral planning tasks (actions with duration). IPC bench-

is defined as the suQrp over all solved instanced D of
© >_(run; solvedi) o~ Whereg; is the quality of the plan

J

found by runj — the closer to full coverage, the better.

DAEvyaHsP Settings

One identified weakness of EAs is the difficulty in tuning
their numerous parameters, as there exists no theoretical
guidelines to help the practitioner. Users generally rely o
their previous experience on similar problems, or use stan-
dard and expensive statistical methods, e.g. Design of Ex-

marks domains have been used, from the corresponding IPC periments (DOE) and Analysis of Variance (ANOVA). Ex-

2DAEyanse Will be available soon under CeCILL-C license
3http://eodev.sourceforge.net/

“Reference values are either the best results of all IPCs, or the
best values obtained with CPT (resp DAE1, DAE2).



perimental statistical procedures have been proposed (e.g Zeno-Time-Atoms: DAEX Zeno-Time-States: DAEX
Racing (Yuan and Gallagher 2004)), that build on standard
DOE and use the specificities of the EC domain to reduce
the amount of computations.

In order to tune A Ey, (Bibai et al. 2009) proposed a two
steps learning approach which involves choosing the prob-
ability and weights of each of the variation operators with
Racing, and then choosing which predicates will be used to
describe the intermediate goals with statistical analysis v = -
this paper, only the first step of (Bibai et al. 2009) approach LT s P LT e BT
has been used, over several domains of IPC benchmarks.
The best parameter set output by the Racing procedure has
be chosen as the common parameter configuration for all ex-
periments of this paper, and is described below.
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Figure 1: DznEyapsp Diversity onzeno si nple time.

X L. Fitness behavior on crewplanning 30 Fitness behavior on openstacks-time 30
However, the Racing procedure was limited to the param-
eters of the variation operators, and #eolution engine 1
had been fixed according to preliminary experiments: popu- 3 l
lation size is set to 100 and offspring size to 700, each par- N \
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ent generates exactly 7 offspring using variation opesator
The survival selection is deterministic tournamerdf size

5: 5 individuals are uniformly chosen in the set of 800 par- |
ents+offspring, and the best of those 5 is chosen to become §] "=, ‘ \
a parent of the next generation. Furhtermore, the same stop-
ping criterion has also been used for all experiments: After
a minimum number of 10 generations, evolution is stopped Figure 2: Fitness behavior of AEyaysp ONn crew
if no improvement of the best fitness in the population is pl anni ng 30 andopenst acks sinmple tine 30.
made during 50 generations, with a maximum of 1000 gen-

erations altogether. Finally, the parameters of the viariat - ;

operators, as determined by the initial Racing phase, are th Discussion
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evaluations evaluations

following: the probabilities of individual-level applitan The first clear results is that AEyausp Solves signifi-
of crossover and mutatiopdossandpmuy) are (0.2, 0.8) and - cantly more problems (92.53% of total) than YAHSP alone
the relative weights of the 4 mutation operatoisdicoal (88.86%), much more (91.25%) than LPG (82.50%) and

WdelGoab Waddatom Wdelaom) are (3,1,1,1). The neighborhood  TFD (75.83%) on simple temporal planning, much more
radius was set to 2, the longest sequence of states allowed(94_14%) than LPG (79.69%) on STRIPS planning, and lit-
lmas Was set to2 = #T', and the relative probabilities to  tle more than LAMA on STRIPS planning and cost-based

change or add an atomandp,) were set to (0.8, 0.5). planning. Then, BEyansp has the best quality score (see
last lines of Table 1) for all kinds of planning tasks. Fur-
Results thermore, D\Evansp more often finds (see Table 1) either
First column (resp. second column) of Table 1 shows for all the reference value (which may be optimal), or a value more
algorithms the best coveraggiaaner(resp. quality Qanney. than 90% of the reference value, and always finds a better
together with the average quality of LPG andByansp, plan quality than YAHSP alone (Table 1). Note that the qual-
and the average coverage ofByaysp (the average cover- ity score of YAHSP is improved at most byAEyaqsp ON
age of LPG is always equal to 11 and is therefore not pre- cost-based planning.
sented). Last column is the ratiqEne/Splanner The mean However, although the BEvansp planner has the best
values of those figures across test domains are also provided quality score over all tested domains (last lines of Table 1)
by domain category, and over all domains. LPG has the best ratio on STRIPS domains and simple tem-

