
HAL Id: inria-00456484
https://inria.hal.science/inria-00456484

Submitted on 15 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weaving Aspect Configurations for Managing System
Variability

Brice Morin, Olivier Barais, Jean-Marc Jézéquel

To cite this version:
Brice Morin, Olivier Barais, Jean-Marc Jézéquel. Weaving Aspect Configurations for Managing Sys-
tem Variability. 2nd International Workshop on Variability Modelling of Software-intensive Systems,
2008, Essen, Germany, Germany. �inria-00456484�

https://inria.hal.science/inria-00456484
https://hal.archives-ouvertes.fr

Weaving Aspect Configurations for Managing System Variability

Brice Morin, Olivier Barais1 and Jean-Marc Jézéquel1

IRISA Rennes - Equipe Projet INRIA Triskell
1Université de Rennes 1

Campus de Beaulieu
F-35 042 Rennes Cedex

E-mail:{bmorin | barais | jezequel}@irisa.fr

Abstract

Variability management is a key concern in the software
industry. It allows designers to rapidly propose applica-
tions that fit the environment and the user needs, with a cer-
tain Quality-of-Service level, by choosing adapted variants.
While Aspect-Oriented Programming has been introduced
for managing variability and complexity at the code level,
the Software Product-Line community highlights the needs
for variability in the earlier phases of the software lifecycle,
where a system is generally described by means of models.
In this paper, we propose a generic approach for weaving
flexible and reusable aspects at a model level. By extend-
ing our generic Aspect-Oriented Modeling approach with
variability, we can manage variability and complexity in the
early phases of the software lifecycle.

1 Introduction

Variability management is a key concern in the software
industry. It allows designers to rapidly propose a wide range
of applications by choosing adapted variants and options.
These customized systems will fit the environment and the
user needs, with a certain Quality-of-Service level. In or-
der to improve traceability, reliability and maintainability,
variability should be explicitly modeled.

The Aspect-Oriented Software Development (AOSD)
paradigm proposes to separate distinct concerns into differ-
ent aspectse.g., security, logging or persistency, and finally
compose them into the base system. It first appeared at the
code level [15] and has more recently gained attention in
the earlier steps of the software life-cycle [4, 5, 8, 17, 28]:
requirement, architecture, design, leading to the creation
of numerous ad-hoc Aspect-Oriented Modeling (AOM) ap-
proaches, and a dispersion of effort in their tooling, docu-

mentation and adoption.

In order to manage variability, recent works [1, 2, 3,
13, 23] discuss the use of Aspect-Oriented Programming
(AOP) for implementing Software Product Lines (SPL). At
the code level, AOP offers mechanisms to encapsulate (op-
tional) cross-cutting features. In contrast, with more tra-
ditional mechanisms like conditional compiling, these fea-
tures would be tangled and scattered across the program.

Meanwhile, the SPL community points out the needs for
managing the variability during the entire software lifecy-
cle [22, 33], this in order to trace variability from require-
ments to implementation and even execution. The Model-
Driven Engineering (MDE) paradigm proposes to consider
models as first class entities during the entire life cycle. For
example, requirement models [7] represent the user needs,
class and component diagrams specify the structure of the
system, scenarios and state machines specify its behavior,
and runtime models [6] monitor the running system. MDE
techniques allow to automate the transition between the dif-
ferent steps of the life cycle. All these models conform to
different metamodels, and are generally described by Do-
main Specific Modeling Languages (DSML), or metamod-
els.

We argue that Aspect-Oriented Modeling (AOM) can
help users to design optional and variant parts of a model,
like AOP does at the code level. By weaving incremen-
tally aspects into a base model it is possible to construct
a final product step-by-step. But, to be able to weave
aspect into different kinds of model, users have to adapt
to numerous ad-hoc AOM approaches. Indeed, AOM ap-
proaches [4, 5, 8, 17, 28] often propose domain-specific
mechanisms to represent aspects. We tackle this issue
by automatically generating domain-specific AOM frame-
works that all rely on the same concepts. Thus, designers
do not need to adapt to a new AOM framework for all the
domain metamodels they have to deal with. Weaving aspect

represents the first variability dimension of our approach.
Moreover, AOM approaches are often said flexible and

reusable, but actually not enough. Using these approaches,
it is often impossible to weave an aspect into a base model
if it does not exactly propose what the aspect expects. Addi-
tionnaly, when it is possible to weave an aspect into the base
model, it is always composed the same way. Based on pre-
vious work [18], we propose to integrate variability mecha-
nisms into aspects themselves to tackle the issue of the lim-
ited reusability of aspects. These mechanisms turn standard
aspects into configurable aspects, more reusable and flexi-
ble. Aspect configuration represents the second variability
dimension of our approach.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our generic approach for aspect weaving.
Section 3 details our 2-dimension approach for managing
variability of software systems. Finally, Section 4 presents
related works and Section 5 concludes and discusses future
works.

2 Our Generic Model-Driven Approach for
Aspect Weaving

This section presents our generic model-driven approach
for aspect weaving. It briefly introduces the notion of meta-
modeling, with a simple running example, and introduces
the notion of Aspect-Orientation. Then, it details our ap-
proach for automatically generating Aspect-Oriented Mod-
eling frameworks, for any domain metamodel.

