N

N
N

HAL

open science

Weaving Aspect Configurations for Managing System
Variability

Brice Morin, Olivier Barais, Jean-Marc Jézéquel

» To cite this version:

Brice Morin, Olivier Barais, Jean-Marc Jézéquel. Weaving Aspect Configurations for Managing Sys-
tem Variability. 2nd International Workshop on Variability Modelling of Software-intensive Systems,

2008, Essen, Germany, Germany. inria-00456484

HAL 1d: inria-00456484
https://inria.hal.science/inria-00456484
Submitted on 15 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00456484
https://hal.archives-ouvertes.fr

Weaving Aspect Configurations for Managing System Variabily

Brice Morin, Olivier Barai$ and Jean-Marc Jézéqutel
IRISA Rennes - Equipe Projet INRIA Triskell
lUniversité de Rennes 1
Campus de Beaulieu
F-35 042 Rennes Cedex

E-mail: {brorin | barais | jezequel }@risa.fr

Abstract mentation and adoption.

In order to manage variability, recent works [1, 2, 3,

Varlablllty management isa key concern in the software 13, 23] discuss the use of Aspect-ol’iented Programming
industry. It allows designers to rapidly propose applica- (AOP) for implementing Software Product Lines (SPL). At

tions that fit the environment and the user needs, with a cer-the code level, AOP offers mechanisms to encapsulate (op-
tain Quality-of-Service level, by choosing adapted vatsan tional) cross-cutting features. In contrast, with more tra
While Aspect-Oriented Programming has been introduced ditional mechanisms like conditional compiling, these-fea
for managing variability and complexity at the code level, tyres would be tangled and scattered across the program.
the Software Product-Line community highlights the needs Meanwhile, the SPL community points out the needs for

for variability in the earlier phases of the software lifesy, managing the variability during the entire software lifecy

where a system is generally described by means of mOdeIscle [22, 33], this in order to trace variability from require

In this paper, we propose a generic approach for weaving ments to implementation and even execution. The Model-

erX|bIe and re_usable aspepts ata modgl level. By extgnd-Driven Engineering (MDE) paradigm proposes to consider

INg our generic Aspect-Onent.ed.Modelmg approgch with models as first class entities during the entire life cycta. F

variability, we can manage va_rlablllty and complexity ieth example, requirement models [7] represent the user needs,

early phases of the software lifecycle. class and component diagrams specify the structure of the
system, scenarios and state machines specify its behavior,
and runtime models [6] monitor the running system. MDE

1 Introduction techniques allow to automate the transition between the dif
ferent steps of the life cycle. All these models conform to

Variability management is a key concern in the software different metamodels, and are generally described by Do-
industry. It allows designers to rapidly propose a wide mng main Specific Modeling Languages (DSML), or metamod-
of applications by choosing adapted variants and options.els.

These customized systems will fit the environment and the We argue that Aspect-Oriented Modeling (AOM) can

user needs, with a certain Quality-of-Service level. In or- help users to design optional and variant parts of a model,
der to improve traceability, reliability and maintainatyil like AOP does at the code level. By weaving incremen-
variability should be explicitly modeled. tally aspects into a base model it is possible to construct

The Aspect-Oriented Software Development (AOSD) a final product step-by-step. But, to be able to weave
paradigm proposes to separate distinct concerns inta-diffe aspect into different kinds of model, users have to adapt
ent aspects.g, security, logging or persistency, and finally to numerous ad-hoc AOM approaches. Indeed, AOM ap-
compose them into the base system. It first appeared at theroaches [4, 5, 8, 17, 28] often propose domain-specific
code level [15] and has more recently gained attention in mechanisms to represent aspects. We tackle this issue
the earlier steps of the software life-cycle [4, 5, 8, 17,:28] by automatically generating domain-specific AOM frame-
requirement, architecture, design, leading to the creatio works that all rely on the same concepts. Thus, designers
of numerous ad-hoc Aspect-Oriented Modeling (AOM) ap- do not need to adapt to a new AOM framework for all the
proaches, and a dispersion of effort in their tooling, docu- domain metamodels they have to deal with. Weaving aspect

0..1 Region -container

represents the first variability dimension of our approach.

Moreover, AOM approaches are often said flexible and -container 1
reusable, but actually not enough. Using these approaches, | -subvertex + | wansiton
it is often impossible to weave an aspect into a base model oo I v
if it does not exactly propose what the aspect expects. Addi- 1 - [find Transitonkind
tionnaly, whenitis possible to weave an aspect into the base =~ ﬁ
model, it is always composed the same way. Based on pre-
vious work [18], we propose to integrate variability mecha- L

nisms into aspects themselves to tackle the issue of the lim-
ited reusability of aspects. These mechanisms turn stdndar
aspects into configurable aspects, more reusable and flexi-
ble. Aspect configuration represents the second variabilit
dimension of our approach.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our generic approach for aspect weaving

Figure 1. A Domain-Metamodel (MM)

Aspect-Oriented Programming (AOP) The Aspect-
‘Oriented paradigm first appeared at the code level [15] and

Segtlop 3 details our 2—d|men3|op approach for managlnghas been popularized with the AspectJ [14] programming
variability of software systems. Finally, Section 4 prdsen . .
language. Aspect] extends Java with the following con-

related works and Section 5 concludes and discusses future)
works. cepts:

1. Join Point: point of interest in a program.g, method

2 Our Generic Model-Driven Approach for execution/call, attribute reading/writing.

Aspect Weaving 2. Pointcut: it defines a set of join points where the as-

pect will intervenee.g, all the calls to a given method.
This section presents our generic model-driven approach

for aspect weaving. It briefly introduces the notion of meta- 3. Advice: it specifies the additional behavior that will

modeling, with a simple running example, and introduces modify the base program. It is executed in all the join
the notion of Aspect-Orientation. Then, it details our ap- points identified by a pointcut.