Figure 1 displays boxplots for the average number of poral domains (last lines of the corresponding sub-takies o
states and atoms per state for the best decompositions ob-Table 1). We believe that this is due to the use of a com-
tained by DA\Eyaysp Onzeno si npl e ti me (the situa- mon parameter configuration for all experiments, and furthe
tion is similar on other domains). It shows that Byaysp work will investigate instance-specific parameter tuning.
builds larger decompositions with more atoms per state as Nevertheless, there does not exist any absolute best method
instances get harder — even though the settings are the sameEven in the case whereAEyansp (respectively LPG) ob-
for all instances. BEyansp thus seems to somehow grasp tains the best ratio value on a given type of problems, tisere i
instance difficulty. Figure 2 shows two typical examples of always at least one domain of this type where the other plan-
the fitness behavior along evolution onew pl anni ng ner performs better on all instances it could solve (se@tabl
30 andopenst acks sinple tinme 30. It highlights 1). Seeforinstance, thpegsol i t ai r e (DAEyansp plan-
the learning power of evolutionary computation for an un- ner) domain for temporal planning tasks, asidevat or
known problem structure, that seem very different between (LAMA planner) andpat hways (DAEvausp planner) do-
these two instances. mains for the other types of planning tasks.



Table 1: Quality and scaling of satisficing planners YAHSRMA, LPG, TFD and DxEyanysp across the test domains. In
columnDorrai n(x),  denotes the total number of problem instances. Columnsa2-2-5) display the coverage, i.e. number
of instances solved (and also, fonByansp, the average number of successful runs — the closer to 1%kette ) Columns 6-8

(or 7-10) show the quality score (and in parentheses, ®Esp, the average coverage, the closer to the quality score the
better). See text for the exact definitions. The values id boé the best values obtained on each type of planning tamst,(C
Temporal and STRIPS). Columns 10-12 (or 12-15) display dios LAY SCO® 5y aach domain (with means of those ratios

. Coverage
across the domain types).

Costs Domain-ipc6 Coverage Quality Quiality/ Total of solved problems
YAHSP LAMA DAEvyausp YAHSP LAMA DAEyausp YAHSP LAMA DAEvyausp