2.1 Metamodeling, AOP and AOM

Metamodeling A domain metamodel describes all the
concepts of a particular domain of interest, and their re-
lations. To illustrate our approach, we introduce a simple
domain metamodelMM for state machines, illustrated in
Figure 1. A region contains several vertices and transitions,
that are the main elements of a state machine. Note that the
Vertex meta-class is abstract and cannot be instantiated
in a model, but is extended by two concrete meta-classes:
PseudoState andState. A transition must declare a
source and a target vertex.

This metamodel allows designers to represent state ma-
chines, with any number of transitions and vertices, in any
configuration. Then, it is possible to simulate models or
generate other artifacts, using Model-Driven Engineering
techniques and dedicated tools like Kermeta [26], an open-
source environment1 for metamodel engineering. There ex-
ists metamodels for state machines, components, scenarios,
class diagrams, etc.

1available at www.kermeta.org/download

Figure 1. A Domain-Metamodel (MM)

Aspect-Oriented Programming (AOP) The Aspect-
Oriented paradigm first appeared at the code level [15] and
has been popularized with the AspectJ [14] programming
language. AspectJ extends Java with the following con-
cepts:

1. Join Point: point of interest in a programe.g., method
execution/call, attribute reading/writing.

2. Pointcut: it defines a set of join points where the as-
pect will intervenee.g., all the calls to a given method.

3. Advice: it specifies the additional behavior that will
modify the base program. It is executed in all the join
points identified by a pointcut.

AOP allows users to encapsulate cross-cutting concerns
into advice, and implicitly weave them into a base program,
in all the join points identified by a pointcut. AOP signifi-
cantly reduces the complexity of softwares a the code-level,
by limiting the scattered and tangled code.

Aspect-Oriented Modeling (AOM) At a model level,
AOM approaches [5, 10, 18, 29, 32] propose to encapsu-
late cross-cutting and reusable concerns. AOM concepts are
comparable to AOP ones. But, as opposed to AOP, AOM
mainly focus on the composition of structural and behav-
ioral models, in the early phases of the software lifecycle,
before implementation.

Template models represent what the aspect expects from
the base modeli.e., the model elements needed to be able
to weave the aspect into the base model, and their relations.
Template do not need to be consistent models, for example,
it can only be composed of a single operation, without rep-
resenting its containing class, that is normally mandatory.
Templates could be assimilated as pointcuts.

Then, aspect are woven into a base model. This is simi-
lar to advice weaving in AOP. On the one hand, symmet-
ric AOM approaches [5, 10, 29, 32], that do not differ-
entiate aspect and base, propose to systematically merge

all the corresponding concepts, and specify how to intro-
duce non-shared ones. On the other hand, asymmetric ap-
proaches [18, 24, 30], that clearly differentiate aspect and
base, propose to specify how to integrate the aspect. Gen-
erally, symmetric composition is a better way to compose
homogeneous views of a given system, using a partially au-
tomated procedure, whereas asymmetric composition is a
better way to introduce new concerns into models, and of-
ten offers better reusability, but the composition protocol
must be explicited.

In the remainder of this paper, our running example fo-
cuses on state machines. However, our asymmetric ap-
proach is completely independent from any domain meta-
model.

2.2 Generating the pointcut language

The previously introduced domain metamodel allows
users to design consistent state machines, but it is too re-
strictive for designing aspects. For example, a template
model might only be composed of a region with a vertex
(whatever its type), a final state and a transition that links
the vertex to the final state. We may also want the vertex
to be an indirect source of the transitioni.e., it is possible
to fire the (dashed) transition from vertex, directly or not.
This model does not conform toMM because theVertex
meta-class cannot be instantiated andMM does not con-
sider the semantic notion of indirect source. This template
model is illustrated in Figure 2. Moreover, we want to be
able to declare some elements as rolesi.e., elements that
must be substituted by actual base model elements, whereas
other elements can be seen as structural constraints that the
pattern must respect. For example, if we want to modify
all thequitTransitionsfrom the region, we will declare the
transition and the region as roles to be able to manipulate
them. The other elements are just structural constrains: the
transition must link a vertex to a final state.

Figure 2. A Simple Template Model

In order to be able to describe more easily target
models, we construct on demand a more flexible meta-
model [27]MM’ , using a model transformation written in
Kermeta [26].MM’ is equivalent toMM , except that:

1. No invariant or pre-condition is defined inMM’ ;

2. All features of all meta-classes inMM’ are optional;

3. MM’ has no abstract element.

This model transformation is generic because instead of
manipulating the domain elements (Vertex, Transition, . . .),
it manipulates higher-level concepts provided by ECore,
MOF or EMOF for describing metamodels. Consequently,
MM’ can be generated for any input metamodelMM . Fig-
ure 3 illustrates the result of this transformation appliedto
the metamodel for state machines (Figure 1).