proach for automatically generating Aspect-Oriented Mod- ,

eling frameworks, for any domain metamodel. AOP allows users to encapsulate cross-cutting concerns

into advice, and implicitly weave them into a base program,
in all the join points identified by a pointcut. AOP signifi-
cantly reduces the complexity of softwares a the code-level

. .) by limiting the scattered and tangled code.
Metamodeling A domain metamodel describes all the

concepts of a particular domain of interest, and their re-
lations. To illustrate our approach, we introduce a simple Aspect-Oriented Modeling (AOM) At a model level,
domain metamode\IM for state machines, illustrated in AOM approaches [5, 10, 18, 29, 32] propose to encapsu-
Figure 1. A region contains several vertices and transition late cross-cutting and reusable concerns. AOM concepts are
that are the main elements of a state machine. Note that th&€omparable to AOP ones. But, as opposed to AOP, AOM
Ver t ex meta-class is abstract and cannot be instantiatedmainly focus on the composition of structural and behav-
in a model, but is extended by two concrete meta-classesioral models, in the early phases of the software lifecycle,
PseudoSt at e andSt at e. A transition must declare a before implementation.
source and a target vertex. Template models represent what the aspect expects from
This metamodel allows designers to represent state mathe base modéle., the model elements needed to be able
chines, with any number of transitions and vertices, in any to weave the aspect into the base model, and their relations.
configuration. Then, it is possible to simulate models or Template do not need to be consistent models, for example,
generate other artifacts, using Model-Driven Engineering it can only be composed of a single operation, without rep-
techniques and dedicated tools like Kermeta [26], an open-resenting its containing class, that is normally mandatory
source environmehfor metamodel engineering. There ex- Templates could be assimilated as pointcuts.
ists metamodels for state machines, components, scenarios Then, aspect are woven into a base model. This is simi-
class diagrams, etc. lar to advice weaving in AOP. On the one hand, symmet-
ric AOM approaches [5, 10, 29, 32], that do not differ-
Lavailable at www.kermeta.org/download entiate aspect and base, propose to systematically merge

2.1 Metamodeling, AOP and AOM

all the corresponding concepts, and specify how to intro- 1. No invariant or pre-condition is defined M’ ;
duce non-shared ones. On the other hand, asymmetric ap- 2 All features of all meta-classes M’
proaches [18, 24, 30], that clearly differentiate aspedt an
base, propose to specify how to integrate the aspect. Gen- 3- MM’ has no abstract element.
erally, symmetric composition is a better way to compose This model transformation is generic because instead of
homogeneous views of a given system, using a partially au-manipulating the domain elements (Vertex, Transitior),. ..
tomated procedure, whereas asymmetric composition is &t manipulates higher-level concepts provided by ECore,
better way to introduce new concerns into models, and of-MOF or EMOF for describing metamodels. Consequently,
ten offers better reusability, but the composition protoco MM’ can be generated for any input metamadd#l . Fig-
must be explicited. ure 3 illustrates the result of this transformation apptied

In the remainder of this paper, our running example fo- the metamodel for state machines (Figure 1).
cuses on state machines. However, our asymmetric ap-

are optional,

proach is completely independent from any domain meta- Ot | Reglon | comaner
model. -container
-subvertex * -transition
2.2 Generating the pointcut language alSources @l souree oulgong =
N . [ind : TransitionKind
The previously introduced domain metamodel allows allTafget
users to design consistent state machines, but it is too re- T target -incoming
strictive for designing aspects. For example, a template

model might only be composed of a region with a vertex

(whatever its type), a final state and a transition that links ~ Figure 3. The Unconstrained Metamodel MM’

the vertex to the final state. We may also want the vertex

to be an indirect source of the transitioa,, it is possible

to fire the (dashed) transition from vertex, directly or not. In MM’ (Figure 3), we can see that a transition can de-
This model does not conform tddM because th¥er t ex clare no source/target vertex and can be instanciatedutitho
meta-class cannot be instantiated aiill does not con- its containing region. Moreover, if a user wants to match a
sider the semantic notion of indirect source. This template vertex, whatever its real type, he can now instantiate the
model is illustrated in Figure 2. Moreover, we want to be Vert ex meta-class. Additionally, we introduce two se-
able to declare some elements as rales elements that mantic associations(| Tar get s andal | Sour ces) to
must be substituted by actual base model elements, whereakepresent states (in)directly after or before a given trans
other elements can be seen as structural constraints ¢éhat thtion. We also weave these associations as derived proper-
pattern must respect. For example, if we want to modify ties intoMM to be able to compute all the state before/after
all the quitTransitionsfrom the region, we will declare the a transition. Note that weaving derived properties does not
transition and the region as roles to be able to manipulatechange the metamodel, it only adds semantic.

them. The other elements are just structural constraies: th In order to ease the detection of model elements that can
transition must link a vertex to a final state. match roles, we use a Prolog-based pattern matching en-
gine [27], implemented in Kermeta [26]. The domain meta-
model is automatically mapped onto a Prolog knowledge

quitTransition.target := final

base. Then, patterns with roles are transformed into a Pro-
R TR = o) j/ log queries over this knowledge base. Finally, the Proleg re
Tegion - sults are converted back into a Kermeta data-structure. Thi
f_ﬁ;"@ process is totally hidden from the user who only designs
\i“i“a”s"”” model snippets like the one presented in Figure 2.

it can be matched by any
instance of a sub-class of Vertex

2.3 Generating Adaptations

This is an instance of Vertex i.e., L‘

The second step of an Aspect-Oriented approach is the
weaving process. It consists in composing aspects into the
base model, at the places identified by the template model.

