
HAL Id: inria-00456504
https://hal.inria.fr/inria-00456504

Submitted on 15 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Maintenance in AOP Through an Interaction
Specification Framework

Freddy Munoz, Benoit Baudry, Olivier Barais

To cite this version:
Freddy Munoz, Benoit Baudry, Olivier Barais. Improving Maintenance in AOP Through an Inter-
action Specification Framework. ICSM08, 24th International conference on Software Maintentance,
2008, Beijing, China, China. �inria-00456504�

https://hal.inria.fr/inria-00456504
https://hal.archives-ouvertes.fr


Improving Maintenance in AOP Through an Interaction Specification Framework

Freddy Munoz, Benoit Baudry

INRIA

Campus de Beaulieu

F-35042 Rennes Cedex, France

{fmunoz,bbaudry}@irisa.fr

Olivier Barais

Université de Rennes 1

Campus de Beaulieu

F-35042 Rennes Cedex, France

barais@irisa.fr

Abstract

The invasiveness of aspects is beneficial to modularize

crosscutting concerns that require the modification of the

data or control flow. However, it introduces subtle errors

that are hard to locate and fix in case of evolution. In this

paper we illustrate this issue by evolving a program imple-

mented using aspects. Interaction issues, between aspects

and the program, emerge from this evolution. We locate them

through manual inspection and test execution. This tedious

process motivates the need for an abstract specification of in-

tended interactions. To tackle this issue, we propose a frame-

work for specifying the types of invasiveness pattern that are

allowed of forbidden in the program. We have also imple-

mented a tool that automatically checks whether the specifi-

cation is satisfied by the aspects.

1. Introduction

Aspect-oriented programming (AOP) is a paradigm that

enhances current approaches to modularizing software. AOP

enables separation of concerns that crosscut the implementa-

tion of a system. This is done by encapsulating crosscutting

concerns into single units called aspects. An aspect itself

is composed of several units realizing the crosscutting be-

havior, these units are called Advices. Aspects also provide

pointing elements that designate well defined points in the

program execution or structure. These are the points where

the program executes the crosscutting behavior. Generally

the pointers are called point-cut and the execution points

Join-points. Different approaches to AOP have been pro-

posed [8, 10, 13, 3]. Each of these approaches provide a

different mechanism to compose aspects with the base pro-

gram (main concern). These composition mechanisms range

from simple program augmentation to more complex opera-

tions such as behavior replacement.

Invasive AOP approaches use composition mechanisms

that allow developers to manipulate almost any structure

of the base program. This ability to manipulate the base

program structures is called invasiveness. Invasive AOP

provides several strategies to manipulate the base program.

These strategies range from less invasive such as the aug-

mentation of a procedure execution to more invasive ones

such as the replacement of a procedure execution. An inva-

siveness pattern is the characterization of invasive behavior,

i.e. the strategy or a combination of them to manipulate the

base program.

Invasive aspects are useful to introduce functionalities that

otherwise must be hardcoded into the base program. For ex-

ample, a system transaction concern is implemented using

an invasive aspect because it requires to stop executing the

intercepted behavior each time a transaction fails. However,

invasive aspects can also do harm to the base program. When

they introduce the functionalities they are designed for, they

can also introduce side effects, hence, generating unexpected

interactions.

The work presented in this paper is divided in two parts.

In the first part we illustrate the issues that can arise when

evolving an aspect-oriented program that is built with aspects

(some of them invasive). This is an special case of the AOSD-

Evolution paradox [17], which results to be aggravated in

presence of invasive aspects. We consider a distributed chat

application as a case study. First, we illustrate how invasive

aspects are useful to implement cross-cutting features in this

example. Then we evolve the system to enable authentication

in the application. While regression testing the application

errors emerge. We then propose an iterative process involv-

ing manual inspection and test execution in order to locate

the source of the problem. It allows us to track back the is-

sues to unexpected interactions between aspect and the pro-

gram. From this study and the debugging process we learn

that invasive aspects can introduce faults that emerge only

when evolving the system. We also learn that these faults

are difficult to locate and that debugging requires a complex

and error-prone process. Moreover, the crosscutting nature

of aspect makes difficult to reason about their impact in in-

teraction with the base program. This study demonstrates the

need to reason about expected interactions, and to control the

usage of invasive aspects.