Figure 3. The Unconstrained Metamodel MM’

In MM’ (Figure 3), we can see that a transition can de-
clare no source/target vertex and can be instanciated without
its containing region. Moreover, if a user wants to match a
vertex, whatever its real type, he can now instantiate the
Vertex meta-class. Additionally, we introduce two se-
mantic associations (allTargets andallSources) to
represent states (in)directly after or before a given transi-
tion. We also weave these associations as derived proper-
ties intoMM to be able to compute all the state before/after
a transition. Note that weaving derived properties does not
change the metamodel, it only adds semantic.

In order to ease the detection of model elements that can
match roles, we use a Prolog-based pattern matching en-
gine [27], implemented in Kermeta [26]. The domain meta-
model is automatically mapped onto a Prolog knowledge
base. Then, patterns with roles are transformed into a Pro-
log queries over this knowledge base. Finally, the Prolog re-
sults are converted back into a Kermeta data-structure. This
process is totally hidden from the user who only designs
model snippets like the one presented in Figure 2.

2.3 Generating Adaptations

The second step of an Aspect-Oriented approach is the
weaving process. It consists in composing aspects into the
base model, at the places identified by the template model.
The key concept is the adapter [18, 19], that describes the
aspect structure (what will be woven), a template model
with roles(where it will be woven) and a composition pro-
tocol (how it will be woven). The composition protocol is

described by adaptations, that are weaving operations ma-
nipulating the concepts of the domain. For example, in the
context of class diagrams, an adaptation can add a super
class to another class, introduce methods or attributes in a
class, etc. These concepts are structured in the adaptation
metamodel illustrated in the top-part of Figure 4.

Figure 4. A Framework for Aspect Weaving

This metamodel is composed of three parts:i) a generic
part describing the concept of adapter, adaptations and as-
pect (structure and target),ii) the unconstrained metamodel
MM’ that is linked to the generic part by introducing the
meta-classPObject as the root element ofMM’ , andiii)
domain specific adaptations extending the generic meta-
classAdaptation (bottom-part of Figure 4).

We propose a systematic way to generate
domain-specific adaptations. For each meta-classes
MyMetaClass of a metamodelMM , we generate four
adaptations:

1. SetPropertiesOfMyMetaClass: this adaptation al-
lows user to set or update (addition) any property of
MyMetaClass. For example,SetPropertiesOfRe-
gion allows designers to add states and transitions in a
region.

2. UnsetPropertiesOfMyMetaClass: this adaptation al-
lows user to unset or update (removal) any property of
MyMetaClass. Similarly, UnsetPropertiesOfRe-
gion allows designers to remove states and transitions
in a region.

3. CreateMyMetaClass: this adaptation allows user to
create a new instance ofMyMetaClass. It is gen-
erated only ifMyMetaClass is concrete. For ex-
ample,CreateStateallows designers to create a new
state, that can be manipulated in the remainder of the
composition protocol.

4. CloneMyMetaClass: this adaptation allows user to
clone an existing instance ofMyMetaClass. It is
generated only ifMyMetaClass is concrete. Simi-
larly, CloneStateallows designers to clone an existing,
and manipulate it.

The generation of these adaptations is also generic and
can be done for any metamodelMM : we navigate the meta-
classes and their properties and use Kermeta Emitter Tem-
plate (KET) to generate all the above adaptations, specific
to a domain metamodel. In our approach, we use KET to
generate Kermeta files, but we can generate any kind of
files such as Java code or textual documentation, by defining
template. A template describes the structure of the output
files (Kermeta, Java, text, etc), and the navigation is written
in Kermeta, encapsulated in specific marks2.

All these generated adaptations can manipulate elements
from the template model or from the aspect structurei.e.,
composition protocols written with these adaptations are to-
tally independent from any base model, and can be reused
in different contexts.

This section briefly exposed the principles of our generic
model driven approach for aspect weaving. Our approach
can be customized for any domain metamodel, to obtain
a domain specific AO framework, through two extension
points (Figure 4):

1. PObject: represents an abstraction of any (uncon-
strained) domain metamodel that allows us to describe
the adaptation metamodel with no domain concepts.
When we specialize the framework for a given do-
main, PObject is automatically introduced as the
root meta-class of all the element ofMM’ , with a
model transformation written in Kermeta [26].

2. Adaptation: represents an abstraction of any domain-
specific weaving operation. All the domain-specific
adaptations must extend this meta-class, declare some
attributes, and implement theexecutemethod that de-
scribes a composition between some model elements.
We automatically generate some basic adaptations, but
designers can create some additional adaptations that
extendsAdaptation, or modify existing ones.

3 Two-Dimension Variability Management

In the previous section we present our approach for gen-
erating Aspect-Oriented Modeling frameworks, for any do-
main with a well defined metamodel. In this section, we ex-
tend these AOM frameworks and describe our 2-dimension
approach for managing the variability of software systems.

2similarly to Java code encapsulated in JSP or JET

The main idea is that each aspect is considered as a vari-
ability dimensioni.e., aspects integrate variability mecha-
nisms to make them configurable and reusable in different
contexts. Then, different configurations of an aspect can be
woven (or not) in order to propose different variants of the
system.

3.1 Variability Mechanisms for Aspects

The variability mechanisms we propose to integrate in
the aspects are inspired by SPL approaches [31, 34]3:

• Alternatives/Variants: specify that there exist sev-
eral possible ways to compose the aspect (composi-
tion variability) and/or several different places where
to compose it (targeting variability). All the variants
are exclusivei.e., we can only choose exactly one vari-
ant per alternative.