In order to be able to describe more easily target The key concept is the adapter [18, 19], that describes the
models, we construct on demand a more flexible meta-aspect structurenhat will be woven), a template model
model [27]MM’ , using a model transformation written in ~ with rolesvhere it will be woven) and a composition pro-
Kermeta [26].MM’ is equivalent taMM , except that: tocol (how it will be woven). The composition protocol is

Figure 2. A Simple Template Model

described by adaptations, that are weaving operations ma- 4. CloneMyMetaClass this adaptation allows user to

nipulating the concepts of the domain. For example, in the
context of class diagrams, an adaptation can add a super
class to another class, introduce methods or attributes in a
class, etc. These concepts are structured in the adaptation
metamodel illustrated in the top-part of Figure 4.

-structure

Adapter Aspect

targe(L
+check()
Oo~|_
Xtension/

point “ Ty ! -roles

makeUnique
-element : PObject
+check()
+execute()

Generic adaptation metamodel

-

PObject

point

Kk

-content “-player 1

* I

[+apply(b: Binding) 1

1 -adapter
0. -adapt

Adaptation Pattern

m

Role

1

P
PObject represents an abstraction of anyl
unconstrained domain metamodel MM'.
Itis introduced as the root element of I
the i hierarchy in MM'.

\\4

la L la Ci I cl la

-myMetaClass
-property1

-MyMetaClassToClone
_clonedMyMetaClass
-isUnique

+check()

+execute()

-myMetaClass
-property1

-newMyMetaClass
-isUnique
+check()
+execute()

-propertyN
[+check()

-propertyN
[+check()

) Generates

unconstrained
domain metamodel

Generated domain-specific adaptations

Figure 4. A Framework for Aspect Weaving

This metamodel is composed of three paits generic

part describing the concept of adapter, adaptations and as*

pect (structure and targeti), the unconstrained metamodel
MM’ that is linked to the generic part by introducing the
meta-clas$Obj ect as the root element dfiM’ , andiii)

domain specific adaptations extending the generic meta-

classAdapt at i on (bottom-part of Figure 4).
We propose a systematic way
domain-specific adaptations.
MyMet adl ass of a metamodeMM , we generate four

adaptations:

to generate

1. SetPropertiesOfMyMetaClass this adaptation al-
lows user to set or update (addition) any property of
MyMet adl ass. For example SetPropertiesOfRe-
gion allows designers to add states and transitions in a
region.

. UnsetPropertiesOfMyMetaClass this adaptation al-
lows user to unset or update (removal) any property of
MyMet adl ass. Similarly, UnsetPropertiesOfRe-
gion allows designers to remove states and transitions
in a region.

. CreateMyMetaClass this adaptation allows user to
create a new instance &/ Met aCl ass. Itis gen-
erated only ifMyMet adl ass is concrete. For ex-
ample,CreateStateallows designers to create a new
state, that can be manipulated in the remainder of the
composition protocol.

clone an existing instance dfyMet aCl ass. Itis
generated only iMyMet aCl ass is concrete. Simi-
larly, CloneStateallows designers to clone an existing,
and manipulate it.

For each meta-classes

The generation of these adaptations is also generic and
can be done for any metamodéM : we navigate the meta-
classes and their properties and use Kermeta Emitter Tem-
plate (KET) to generate all the above adaptations, specific
to a domain metamodel. In our approach, we use KET to
generate Kermeta files, but we can generate any kind of
files such as Java code or textual documentation, by defining
template. A template describes the structure of the output
files (Kermeta, Java, text, etc), and the navigation is gmitt
in Kermeta, encapsulated in specific marks

All these generated adaptations can manipulate elements
from the template model or from the aspect struciuge
composition protocols written with these adaptationsare t
tally independent from any base model, and can be reused
in different contexts.

This section briefly exposed the principles of our generic
model driven approach for aspect weaving. Our approach
can be customized for any domain metamodel, to obtain
a domain specific AO framework, through two extension
points (Figure 4):

1. PObject: represents an abstraction of any (uncon-
strained) domain metamodel that allows us to describe
the adaptation metamodel with no domain concepts.
When we specialize the framework for a given do-
main, PCbj ect is automatically introduced as the
root meta-class of all the element &M’ , with a
model transformation written in Kermeta [26].

. Adaptation: represents an abstraction of any domain-
specific weaving operation. All the domain-specific
adaptations must extend this meta-class, declare some
attributes, and implement thexecutemethod that de-
scribes a composition between some model elements.
We automatically generate some basic adaptations, but
designers can create some additional adaptations that
extendsAdapt at i on, or modify existing ones.

3 Two-Dimension Variability Management

In the previous section we present our approach for gen-
erating Aspect-Oriented Modeling frameworks, for any do-
main with a well defined metamodel. In this section, we ex-
tend these AOM frameworks and describe our 2-dimension
approach for managing the variability of software systems.

Zsimilarly to Java code encapsulated in JSP or JET

The main idea is that each aspect is considered as a vari- e Derivable Adapter: a derivable adapter is an adapter
ability dimensioni.e., aspects integrate variability mecha- that contains variability.e., alternatives, options and
nisms to make them configurable and reusable in different constraints. It proposes both composition and targeting
contexts. Then, different configurations of an aspect can be variability.

woven (or not) in order to propose different variants of the

system e Adapter Element: an adapter element is an element

that can be optional or involved in an alternative:
adaptation, target, alternative, conjunction (group of
adapter elements). It is introduced as a super meta-
class for all these elements.