Woodworking (30) 20 30 2718.9 15.96 24.36 | 24.79 (24.3) 79.82% | 81.21% 91.81%

Pegsolitaire (30) 30 30 30/10.9 20.90 26.19 | 28.11(27.2) 69.66% | 87.31% 93.71%

Parcprinter (30) 28 22 28/11 16.87 11.94 | 27.25(17.0) 60.24% | 54.27% 97.33%

Openstacks (30) 30 30 30/11 8.52 20.73 | 19.45(18.2) 28.39% | 69.12% 64.85%

Transport (30) 30 30 30/11 16.73 26.40 | 24.99 (23.0) 55.77% | 88.00% 83.30%

Scanalyser (30) 27 30 27/11 13.68 25.88 | 21.85(20.9) 50.66% | 86.27% 80.92%

Elevator (30) 30 24 30/11 9.60 22.65 | 18.31(16.3) 32.00% | 94.36% 61.05%

Sokoban (30) 24 25 20/9.6 21.32 24.25 | 19.79 (19.3) 88.85% | 97.02% 98.96%

Total problems (240) 219 221 222 123.58 | 182.41 184.55 58.17% | 82.19% 83.99%

Temporal Domain Coverage Quality Quality/ Total of solved problems
YAHSP LPG TFD DAEvyausp YAHSP LPG TFD DAEvyauHsp YAHSP LPG TFD DAEvyaunsp
Crewplanning-ipc6 (30) 30 12 29 30/11 24.55 | 12.00(12.0) 28.76 | 29.90 (29.5) 81.82% 100% | 99.17% 99.68%
Elevator-ipc6 (30) 30 30 17 30/11 8.31 | 25.83(24.6)| 13.45 | 23.24(20.2) 27.70% | 86.12% | 79.11% 77.46%
Openstacks-ipc6 (30) 30 30 30 30/11 17.90 | 29.45 (27.6) 26.49 | 28.41(27.8) 59.66% | 98.15% | 88.30% 94.71%
Pegsolitaire-ipc6 (30) 30 30 28 30/11 27.25 | 29.74(28.4)| 26.78 | 30.00 (29.8) 90.83% | 99.14% | 95.63% 100%
Parcprinter-ipc6é (30) 15 20 15 22/10.1 10.98 | 19.36 (19.2) 10.27 | 14.60 (14.2) 73.23% | 96.82% | 68.49% 66.35%
Sokoban-ipc6 (30) 22 16 17 17/10.5 17.20 | 11.14 (11.1)| 12.74 | 15.60(15.3) 78.20% | 69.63% | 74.92% 91.78%
Rovers-ipc3 (20) 20 20 6 20/11 17.74 | 19.95 (19.8) 5.78 | 19.86(19.8) 88.69% | 99.75% | 96.39% 99.32%
Satellite-ipc3 (20) 20 20 20 20/11 6.33 | 20.00(19.8) | 12.55 | 16.86 (16.2) 31.64% 100% | 62.77% 84.28%
Zeno-ipc3 (20) 20 20 20 20/11 9.70 | 18.98(18.4) 11.62 | 17.50 (16.7) 48.49% | 94.92% | 58.09% 87.50%
Total problems (240) 217 | 198 | 182 219 139.96 186.46 | 148.44 195.97 64.47% | 93.84% | 80.32% 89.01%
STRIPS Domain Coverage Quality Quality/ Total of solved problems
YAHSP | LPG | LAMA DAEyansp YAHSP LPG LAMA DAEyansp YAHSP LPG LAMA DAEyansp

Airport-ipc4 (50) 20 | 46 37 44/9.8 19.47 | 42.37 (41.1)| 35.58 | 40.34 (38.9) 97.35% | 92.10% | 96.16% 91.69%
Psr small-ipc4 (50) 50 9 50 50/11 47.65 9.00 (9.0) 50.00 | 49.96 (49.9) 95.30% 100% 100% 99.91%
Satellite-ipc4 (36) 28 36 32 27/11 16.42 | 35.98(35.9)| 30.25 | 26.57(26.5) 58.66% | 99.95% | 94.54% 98.40%
Openstacks-ipc5 (30 30 23 30 30/10.8 27.98 | 22.43(22.3)| 28.55 | 29.97 (29.8) 93.28% | 97.52% | 95.16% 99.89%
Rovers-ipc3 (20) 20 20 20 20/11 17.74 | 19.93(19.9)| 19.33 | 19.80(19.7) 88.71% | 99.65% | 96.63% 99.02%
Zeno-ipc3 (20) 20 20 20 20/11 15.37 | 19.45 (19.6) 19.25 | 18.91 (18.5) 76.86% | 97.27% | 96.23% 94.54%
Freecell-ipc3 (20) 20 20 20 20/8.5 12,50 | 18.01(17.9)| 19.52 | 15.68(14.0) 62.52% | 90.05% | 97.62% 78.39%
Pathways-ipc5 (30) 30 30 29 30/11 25.57 | 29.37 (29.0) 26.78 | 29.47 (20.4) 85.25% | 97.91% | 92.34% 98.25%
Total problems (256) 218 | 204 238 241 182.72 196.555 | 229.26 230.70 82.24% | 96.81% | 96.09% 95.01%

Another conclusion we can draw from those results is recently proposed in (Newton et al. 2007). In aggregating
the robustness of EEyapsp. Its coverage robustness is as-  several steps, macros indirectly divide the state spacedy f
sessed by its very high average coverage (close to the max-tering better plan trajectories among all possible oneghaut
imum value 11): when an instance is solvable, almost all approach is much different fromAEy. Itis worth mention-
runs succeed. Regarding the quality robustness, the a&/erag ning also a successful space application, modeled with-time
quality of DAEyapsp is most of the times larger than 95%  lines and a multi-objective function, reported in (Cestalet
of the quality score, with however some outlier low values. 2008) and in which the MKSPOCK solver includes a clas-

sical genetic algorithm. But tough it is indeed a practiqgal a

Related Work plication of evolutionary computation to planning, the+ep
Addressing the planning problem with an evolutionary al- '€Sentation and operators used withiR¥POCK are very
gorithm, Genetic Planning, is not new but is usually done different from whatis done in BEx.
with a direct encoding of partial plans, i.e. individualpte LPG works by performing a stochastic local search, sim-
resent linear lists of actions, and is also usually retti¢o ilar to WalkSat, on planning graph subsets (Gerevini, §aett
classical planning like in (Westerberg and Levine 2001) or and Serina 2003b). In both LPG andaBy, the strat-
(Brié and Morignot 2005). A genetic algorithm for learning  egy consists in gradually improving plan trajectories gsin
macro-actions for arbitrary planners and domains has been a stochastic scheme. Other similarities are timestamping