• Options: specify that some adaptations may be exe-
cuted or not, and that some elements from the template
model are not mandatoryi.e., they may be present or
not in the base model where we want to weave the as-
pect.

• Constraints: control the variability mechanisms and
limit the number of derived aspects to sensible ones.
Without constraints, the number of possible combina-
tions may become huge, and most of them would not
be sensible. For example, we can easily imagine that
some options or variants require (dependency) or ex-
clude (mutual exclusion) some others.

We propose variability both for the composition protocol
and for the targeting. For composition variability, we only
need to apply the above concepts on adaptations, and inte-
grate them in the adaptation metamodel. For the targeting
variability, MM’ does not allow designers to propose the
full possible range of variability in their snippets because it
is not possible to propose variants on certain features that
have for example a [0..1] cardinality. For example, we can
imagine that we want to instantiate a transition that targets
either a pseudo-state or a state, and not simply a vertex,
because the composition protocol uses adaptations that are
specific to pseudo-state or state, in two distinct variants of
an alternative. In order to propose variability in the target
model, we propose to generate the maximum metamodel
MM” that is equivalent toMM’ , except that all the features
can be multiplei.e., all the upper bound are set to * (possi-
bly infinite).

In order to allow composition and target variability, we
extend the adaptation metamodel (Figure 4) presented in
Section 2 with the following key concepts (see Figure 5):

3see http://www.sei.cmu.edu/productlines/ and http://www.splc.net

• Derivable Adapter: a derivable adapter is an adapter
that contains variabilityi.e., alternatives, options and
constraints. It proposes both composition and targeting
variability.

• Adapter Element: an adapter element is an element
that can be optional or involved in an alternative:
adaptation, target, alternative, conjunction (group of
adapter elements). It is introduced as a super meta-
class for all these elements.

• Alternative : an alternative describes several possible
variants that are mutually exclusive. Each variant is an
adapter element.

• Constraints: a constraint describes either a depen-
dency or a mutual exclusion between some adapter el-
ements. A dependency specifies that a source element
requires some other elements, and an exclusion spec-
ifies that some elements are mutually exclusivei.e.,
two elements cannot be present at the same time, af-
ter derivation.

• Derivation: a derivation allows designers to derive a
derivable adapteri.e., to fix variability. It allows de-
signers to select options, and choose one variant, for
each alternative.

• Conjunction: a conjunction is a block of dependent
adapter elements. It allows to define optional blocks
and variant blocks in an alternative.

To illustrate some of the variability mechanisms, the gen-
erated adaptations and the target model specific to state ma-
chines, we will describe an aspect that adds aLog state be-
fore reaching the final statee.g., for logging errors. Op-
tionally, we propose to come back to a previous vertex after
logging an error, instead of reaching the final state. The tar-
get model and the aspect structure are the model snippets
shown in Figure 6.

In the target model, the containing region, the final state,
the transition that targets the final state are mandatoryi.e.,
they must be matched by actual base model elements before
weaving the aspect into a base model. An option specify
that we can target any vertex before the transition. All the
elements of the target model are associated to roles, because
we want these elements to be bound to base model elements,
in order to modify the base model.

Now, we need to define the composition protocol that
will describe how the structure will be woven into any base
model. Note that the composition protocol is totally defined
with elements from the target model and from the aspect
structurei.e., it does not reference elements from any base
model. This protocol is illustrated in Figure 7.

The composition protocol describes the operations
needed for integrating the aspect. In this example, all the

Figure 5. Extended Adaptation Metamodel

Figure 6. Target Model and Structure

adaptations areSet* adaptations because the aspect only
adds model elements that exist in the aspect structure.

The concrete syntax we propose for adaptations is very
basic. For example, the first adaptations (Line01) is called
introduceStruct and its real type isSetRegion. Its first
parameter is the region to set (Line01-a), and all the follow-
ing parameters refer to the element we want to introduce in
the targeted region: some subvertices (Line01-b) and tran-
sitions (Line01-c). The three following adaptations aims at
connecting the transitions (Lines2 and3) and renaming the
Log state (Line04) to fit its context. Finally, we declare an
optional conjunction (Lines5) that aims at introducing and
connecting thebackTransition.

Note that MDE tools like Sintaks4 [25] can easily bridge
abstract syntax (metamodel) and concrete syntax (text), by
parsing texts into models, and transforming models into
texts, according to rules defined in a Sintaks model.

4available at http://www.kermeta.org/sintaks

Figure 7. Composition Protocol

3.2 Weaving Aspect Configurations

The previous sub-section details the first variability di-
mensioni.e., the integration of variability mechanisms into
aspects. This sub-section details the second variability di-
mension: the configuration, or derivation of aspects and the
weaving process.