3.1 Variability Mechanisms for Aspects

The variability mechanisms we propose to integrate in
the aspects are inspired by SPL approaches [3%; 34] e Alternative: an alternative describes several possible
variants that are mutually exclusive. Each variant is an

e Alternatives/Variants: specify that there exist sev- adapter element.

eral possible ways to compose the aspect (composi-
tion variability) and/or several different places where
to compose it (targeting variability). All the variants

e Constraints: a constraint describes either a depen-
dency or a mutual exclusion between some adapter el-

are exclusiveé.e., we can only choose exactly one vari-
ant per alternative.

Options: specify that some adaptations may be exe-
cuted or not, and that some elements from the template
model are not mandatofye., they may be present or
not in the base model where we want to weave the as-
pect.

ements. A dependency specifies that a source element
requires some other elements, and an exclusion spec-
ifies that some elements are mutually exclusies

two elements cannot be present at the same time, af-
ter derivation.

Derivation: a derivation allows designers to derive a
derivable adaptere., to fix variability. It allows de-

signers to select options, and choose one variant, for
e Constraints: control the variability mechanisms and each alternative.
limit the number of derived aspects to sensible ones.
Without constraints, the number of possible combina-
tions may become huge, and most of them would not
be sensible. For example, we can easily imagine that
some options or variants require (dependency) or ex-

clude (mutual exclusion) some others.

e Conjunction: a conjunction is a block of dependent
adapter elements. It allows to define optional blocks
and variant blocks in an alternative.

To illustrate some of the variability mechanisms, the gen-
erated adaptations and the target model specific to state ma-

We propose variability both for the composition protocol Chines, we will describe an aspect that addgstate be-
and for the targeting. For composition variability, we only fpre reaching the final state.g, for Iogglng_errors. Op-
need to apply the above concepts on adaptations, and intet—'ona,‘lly’ W€ propose to come bacl§ toa previous vertex after
grate them in the adaptation metamodel. For the targetingIogglng an error, instead of reaching the final state. Th? tar
variability, MM’ does not allow designers to propose the get mo_del _and the aspect structure are the model snippets
full possible range of variability in their snippets becaits ~ SHOWn in Figure 6. . _ _
is not possible to propose variants on certain features that " the target model, the containing region, the final state,

have for example a [0..1] cardinality. For example, we can the transition that targets the final state are mandatery
imagine that we want to instantiate a transition that target €Y mustbe matched by actual base model elements before

either a pseudo-state or a state, and not simply a vertexVe@ving the aspect into a base model. An option specify

because the composition protocol uses adaptations that arfhat we can target any vertex before the transition. All the
specific to pseudo-state or state, in two distinct variahts o elements of the target model are associated to roles, becaus

an alternative. In order to propose variability in the targe W€ Wantthese elements to be boundto base model elements,

model, we propose to generate the maximum metamodefn ©rder to modify the base model.

MM’ thatis equivalent tdM' , except that all the features ~NOW, we need to define the composition protocol that
can be multiplé.e, all the upper bound are set to * (possi- will describe how the structure will be woven into any base

bly infinite). model. Note that the composition protocol is totally defined
In order to allow composition and target variability, we with elements from the target model and from the aspect

extend the adaptation metamodel (Figure 4) presented ipstructurei.e, it does not reference elements from any base

Section 2 with the following key concepts (see Figure 5): M°del. This protocolis illustrated in Figure 7. _
The composition protocol describes the operations

needed for integrating the aspect. In this example, all the

3see http://www.sei.cmu.edu/productlines/ and http:iasplc.net

AlternativeDerivation

1 Derivation

-selectedVariant

-elements

* -fegtedomwons

Y Elements involved in
variability management

Elements responsible for
Ml fixing variability (deriving
derivable adapters)

~variants 1

-isOptional : Boolean

Elements constraining

A variability to ensure

“ content Lr

consistency

Adaptation 0.*

Conjunction

—

1

1

tructure

Adapter

Aspect PObject

+check()
+execute()

-adapt-adapter

<k

+apply(b: Binding)

)

_target content

®
1 Alternative

1

DerivableAdapter Pattern 1
1
-alternativep Role
L])
! 1
1 -alternative * constraints
es *
Constraint MM" replace MM’
in order to propose
+check(Derivation d) | | targeting variability
-source 1 ’_LF_‘
Fagaoiociamantl -requires|B
i
I | S
————d.
—_————a
T]

-mutex

Figure 5. Extended Adaptation Metamodel

region

optional

Target Model

backTransition

Structure

Figure 6. Target Model and Structure

Adaptation introduceStruct SetPropertiesOfRegion
- region: target.region
- subvertex: {struct.Log}
- transition: {struct.exitTransition}
Adaptation setExitTrans SetPropertiesOfTransition
- transition: struct.exitTransition
- target: target.finalState
Adaptation setQuitTrans SetPropertiesOfTransition
- transition: target.quitTransition
- target: struct.Log
Adaptation setLogName SetPropertiesOfState
- state: struct.Log
- name: target.exitTransition.name + “"Log”
Conjunction backToPrev is optional {
Adaptation introduceBack SetPropertiesOfRegion
- region: target.region
- transition: {struct.backTransition}
Adaptation setBack SetPropertiesOfTransition
- transition: struct.backTransition
- target: target.previous
TargetRef target.previous

Figure 7. Composition Protocol

3.2 Weaving Aspect Configurations

The previous sub-section details the first variability di-
mensioni.e., the integration of variability mechanisms into
aspects. This sub-section details the second variability d
mension: the configuration, or derivation of aspects and the
weaving process.