atoms with an earliest time estimate, and mutual exclusion
constraints. However, there are fundamental differenees b
tween both approaches. Firstly, LPG is a self-contained
planner that performs a constructive method and reasons
on partial plans, whereasAEy is a meta-algorithm that
modifies intermediate states and relies on an externalrsolve
to generate partial plans. Furthermore, though it manipu-
lates several different plans by doing restarts, LPG is not a
population-based search algorithm, because there is no in-
teraction between the different “individuals”. The use of
timestamping is also very different in both approaches.

Plan optimization is also often performed by anytime
heuristic search algorithms, such as in LAMA; However, as
mentioned in (Richter, Thayer, and Ruml 2009), such algo-
rithms are often caught in unpromising parts of the search
space, thus being unable to really improve the plan. They
show that doing restarts in this kind of algorithms may be a
better strategy. In contrast, our approach is designedrimin
duce diversity in the exploration of the search space, while
taking benefit of the past exploration through the evolution
of the population.

Conclusion

This paper introduced BEy, an evolutionary metaheuris-
tic for satisficing planning. BEyx optimizes the decom-
position of a planning task into a sequence of intermediate

states that must be reached in turn by an embedded planner,

in order to find a plan of the best possible quality. Creat-
ing the initial population and evolving the individuals ffno
one population to the next through variation operators heav
ily relies on standard features of modern planners, such as
binary mutual exclusions and reachability heuristics, rin 0
der to build time-coherent mutex-free partial states. Expe

ments demonstrate that the performance of an encapsulated

planner can be greatly increased, both in terms of coverage
and solution quality, making it competitive with statetbe

art planners. Although we used a single planner (YAHSP)
in our experiments, future works will use different plarsyer
evaluating their behavior within BEy . A portfolio of plan-

ners could also be used to solve each subtask; A sequence of

solvers would then be recorded in the individuals. It is also
interesting to see that these results are obtained withrthe s
ple h; planning heuristic for the construction of individuals;
The use of more elaborate heuristics may be envisaged.
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Table 2: 6 runs au moins pourABEvansp @ comparer avec la table 1. Quality and scaling of satisfiplagners YAHSP,
LAMA, LPG, TFD and DAEyapsp across the test domains. In colubomai n(zx), = denotes the total number of problem
instances. Columns 2-4 (or 2-5) display the coverage, uenber of instances solved (and also, foxBansp, the average
number of successful runs — the closer to 11 the better). mwu6-8 (or 7-10) show the quality score (and in parentheses,
for DAEyansp, the average coverage, the closer to the quality score titerbeSee text for the exact definitions. The values
in bold are the best values obtained on each type of planasig(Cost, Temporal and STRIPS). Columns 10-12 (or 12-15)

display the ratio$udty Score 5y aach domain (with means of those ratios across the dogzes)t

Coverage
Costs Domain-ipc6 Coverage Quality Quality/ Total of solved problems
YAHSP LAMA DAEvaHsp YAHSP LAMA DAEyansp YAHSP LAMA DAEyansp