The aspect presented in the previous sub-section (Fig-
ures 6 and 7) can be configured in two different ways, and
consequently there are three possible variants:

• Variant 1 : Do not weave the aspect

• Variant 2 : Just add theLogstate

• Variant 3 : Variant 2, and we add a transition back to a
previous state

If we consider several aspects, we can easily propose
many different variants of the system by configuring aspects
and weaving them, or not, into the base system. The deriva-
tion process can be summarized as follows:

1. Constraints: we check that the derivationd provided
by the user respects all the constraints of the deriv-
able adapter. We just call thecheck(d)method for all
the constraints of the adapter, that is implemented di-
rectly in the adaptation metamodel (seeConstraint
in Figure 5), with Kermeta. If one constraint is not
reached, the framework raises an exception telling the
user that his derivation is not well-formed.

2. Adaptations: the composition protocol (adaptations) of
the derived adapter is built in a positive wayi.e., se-
lected options and variants are added into the derived
adapter.

3. Target Model: the target model is (un)built in a nega-
tive way i.e., the model elements that are not selected

(non-chosen options and variants) are deleted from the
target model.

4. Post-condition: after derivation, the target model must
conform toMM’ , and not only toMM” . Otherwise it
means that a cardinality is over the maximum bounds,
and consequently the target model cannot be matched
by any model snippet.

When an aspect is successfully configured, it can be wo-
ven into a base model, following this process:

1. Binding phase: the user provides a binding that links
target model elements to actual base model elements.
Note that bindings can automatically be found/checked
using the pattern matching framework of Ramoset
al. [27], to guide the user.

2. Weaving phase: for each binding selected by the user,
we apply the composition protocol. In the adaptations,
the target model elements are substituted with their
corresponding actual base model elements, according
to the binding. Between each binding, some elements
of the aspect structure, or cloned/created elements
(Clone/Create* adaptations), can be cloned, or re-
main unchanged. This choice depends on whether the
user wants to use the same instances or introduce new
instances, for each binding.

3. Post-condition : after composition, the modified base
model must conform toMM , and not only toMM’
or MM” . Otherwise it would mean that the composi-
tion protocol violates some constraints (e.g., it removes
mandatory features), or adds too many elements. In
this case, we roll back to the initial base model.

The process can be applied several times and is po-
tentially infinite and/or nondeterministic: if we con-
sider that the process has been applied (n-1) times,
we denote resp. configurationn, bindingn, weavingn,
resp. the aspect configuration, the chosen binding
and the result after weaving, for the n-th time. We
have: bindingn=f(configurationn, weavingn−1) andweav-
ingn=g(configurationn, bindingn)=h(configurationn, weav-
ingn−1). The configuration of an aspect may change the
target model, and the previous weaving modify the base
model, and potentially adds/removes possible targets, so the
binding is dependent from the configuration and the previ-
ous weaving. The weaving depends on the aspect config-
uration (the selected adaptations) and on the selected bind-
ing, and consequently, it depends on the previous weaving.
For this reason, the process is not fully automated: the user
configures the aspect, then he chooses the binding and the
composition protocol is applied. Next, he can reconfigure
the aspect, choose another binding, etc.

Figure 8. Basic behavior of a phone

Figure 8 illustrates a base model representing the behav-
ior of a simple phone.

Figure 9 illustrates the composition of the aspect when
no option is selected. In this case, we only introduce aLog
state before reaching the final state.

Figure 9. Behavior of a phone with error log-
ging

Finally, Figure 10 illustrates the composition of the as-
pect when the option is selected. In this case, we also in-
troduce aLog state before reaching the final state. Addi-
tionally, we introduce a roll-back transition that targetsa
previous state.

Figure 10. Behavior of a phone with error log-
ging and roll-back

Note that is possible to combine different combination
of the aspect to exactly fit the user needs.

4 Related Works

Our approach extends the SMARTADAPTERS ap-
proach [18, 19] byi) generalizing its concepts to any do-
main metamodel [24] (not only Java programs and UML

class diagrams), andii) representing targets as model snip-
pets [27], instead of declaring targets and constraints one
by one. In [18], we introduce variability mechanisms in the
base SMARTADAPTERSapproach for class diagrams. In our
generic approach, we also integrate these mechanisms (Sec-
tion 3), in a slightly different way. Thus, we can propose
configurable aspect, and weave them into models conform-
ing to any domain metamodel.

Recent works discuss the use of Aspect-Oriented Pro-
gramming (AOP) for managing variability at the code level,
and implementing Software Product Lines (SPL). Some of
these approaches advocate AOP for managing optional and
variants cross-cutting features [2], or extracting and evolv-
ing SPL from a single application [1], and propose different
variants, while some approaches like [13], insist on limi-
tations and drawbacks of AspectJ for SPL implementation:
code readability and maintainability, pointcut fragilitymak-
ing aspect weaving difficult. Moreover they point out that
most of the mechanisms specific to AspectJ are not use-
ful in most of the cases. Meziniet al. [23] point out the
limitations of feature-oriented approach and AspectJ, espe-
cially its pointcut mechanism, and propose to use CaesarJ
for resolving these problems. AOP is an interesting but still
immature technology for managing variability. The com-
bination of Aspect-Oriented Modeling (AOM) and Model-
Driven Engineering (MDE) makes our approach more ab-
stract and independent from problems inherent to the source
code level. Unlike AspectJ pointcuts, our target models
are totally independent from any base models and our as-
pect can be reused in different contexts, by binding target
model elements to actual base model elements. There is
no need for modifying the target model (pointcut), the as-
pect structure or the composition protocol (advice). Finally,
AOP approaches for managing variability only propose one
variability dimension and do not propose variability into the
aspect itself, as we do.