The aspect presented in the previous sub-section (Fig-
ures 6 and 7) can be configured in two different ways, and
consequently there are three possible variants:

e Variant 1: Do not weave the aspect
e Variant 2: Just add théog state

e Variant 3: Variant 2, and we add a transition back to a
previous state

If we consider several aspects, we can easily propose

adaptations ar&et » adaptations because the aspect only many different variants of the system by configuring aspects

adds model elements that exist in the aspect structure.

and weaving them, or not, into the base system. The deriva-

The concrete syntax we propose for adaptations is verytion process can be summarized as follows:

basic. For example, the first adaptations (L@i¢is called
introducesStruct and its real type iSet Regi on. Its first
parameter is the region to set (Li@#&-a), and all the follow-

ing parameters refer to the element we want to introduce in
the targeted region: some subvertices (Lieb) and tran-
sitions (Line01-¢). The three following adaptations aims at
connecting the transitions (Lin@sand3) and renaming the
Log state (Line04) to fit its context. Finally, we declare an
optional conjunction (Line§) that aims at introducing and

connecting thdackTransition

Note that MDE tools like Sintakg425] can easily bridge
abstract syntax (metamodel) and concrete syntax (text), by
parsing texts into models, and transforming models into

texts, according to rules defined in a Sintaks model.

4available at http://www.kermeta.org/sintaks

1. Constraints: we check that the derivatmprovided
by the user respects all the constraints of the deriv-
able adapter. We just call theheck(d)method for all
the constraints of the adapter, that is implemented di-
rectly in the adaptation metamodel ($8@nst r ai nt
in Figure 5), with Kermeta. If one constraint is not
reached, the framework raises an exception telling the
user that his derivation is not well-formed.

2. Adaptations: the composition protocol (adaptations) of
the derived adapter is built in a positive wag., se-
lected options and variants are added into the derived
adapter.

3. Target Model: the target model is (un)built in a nega-
tive wayi.e., the model elements that are not selected

. . OperatorBusy
(non-chosen options and variants) are deleted from the d :

target mOdel H Dial'!'one '%' Dialing ~ nvalid
T |

4. Post-condition: after derivation, the target model must

conform toMM’ , and not only taMM” . Otherwise it [Talking] (connecnng NonEx stnghumber
means that a cardinality is over the maximum bounds, —
and consequently the target model cannot be matched

by any model snippet.

Figure 8. Basic behavior of a phone
When an aspect is successfully configured, it can be wo-

ven into a base model, following this process:
Figure 8 illustrates a base model representing the behav-
1. Binding phase: the user provides a binding that links ior of a simple phone.
target model elements to actual base model elements. Figure 9 illustrates the composition of the aspect when
Note that bindings can automatically be found/checked no option is selected. In this case, we only introdut®g
using the pattern matching framework of Rameis state before reaching the final state.
al. [27], to guide the user.

Q OperatorBusyLog
2. Weaving phase: for each binding selected by the user, Y -
we apply the composition protocol. In the adaptations, ‘>(DialTone H Dialing
the target model elements are substituted with their
corresponding actual base model elements, according Taking | [Comnectng

to the binding. Between each binding, some elements —

of the aspect structure, or cloned/created elements
(A one/ Cr eat ex adaptations), can be cloned, or re- _))
main unchanged. This choice depends on whether the Figure 9. Behavior of a phone with error log-

user wants to use the same instances or introduce new 9!N9
instances, for each binding.

3. Post-condition : after composition, the modified base Finally, Figure 10 illustrates the composition of the as-
model must conform toMM , and not only toMM’ pect when the option is selected. In this case, we also in-
or MM” . Otherwise it would mean that the composi- troduce alLog state before reaching the final state. Addi-
tion protocol violates some constraingsg, it removes tionally, we introduce a roll-back transition that targats
mandatory features), or adds too many elements. Inprevious state.
this case, we roll back to the initial base model.

OperatorBusylLog

OperatorBus
DialTone l & l

Dialing dLog

The process can be applied several times and is po-
tentially infinite and/or nondeterministic: if we con-
sider that the process has been applied (n-1) times,
we denote resp. configuratiorf, binding?, weaving', Tating c
resp. the aspect configuration, the chosen binding
and the result after weaving, for the n-th time. We W
have: binding*=f(configuratiort, weaving —!) andweav-
ing"=g(configuratiort, binding®)=h(configuratiort, weav- Figure 10. Behavior of a phone with error log-
ing”~!). The configuration of an aspect may change the ging and roll-back
target model, and the previous weaving modify the base
model, and potentially adds/removes possible targetdeso t
binding is dependent from the configuration and the previ- Note that is possible to combine different combination
ous weaving. The weaving depends on the aspect config-of the aspect to exactly fit the user needs.
uration (the selected adaptations) and on the selected bind
ing, and consequently, it depends on the previous weaving4 Related Works
For this reason, the process is not fully automated: the user
configures the aspect, then he chooses the binding and the Our approach extends the MBRTADAPTERS ap-
composition protocol is applied. Next, he can reconfigure proach [18, 19] byi) generalizing its concepts to any do-
the aspect, choose another binding, etc. main metamodel [24] (not only Java programs and UML

NonExistingNumbe

class diagrams), ani) representing targets as model snip- different possible configurations. Frames are similar to ou
pets [27], instead of declaring targets and constraints onetarget model: both framed parameter and target model el-
by one. In [18], we introduce variability mechanisms in the ements are substituted with actual elements from the base
base MARTADAPTERSapproach for class diagrams. In our program/model, using bindings. Framed-aspect do not re-
generic approach, we also integrate these mechanisms (Se@lly propose internal variability, only configuration. &ity,

tion 3), in a slightly different way. Thus, we can propose both approach propose two variability dimensions, but they
configurable aspect, and weave them into models conform-mainly focus on the system variability while we mainly fo-
ing to any domain metamodel. cus on the aspect variability.