Woodworking (30) 20 30 21/10.8 15.96 24.36 | 20.35(19.6) 79.82% | 81.21% 96.90%

Pegsolitaire (30) 30 30 30/10.9 20.90 26.19 | 28.11(27.2) 69.66% | 87.31% 93.71%

Parcprinter (30) 28 22 28/11 16.87 11.94 | 27.25(17.0) 60.24% | 54.27% 97.33%

Openstacks (30) 30 30 30/11 8.52 20.73 | 19.45(18.2) 28.39% | 69.12% 64.85%

Transport (30) 30 30 30/11 16.73 26.40 | 24.99 (23.0) 55.77% | 88.00% 83.30%

Scanalyser (30) 27 30 27/11 13.68 25.88 | 21.85(20.9) 50.66% | 86.27% 80.92%

Elevator (30) 30 24 30/11 9.60 22.65 | 18.31(16.3) 32.00% | 94.36% 61.05%

Sokoban (30) 24 25 18/10.3 21.32 24.25 | 17.79 (17.4) 88.85% | 97.02% 98.83%

Total problems (240) 219 221 214 123.58 | 18241 178.1 58.17% | 82.19% 84.61%

Temporal Domain Coverage Quality Quiality/ Total of solved problems
YAHSP LPG TFD DAEvansp YAHSP LPG TFD DAEvansp YAHSP LPG TFD DAEvansp
Crewplanning-ipc6 (30) 30 12 29 30/11 24,55 | 12.00(12.0)| 28.76 | 29.90 (29.5) 81.82% 100% | 99.17% 99.68%
Elevator-ipc6 (30) 30 30 17 30/11 8.31 | 25.83(24.6) 13.45 | 23.24 (20.2) 27.70% | 86.12% | 79.11% 77.46%
Openstacks-ipc6 (30) 30 30 30 30/11 17.90 | 29.45(27.6) | 26.49 | 28.41(27.8) 59.66% | 98.15% | 88.30% 94.71%
Pegsolitaire-ipc6 (30) 30 30 28 30/11 27.25 | 29.74(28.4)| 26.78 | 30.00(29.8) 90.83% | 99.14% | 95.63% 100%
Parcprinter-ipcé (30) 15 20 15 20/10.8 10.98 | 19.36 (19.2)| 10.27 | 13.87 (13.6) 73.23% | 96.82% | 68.49% 69.35%
Sokoban-ipc6 (30) 22 16 17 16/11 17.20 | 11.14 (11.1) 12.74 | 14.68 (14.6) 78.20% | 69.63% | 74.92% 91.75%
Rovers-ipc3 (20) 20 20 6 20/11 17.74 | 19.95 (19.8) 5.78 | 19.86 (19.8) 88.69% | 99.75% | 96.39% 99.32%
Satellite-ipc3 (20) 20 20 20 20/11 6.33 | 20.00(19.8)| 12.55 | 16.86(16.2) 31.64% 100% | 62.77% 84.28%
Zeno-ipc3 (20) 20 20 20 20/11 9.70 | 18.98 (18.4) 11.62 | 17.50 (16.7) 48.49% | 94.92% | 58.09% 87.50%
Total problems (240) 217 198 | 182 216 139.96 186.46 | 148.44 194.32 64.47% | 93.84% | 80.32% 89.34%
STRIPS Domain Coverage Quality Quality/ Total of solved problems
YAHSP | LPG | LAMA DAEvansp YAHSP LPG LAMA DAEvansp YAHSP LPG LAMA DAEvansp

Airport-ipc4 (50) 20 46 37 43/10 19.47 | 42.37 (41.1) 35.58 | 39.38(37.9) 97.35% | 92.10% | 96.16% 91.58%
Psr small-ipc4 (50) 50 9 50 50/11 47.65 9.00 (9.0) 50.00 | 49.96 (49.9) 95.30% 100% 100% 99.91%
Satellite-ipc4 (36) 28 36 32 271711 16.42 | 35.98 (35.9) 30.25 | 26.57 (26.5) 58.66% | 99.95% | 94.54% 98.40%
Openstacks-ipc5 (30 30 23 30 30/10.8 27.98 | 22.43(22.3)| 28.55 | 29.97(29.8) 93.28% | 97.52% | 95.16% 99.89%
Rovers-ipc3 (20) 20 20 20 20/11 17.74 | 19.93 (19.9) 19.33 | 19.80 (19.7) 88.71% | 99.65% | 96.63% 99.02%
Zeno-ipc3 (20) 20 20 20 20/11 15.37 | 19.45(19.6) | 19.25 | 18.91(18.5) 76.86% | 97.27% | 96.23% 94.54%
Freecell-ipc3 (20) 20 20 20 15/10.3 12.50 | 18.01 (17.9) 19.52 | 12.53(11.4) 62.52% | 90.05% | 97.62% 83.53%
Pathways-ipc5 (30) 30 30 29 30/11 25.57 | 29.37(29.0)| 26.78 | 29.47 (20.4) 85.25% | 97.91% | 92.34% 98.25%
Total problems (256) 218 204 238 235 182.72 196.555 | 229.26 226.59 82.24% | 96.81% | 96.09% 95.64%

Yuan, B., and Gallagher, M. 2004. Statistical Racing Techniques
for Improved Empirical Evaluation of Evolutionary Algorithms.
In Proc. PPSN VII) 172-181.