In [21], Loughranet al. propose an approach that com-
bines notions from AOP, frame technology and Feature-
Oriented Domain Analysis (FODA). AOP aims at modular-
izing cross-cutting concerns and frame technology provide
some means to configure aspects and make them context-
independent and thus, more reusable. Using our approach,
designers can also define context independent aspects using
targets and adaptations that only reference elements from
the aspect template or structure, and not directly base model
elements. They use the variability mechanisms (alternative
and options) of FODA models to represent the whole sys-
teme.g., a generic cache. Then, they can delineate framed
aspects and implement them in a reusable way using the
frame technology. Frame is a fine mechanism to parameter-
ize for example, the name and the type of attribute, method,
parameters. In our approach, we use alternatives, options
and constraints inside the aspect itself, for managing the

different possible configurations. Frames are similar to our
target model: both framed parameter and target model el-
ements are substituted with actual elements from the base
program/model, using bindings. Framed-aspect do not re-
ally propose internal variability, only configuration. Finally,
both approach propose two variability dimensions, but they
mainly focus on the system variability while we mainly fo-
cus on the aspect variability.

In [30], Schauerhuberet al. propose a common refer-
ence architecture for Aspect-Oriented Modeling. The con-
cepts they identify are quite similar to the ones identified by
Lahire et al. in the SMARTADAPTERS approach [18, 19],
that we leverage to generalize the concepts of AOM to any
domain metamodel. The approach of Schauerhuberet al. is
also language-independent and may be applied for any do-
main metamodel. But, they do not propose means to gener-
ate the pointcut language nor domain-specific adaptations.
Our generative approach, based on MDE techniques, allows
designers to automatically specialize our framework, for
any domain, by generating an unconstrained domain meta-
model for designing target models (pointcuts), and generat-
ing domain-specific adaptations dealing with updating (ad-
dition/removal), creating and cloning elements. Moreover,
they do not propose variability mechanisms, whereas we in-
troduce mechanisms inspired by Software Product Line ap-
proaches.

In [16], Kim et al. combine this reference AOM architec-
ture with a component-based SPL architecture. They pro-
pose to model variability using aspects, as we do in this pa-
per. The variability mechanism is thevariability point that
is equivalent to ouralternativesandoptions. In their archi-
tectures, they do not reify the notions ofconstraints, and do
not really explicit how variants are selected, with theirvari-
ability point bindings. In our metamodel,constraintsand
derivationclearly specify the dependencies between vari-
ants, and how to derive variants.

In [12], Whittle et al. propose the MATA (Modeling As-
pects Using a Transformation Approach) tool for compos-
ing features in UML models (class diagrams, state charts
and scenarios), based on graph rewriting. MATA allows
user to describe the composition using stereotypes directly
in feature models. The stereotypes they propose for com-
posing features are similar to our Create/Set/Unset adapta-
tions, but we also propose cloning adaptations. This can
be useful, for example to implement a proxy, where all
the operation needs to duplicate. Their notion of vari-
able is equivalent to our notion of rolei.e., elements that
can be substituted. WithMM’ andMM” , we can create
more generic pattern by instantianting abstract elements and
defining unconstrained models. Moreover, we propose vari-
ability mechanisms both for the matching and the composi-
tion whereas they only propose one variability dimension.

In [10], Fleureyet al. generalize theComposition Di-

rectivesapproach [29] and propose “a generic approach for
automatic model composition”, that can be adapted to any
metamodel. This approach is based on signature matching
and systematic merging of model elements. Their symmet-
ric approach aims at merging different views of the same
systeme.g., marketing and management views in order to
obtain an integrated view of the system, using an automated
weaving process that can be customized. Our asymmet-
ric approach is different and aims at composing aspects,
that can be considered as reusable patterns, into different
base models, using parameterized composition protocols.
Fleureyet al. do not propose variability mechanisms, but
users can customize the matching by defining the signa-
ture of model elements, and customize the merging with
context-specific composition directives. They do not pro-
pose alternatives, options and constraints for managing all
the possible variants and consequently designers have to de-
fine as many aspects as possible configurations. Our ap-
proach allows designers to model an aspect per concern,
with all the possible configurations. Then users select the
most appropriate configurations to weave into their models.

In [11], Heidenreichet al. propose to extend the “Aspect
Orientation for Your Language of Choice”. Their generic
approach is based on the Invasive Software Composition
(ISC). Both base model and aspect model elements are an-
notated withSlot, Hook andAnchor. A slot indicates that
a base element can be replaced by an aspect element with
an anchor whereas a hook indicates a place in the base
model where some anchored elements from the aspect can
be added. They illustrate their approach on a UML class
diagram and a Java program. Our approach is also generic
but do not need to modify base models to make them aspect
aware, letting base model oblivious of the aspect. We only
use a binding mechanism before composition.