Recent works discuss the use of Aspect-Oriented Pro- In [30], Schauerhubeet al. propose a common refer-
gramming (AOP) for managing variability at the code level, ence architecture for Aspect-Oriented Modeling. The con-
and implementing Software Product Lines (SPL). Some of cepts they identify are quite similar to the ones identifigd b
these approaches advocate AOP for managing optional and-ahireet al. in the SARTADAPTERS approach [18, 19],
variants cross-cutting features [2], or extracting andwevo that we leverage to generalize the concepts of AOM to any
ing SPL from a single application [1], and propose different domain metamodel. The approach of Schauerhabat: is
variants, while some approaches like [13], insist on limi- also language-independent and may be applied for any do-
tations and drawbacks of AspectJ for SPL implementation: main metamodel. But, they do not propose means to gener-
code readability and maintainability, pointcut fragilitak- ~ ate the pointcut language nor domain-specific adaptations.
ing aspect weaving difficult. Moreover they point out that Our generative approach, based on MDE techniques, allows
most of the mechanisms specific to AspectJ are not use-designers to automatically specialize our framework, for
ful in most of the cases. Mezirit al. [23] point out the ~ any domain, by generating an unconstrained domain meta-
limitations of feature-oriented approach and AspectJeesp Mmodel for designing target models (pointcuts), and generat
cially its pointcut mechanism, and propose to use Caesarjng domain-specific adaptations dealing with updating (ad-
for resolving these problems. AOP is an interesting but stil dition/removal), creating and cloning elements. Morepver
immature technology for managing variability. The com- they do not propose variability mechanisms, whereas we in-
bination of Aspect-Oriented Modeling (AOM) and Model- troduce mechanisms inspired by Software Product Line ap-
Driven Engineering (MDE) makes our approach more ab- proaches.
stract and independent from problems inherent to the source In[16], Kim et al. combine this reference AOM architec-
code level. Unlike Aspect] pointcuts, our target models ture with a component-based SPL architecture. They pro-
are totally independent from any base models and our as{pose to model variability using aspects, as we do in this pa-
pect can be reused in different contexts, by binding targetper. The variability mechanism is thariability point that
model elements to actual base model elements. There iss equivalent to oualternativesandoptions In their archi-
no need for modifying the target model (pointcut), the as- tectures, they do not reify the notionsafnstraintsand do
pect structure or the composition protocol (advice). Fjnal not really explicit how variants are selected, with theri-

AOP approaches for managing variability only propose one ability point bindings In our metamodel¢constraintsand
variability dimension and do not propose variability inbet derivation clearly specify the dependencies between vari-
aspect itself, as we do. ants, and how to derive variants.

In [21], Loughraret al. propose an approach that com- In [12], Whittle et al. propose the MATA (Modeling As-
bines notions from AOP, frame technology and Feature- Pects Using a Transformation Approach) tool for compos-
Oriented Domain Analysis (FODA). AOP aims at modular- ing features in UML models (class diagrams, state charts
izing cross-cutting concerns and frame technology provideand scenarios), based on graph rewriting. MATA allows
some means to configure aspects and make them contextiser to describe the composition using stereotypes directl
independent and thus, more reusable. Using our approachhn feature models. The stereotypes they propose for com-
designers can also define context independent aspects usingesing features are similar to our Create/Set/Unset adapta
targets and adaptations that only reference elements frontions, but we also propose cloning adaptations. This can
the aspect template or structure, and not directly base modebe useful, for example to implement a proxy, where all
elements. They use the variability mechanisms (altereativ the operation needs to duplicate. Their notion of vari-
and options) of FODA models to represent the whole sys- able is equivalent to our notion of rolee., elements that
teme.g, a generic cache. Then, they can delineate framedcan be substituted. WitMM’ andMM” , we can create
aspects and implement them in a reusable way using themore generic pattern by instantianting abstract elements a
frame technology. Frame is a fine mechanism to parameterdefining unconstrained models. Moreover, we propose vari-
ize for example, the name and the type of attribute, method,ability mechanisms both for the matching and the composi-
parameters. In our approach, we use alternatives, optiondion whereas they only propose one variability dimension.
and constraints inside the aspect itself, for managing the In [10], Fleureyet al. generalize th&Composition Di-

rectivesapproach [29] and propose “a generic approach for level. Then, using a causal connection, modifications on
automatic model composition”, that can be adapted to anythe runtime model should be reflected on the running sys-
metamodel. This approach is based on signature matchingem. Moving models from design-time to runtime will re-
and systematic merging of model elements. Their symmet-duce the complexity of runtime adaptations, by providing a
ric approach aims at merging different views of the same higher level of abstraction. We are currently working on the
systeme.g, marketing and management views in order to implementation of the causal for the Fractal [20] component
obtain an integrated view of the system, using an automatednodel. However, our causal link is not Fractal-specific and
weaving process that can be customized. Our asymmetmay be applied to other platforms like OpenCOM [9].

ric approach is different and aims at composing aspects,

that can be considered as reusable patterns, into differenReferences

base models, using parameterized composition protocols.
Fleureyet al. do not propose variability mechanisms, but

. . o . [1] V. Alves, P. M. Jr., L. Cole, P. Borba, and G. Ramalho. Ex-
users can customize the matching by defining the signa-

tracting and Evolving Mobile Games Product Lines. In J. H.

ture of mode_l_elements,_ f";md QUSt(_)mize the merging with Obbink and K. Pohl, editorsSPLC’05; 9th International
context-specific composition directives. They do not pro- Conference on Software Product Lineslume 3714, pages
pose alternatives, options and constraints for managing al 70-81, Rennes, France, 2005.

the possible variants and consequently designers have to de [2] M. Anastasopoulos and D. Muthig. An evaluation of aspect
fine as many aspects as possible configurations. Our ap- °riented programming as a product line implementation
proach allows designers to model an aspect per concern, technology. INICSR'04: 8th 'nte.mat'onal Conference on

. . . . Software Reuse: Methods, Techniques and Tpalges 141—
with all the possible configurations. Then users select the 156, Madrid, Spain, 2004
most appropriate configurations to weave into their models. [3] S Apel, T. Leich, and G. Saake. Aspectual Mixin Layers:

In [11], Heidenreicket al. propose to extend the “Aspect Aspects and Features in Concert!@8E '06: Proceeding of
Orientation for Your Language of Choice”. Their generic the 28th international conference on Software engineering
approach is based on the Invasive Software Compaosition pageS,_122—13%_, ll\leW York, NY, USA, 20(?_6. ACM Press.
(ISC). Both base model and aspect model elements are an-I4 J-Aratjo, J. Whittle, and D. K. Kim. Modeling and Compos

. - ing Scenario-Based Requirements with AspectsREi04:
notated withSlot Hook and Anchor. A slot indicates that . .

b | b | db | ith Proceedings of the 12th IEEE International Conference on
a base element can be rep a,(:e . y an aspect Pj ement wit Requirements Engineeringages 58-67, Washington, DC,
an anchor whereas a hook indicates a place in the base sa 2004. IEEE Computer Society.
model where some anchored elements from the aspect can[5] E. Baniassad and S. Clarke. Theme: An Approach for
be added. They illustrate their approach on a UML class Aspect-Oriented Analysis and Design. IGSE’'04: Pro-
diagram and a Java program. Our approach is also generic ceedings of the 26th International Conference on Software

but do not need to modify base models to make them aspect ~ Engineering pages 158-167, Washington, DC, USA, 2004.

aware, !ett!ng base m(?del oblivious of the. ?SpeCt' We only [6] :\IE.EE&%rgr[T)]%t'er S’OPcrlgtcsfe'edings of the Models@run.time

use a binding mechanism before composition. (at MoDELS) workshops. www.comp.lancs.ac.uk/ ben-
como/MRT06/

5 Conclusion www.comp.lancs.ac.uk/ bencomo/MRTO7/.

[7] E. Brottier, B. Baudry, Y. L. Traon, D. Touzet, and B. Nico
)) las. Producing a Global Requirement Model from Multi-
_|n this paper, we have preser_lted our generic model- ple Requirement Specifications. FEDOC’07: Proceedings
driven approach for aspect weaving: for any metamodel of the 11th Enterprise Computing Conferendenapolis,
describing a given language or domain, we can generate Maryland, USA, 2007. o
both the targeting language and some weaving instructions [8] T. Cottenier, A. van den Berg, and T. Elrad. Joinpoint In-
that allow users to design reusable aspects. Then, we ference from Behavioral Specification to Implementation.
have extended this generic approach with variability mech- Er?gl?jepc?griﬁce%egggfaﬂr:}ﬁ onlos; European Conference
anisms, and presented our 2-dimension approach for vari- [9] G.Coulson, G. S. Blair, M. Clarke, and N. Parlavantzase T

ability management. After deriving an aspect by choosing Design of a Configurable and Reconfigurable Middleware
most appropriate variants and options, aspect configmstio Platform. Distrib. Comput, 15(2):109-126, 2002.

can be woven into base models, to integrate new featureg10] F. Fleurey, B. Baudry, R. France, and S. Ghosh. A
and propose different variants of the system. Generic Approach For Automatic Model Composition.

. . . In AOM@MODELS’07: 11th International Workshop on
In future work, we will extend our 2-dimension approach)) .
PP Aspect-Oriented ModelingNashville TN USA, Oct 2007.

for variability management to runtime models [6], in the [11] F. Heidenreich, J. Johannes, and S. Zschaler. Aspect-
context of self-adaptive systems. The main idea is to use Orientation for Your Language of Choice. In
aspects at a model level, to adapt the running system, in- ~ AOM@MOoDELS'07: 11th International Workshop on
stead of hard-coding the adaptation logic at the platform Aspect-Oriented ModelingNashville TN USA, Oct 2007.

[12] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa. [25] P. Muller, F. Fleurey, F. Fondement, M. Hassenforder,

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Model Composition in Product Lines and Feature Interac-
tion Detection Using Critical Pair Analysis. MODELS'07:
Proceedings of the 10th International Conference on Model
Driven Engineering Languages and SysteiiNCS, pages
151-165, Nashville TN USA, Oct. 2007. Vanderbilt Univer-
sity, Springer-Verlag.

C. Kastner, S. Apel, and D. Batory. A Case Study Imple-
menting Features using AspectJ.SRLC’07: 11th Interna-

tional Software Product Line Conferencgeptember 2007.
G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.riRal

and W. Griswold. An Overview of Aspect]. ECOOP’01:
Proceedings of the 15th European Conference on Object-
Oriented Programmingpages 327-353, London, UK, 2001.
Springer-Verlag.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. IECOOP’97: Proceedings of the 11th Euro-
pean Conference on Object-Oriented Programmirgdume
1241, pages 220-242, Berlin, Heidelberg, and New York,
1997. Springer-Verlag.