5 Conclusion

In this paper, we have presented our generic model-
driven approach for aspect weaving: for any metamodel
describing a given language or domain, we can generate
both the targeting language and some weaving instructions
that allow users to design reusable aspects. Then, we
have extended this generic approach with variability mech-
anisms, and presented our 2-dimension approach for vari-
ability management. After deriving an aspect by choosing
most appropriate variants and options, aspect configurations
can be woven into base models, to integrate new features
and propose different variants of the system.

In future work, we will extend our 2-dimension approach
for variability management to runtime models [6], in the
context of self-adaptive systems. The main idea is to use
aspects at a model level, to adapt the running system, in-
stead of hard-coding the adaptation logic at the platform

level. Then, using a causal connection, modifications on
the runtime model should be reflected on the running sys-
tem. Moving models from design-time to runtime will re-
duce the complexity of runtime adaptations, by providing a
higher level of abstraction. We are currently working on the
implementation of the causal for the Fractal [20] component
model. However, our causal link is not Fractal-specific and
may be applied to other platforms like OpenCOM [9].

References

[1] V. Alves, P. M. Jr., L. Cole, P. Borba, and G. Ramalho. Ex-
tracting and Evolving Mobile Games Product Lines. In J. H.
Obbink and K. Pohl, editors,SPLC’05: 9th International
Conference on Software Product Lines, volume 3714, pages
70–81, Rennes, France, 2005.

[2] M. Anastasopoulos and D. Muthig. An evaluation of aspect-
oriented programming as a product line implementation
technology. InICSR’04: 8th International Conference on
Software Reuse: Methods, Techniques and Tools, pages 141–
156, Madrid, Spain, 2004.

[3] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers:
Aspects and Features in Concert. InICSE ’06: Proceeding of
the 28th international conference on Software engineering,
pages 122–131, New York, NY, USA, 2006. ACM Press.

[4] J. Araújo, J. Whittle, and D. K. Kim. Modeling and Compos-
ing Scenario-Based Requirements with Aspects. InRE’04:
Proceedings of the 12th IEEE International Conference on
Requirements Engineering, pages 58–67, Washington, DC,
USA, 2004. IEEE Computer Society.

[5] E. Baniassad and S. Clarke. Theme: An Approach for
Aspect-Oriented Analysis and Design. InICSE’04: Pro-
ceedings of the 26th International Conference on Software
Engineering, pages 158–167, Washington, DC, USA, 2004.
IEEE Computer Society.

[6] N. Bencomo. Proceedings of the Models@run.time
(at MoDELS) workshops. www.comp.lancs.ac.uk/ ben-
como/MRT06/
www.comp.lancs.ac.uk/ bencomo/MRT07/.

[7] E. Brottier, B. Baudry, Y. L. Traon, D. Touzet, and B. Nico-
las. Producing a Global Requirement Model from Multi-
ple Requirement Specifications. InEDOC’07: Proceedings
of the 11th Enterprise Computing Conference, Annapolis,
Maryland, USA, 2007.

[8] T. Cottenier, A. van den Berg, and T. Elrad. Joinpoint In-
ference from Behavioral Specification to Implementation.
ECOOP’07: Proceedings of the 21st European Conference
on Object-Oriented Programming, 2007.

[9] G. Coulson, G. S. Blair, M. Clarke, and N. Parlavantzas. The
Design of a Configurable and Reconfigurable Middleware
Platform.Distrib. Comput., 15(2):109–126, 2002.

[10] F. Fleurey, B. Baudry, R. France, and S. Ghosh. A
Generic Approach For Automatic Model Composition.
In AOM@MoDELS’07: 11th International Workshop on
Aspect-Oriented Modeling, Nashville TN USA, Oct 2007.

[11] F. Heidenreich, J. Johannes, and S. Zschaler. Aspect-
Orientation for Your Language of Choice. In
AOM@MoDELS’07: 11th International Workshop on
Aspect-Oriented Modeling, Nashville TN USA, Oct 2007.

[12] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa.
Model Composition in Product Lines and Feature Interac-
tion Detection Using Critical Pair Analysis. InMoDELS’07:
Proceedings of the 10th International Conference on Model
Driven Engineering Languages and Systems, LNCS, pages
151–165, Nashville TN USA, Oct. 2007. Vanderbilt Univer-
sity, Springer-Verlag.

[13] C. Kästner, S. Apel, and D. Batory. A Case Study Imple-
menting Features using AspectJ. InSPLC’07: 11th Interna-
tional Software Product Line Conference, September 2007.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An Overview of AspectJ. InECOOP’01:
Proceedings of the 15th European Conference on Object-
Oriented Programming, pages 327–353, London, UK, 2001.
Springer-Verlag.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. InECOOP’97: Proceedings of the 11th Euro-
pean Conference on Object-Oriented Programming, volume
1241, pages 220–242, Berlin, Heidelberg, and New York,
1997. Springer-Verlag.

[16] Y. Kim, M. Moon, and K. Yeom. An Aspect-Oriented Ap-
proach for Reprensenting Variability in Product Line Archi-
tecture. InVaMoS’07: 1st International Workshop on Vari-
ability Modelling of Software-intensive Systems, 2007.

[17] J. Klein, F. Fleurey, and J. Jézéquel. Weaving Multiple As-
pects in Sequence Diagrams.To appear in Transactions on
Aspect-Oriented Software Development (TAOSD), 2007.