Y. Kim, M. Moon, and K. Yeom. An Aspect-Oriented Ap-
proach for Reprensenting Variability in Product Line Archi
tecture. InVaMoS’07: 1st International Workshop on Vari-
ability Modelling of Software-intensive Syster2807.

J. Klein, F. Fleurey, and J. Jézéquel. Weaving Migtifs-
pects in Sequence Diagram$o appear in Transactions on
Aspect-Oriented Software Development (TAQZD)7.

P. Lahire, B. Morin, G. Vanwormhoudt, A. Gaignard,
O. Barais, and J. M. Jézéquel. Introducing Variabilitoin
Aspect-Oriented Modeling Approaches. MoDELS'07:
Proceedings of the 10th International Conference on Model
Driven Engineering Languages and SysteiiNCS, pages
498-513, Nashville TN USA, Oct. 2007. Vanderbilt Univer-
sity, Springer-Verlag.

P. Lahire and L. Quintian. New Perspective To Improve
Reusability in Object-Oriented Language¥ournal Of Ob-

ject Technology (JOTH(1):117-138, 2006.
M. Leclercq, A. E. Ozcan, V. Quema, and J.-B. Stefanp-Su

porting Heterogeneous Architecture Descriptions in an Ex-
tensible Toolset. IRCSE'07: Proceedings of the 29th Inter-
national Conference on Software Engineeripgges 209—

219, Washington, DC, USA, 2007. IEEE Computer Society.
N. Loughran and A. Rashid. Framed Aspects: Supporting
Variability and Configurability for AOP. IRCSR’04: 8th In-
ternational Conference on Software Reuse: Methods, Tech-
niques and Toolsrolume 3107 of_ecture Notes in Computer
Sciencepages 127-140, Madrid, Spain, 2004. Springer.

N. Loughran, A. Sampaio, and A. Rashid. From Require-
ments Documents to Feature Models for Aspect Oriented
Product Line Implementation. IMoDELS Satellite Events
pages 262-271, 2005.

M. Mezini and K. Ostermann. Variability Management it
Feature-Oriented Programming and AspeSt&SOFT Soft-
ware Engineering Note29(6):127-136, 2004.

B. Morin, O. Barais, J. M. Jézéquel, and R. Ramos. To-
wards a Generic Aspect-Oriented Modeling Framework. In
3rd International ECOOP’07 Workshop on Models and As-
pects - Handling Crosscutting Concerns in MDSBerlin,
Germany, August 2007.

[26]

[27]

(28]

[30]

[32]

33]

[34]

R. Schneckenburger, S. Gérard, and J. Jézéquel. Model-
Driven Analysis and Synthesis of Concrete Syntax. In
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, edi-
tors, MODELS'06 : 9th International Conference on Model
Driven Engineering Languages and Systersume 4199

of Lecture Notes in Computer Sciengages 98-110, Gen-

ova, Italy, 2006. Springer.
P. Muller, F. Fleurey, and J. M. Jézéquel. Weaving Exe

cutability into Object-Oriented Meta-languages. NMwoD-
ELS’05: Proceedings of the 8th International Conference on
Model Driven Engineering Languages and Systerokime
3713 ofLecture Notes in Computer Scienpages 264-278,

Montego Bay, Jamaica, Oct 2005. Springer.
R. Ramos, O. Barais, and J. M. Jézéquel. Matching Mode

Snippets. INTMoDELS’07: Proceedings of the 10th Interna-
tional Conference on Model Driven Engineering Languages
and System4+.NCS, page 15, Nashville TN USA, Oct. 2007.

Vanderbilt University, Springer-Verlag.
A. Rashid, A. Moreira, and J. Araljo. Modularisationda

Composition of Aspectual Requirements A®OSD’03: Pro-
ceedings of the 2nd International Conference on Aspect-
Oriented Software Developmemiages 11-20, New York,

NY, USA, 2003. ACM Press.
Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M. Bie-

man, N. McEachen, E. Song, and G. Georg. Directives for
Composing Aspect-Oriented Design Class Modé€lsans-
actions on Aspect-Oriented Software DevelopmehNICS

3880:75-105, 2006.
A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Rets-

chitzegger, and M. Wimmer. Towards a Common Ref-
erence Architecture for Aspect-Oriented Modeling. In
AOM'06@AOSD: 8th International Workshop on Aspect-

Oriented Modeling at AOS[2006.
M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COV-

AMOF: A Framework for Modeling Variability in Software
Product Families. In R. L. Nord, edito§PLC’04: 3rd In-
ternational Conference on Software Product Lineslume
3154 ofLecture Notes in Computer Scienpages 197-213,

Boston, MA, USA, 2004. Springer.
G. Straw, G. Georg, E. Song, S. Ghosh, R. B. France, and

J. M. Bieman. Model Composition Directives. In T. Baar,
A. Strohmeier, A. Moreira, and S. Mellor, editoksML’04:
Proceedings of the 7th Conference on the Unified Modeling
Language volume 3273 ofLNCS pages 84-97. Springer,

Oct 2004.
J. Van Gurp, J. Bosch, and M. Svahnberg. On the Notion of

Variability in Software Product Lines. IWICSA '01: Pro-
ceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA'01)page 45, Washington, DC, USA,

2001. IEEE Computer Society.
T. Ziadi and J. JézéquelFamilies Research Boolchapter

Product Line Engineering with the UML: Products Deriva-
tion, pages 557-588. LNCS. Springer Verlag, 2006.