[18] P. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard,
O. Barais, and J. M. Jézéquel. Introducing Variability into
Aspect-Oriented Modeling Approaches. InMoDELS’07:
Proceedings of the 10th International Conference on Model
Driven Engineering Languages and Systems, LNCS, pages
498–513, Nashville TN USA, Oct. 2007. Vanderbilt Univer-
sity, Springer-Verlag.

[19] P. Lahire and L. Quintian. New Perspective To Improve
Reusability in Object-Oriented Languages.Journal Of Ob-
ject Technology (JOT), 5(1):117–138, 2006.

[20] M. Leclercq, A. E. Ozcan, V. Quema, and J.-B. Stefani. Sup-
porting Heterogeneous Architecture Descriptions in an Ex-
tensible Toolset. InICSE’07: Proceedings of the 29th Inter-
national Conference on Software Engineering, pages 209–
219, Washington, DC, USA, 2007. IEEE Computer Society.

[21] N. Loughran and A. Rashid. Framed Aspects: Supporting
Variability and Configurability for AOP. InICSR’04: 8th In-
ternational Conference on Software Reuse: Methods, Tech-
niques and Tools, volume 3107 ofLecture Notes in Computer
Science, pages 127–140, Madrid, Spain, 2004. Springer.

[22] N. Loughran, A. Sampaio, and A. Rashid. From Require-
ments Documents to Feature Models for Aspect Oriented
Product Line Implementation. InMoDELS Satellite Events,
pages 262–271, 2005.

[23] M. Mezini and K. Ostermann. Variability Management with
Feature-Oriented Programming and Aspects.SIGSOFT Soft-
ware Engineering Notes, 29(6):127–136, 2004.

[24] B. Morin, O. Barais, J. M. Jézéquel, and R. Ramos. To-
wards a Generic Aspect-Oriented Modeling Framework. In
3rd International ECOOP’07 Workshop on Models and As-
pects - Handling Crosscutting Concerns in MDSD, Berlin,
Germany, August 2007.

[25] P. Muller, F. Fleurey, F. Fondement, M. Hassenforder,
R. Schneckenburger, S. Gérard, and J. Jézéquel. Model-
Driven Analysis and Synthesis of Concrete Syntax. In
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, edi-
tors,MoDELS’06 : 9th International Conference on Model
Driven Engineering Languages and Systems, volume 4199
of Lecture Notes in Computer Science, pages 98–110, Gen-
ova, Italy, 2006. Springer.

[26] P. Muller, F. Fleurey, and J. M. Jézéquel. Weaving Exe-
cutability into Object-Oriented Meta-languages. InMoD-
ELS’05: Proceedings of the 8th International Conference on
Model Driven Engineering Languages and Systems, volume
3713 ofLecture Notes in Computer Science, pages 264–278,
Montego Bay, Jamaica, Oct 2005. Springer.

[27] R. Ramos, O. Barais, and J. M. Jézéquel. Matching Model
Snippets. InMoDELS’07: Proceedings of the 10th Interna-
tional Conference on Model Driven Engineering Languages
and Systems, LNCS, page 15, Nashville TN USA, Oct. 2007.
Vanderbilt University, Springer-Verlag.

[28] A. Rashid, A. Moreira, and J. Araújo. Modularisation and
Composition of Aspectual Requirements. InAOSD’03: Pro-
ceedings of the 2nd International Conference on Aspect-
Oriented Software Development, pages 11–20, New York,
NY, USA, 2003. ACM Press.

[29] Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M. Bie-
man, N. McEachen, E. Song, and G. Georg. Directives for
Composing Aspect-Oriented Design Class Models.Trans-
actions on Aspect-Oriented Software Development I, LNCS
3880:75–105, 2006.

[30] A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Rets-
chitzegger, and M. Wimmer. Towards a Common Ref-
erence Architecture for Aspect-Oriented Modeling. In
AOM’06@AOSD: 8th International Workshop on Aspect-
Oriented Modeling at AOSD, 2006.

[31] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COV-
AMOF: A Framework for Modeling Variability in Software
Product Families. In R. L. Nord, editor,SPLC’04: 3rd In-
ternational Conference on Software Product Lines, volume
3154 ofLecture Notes in Computer Science, pages 197–213,
Boston, MA, USA, 2004. Springer.

[32] G. Straw, G. Georg, E. Song, S. Ghosh, R. B. France, and
J. M. Bieman. Model Composition Directives. In T. Baar,
A. Strohmeier, A. Moreira, and S. Mellor, editors,UML’04:
Proceedings of the 7th Conference on the Unified Modeling
Language, volume 3273 ofLNCS, pages 84–97. Springer,
Oct 2004.

[33] J. Van Gurp, J. Bosch, and M. Svahnberg. On the Notion of
Variability in Software Product Lines. InWICSA ’01: Pro-
ceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA’01), page 45, Washington, DC, USA,
2001. IEEE Computer Society.

[34] T. Ziadi and J. Jézéquel.Families Research Book, chapter
Product Line Engineering with the UML: Products Deriva-
tion, pages 557–588. LNCS. Springer Verlag, 2006.