In the second part of this work we propose a framework

for specifying the expected interactions in the base program

as well as the way in which aspects can be invasive. The



specification on aspects is based on a classification proposed

in previous work [11, 12]. This classification identifies differ-

ent patterns according to which AspectJ aspects can be inva-

sive. Based on this specification, the base program declares

which type of invasiveness it allows or forbids. We have de-

veloped a tool support for this framework. This tool analyzes

aspects to infer which invasive pattern they encapsulate. It

can also statically check that the aspects conform to the spec-

ification of the base program. Based on this approach, we

revisit the chat application and illustrate that specifying in-

teractions is useful to early detect when invasive aspect can

perform harmful. This experience expresses that it is worth

specifying the interactions between aspect and base program.

Besides, having specification reduces the time to locate and

fix issues consequence of unexpected interaction.

The contributions of this work are summarized as follows:

• An illustration through a rigorous inspection process on

a case study of the AOSD-Evolution paradox in pres-

ence of invasive aspects.

• A framework for the characterization of invasiveness

patterns on aspects and the specification of expected in-

vasiveness patterns in the base program.

This paper is organized as follows. Section 2 explain the

chat application case study and a process to detect problems

introduced by invasive aspects. Section 3 explains our spec-

ification framework. Section 4 describes the implementation

of the specification framework. Section 5 revisits the case

study using the specification framework. Section 6 presents

the related work and finally section 7 concludes.

2. Motivating Case Study

In this section we illustrate the AOSD-evolution para-

dox [17] in presence of invasive aspects. Our goal is to show

that invasive aspects offer efficient mechanisms to implement

cross-cutting concerns, but that they can also introduce com-

plex errors in case of evolution.

To illustrate these issues, we present an example imple-

mented in Java and AspectJ. The example is a chat applica-

tion implemented with 5 aspects. We run system-level test

cases on the application to validate the initial version. Then,

we evolve the application adding authentication capabilities.

While testing the new version, we have detected errors.

We precisely discuss the analysis we perform to trace the

source of the error back to a wrong interaction between as-

pects and the base program. Based on these observations, we

motivate our approach to assist the validation and verification

of aspect-oriented programs.

2.1. A chat application

A chat application is a program that allows users to com-

municate with each other in real time. Our chat is composed

of two parts: a client and a server. The server handles client,

manages the communication between them and ensures their

uniqueness. The client transmits messages to the server that

are dispatched to other clients. The global behavior of a

chat application can be described as follows. Initially, the

server is waiting for clients. The establishment of communi-

cations is called association. The cease of communication is

called disassociation. Before associating a client, the server

checks the uniqueness of the client’s nickname. Clients us-

ing existing nicknames are not associated. Once associated,

the clients can send messages. Such messages are encrypted

and decrypted by the clients. Each client’s chat session is

recorded in a log file. The server also stores each session

into a log file. A graphical user interface (GUI) controls the

client and server behavior.

2.2. Initial version

We have implemented a chat in JavaTM. From the require-

ments documents, we separated the core concerns form the

cross-cutting concerns. Figure 1 shows the class diagram for

the core concerns of the chat application.

+transmit(message:Message)
+initialize(server:String,nickname:String)
+attach()
+detach()
+send(message:String)
+abort()

 
StandardClient

+getId(): int
+getName(): String
+getHost(): String

 
Client

+attach(client:Client):int
+detach(client:Client)
+send(message:Message)
+initialize(maxusr:int)
+run()
+shutdown()

 
StandardServer

+getSourceName():String
+getContent():String

 
Message

ClientUI ServerUI

IServerIMIClientIM

IClientUI
IServerUI

message

m_client

callBack
callBack

1 *

1

1

remote

serverclient

1

1

1

1

1

1

1

1

1

1

Figure 1. Chat application class diagram

IClientIM and IServerIM are the remote interfaces

for the client and the server. The StandardClient class

realizes the client interface. The methods attach() and

detach() associate and dissociate the client to a server.

The method transmit(Message) notifies the GUI about

the arrival of a new message. Finally the method abort()

aborts the execution of the client. The StandardServer

class realizes the server interface. As in the client, the meth-

ods attach(Client) and detach(Client) associate

and dissociate a client. The send(Message) method dis-

patches the messages to other clients associated to the server.

The class Client is a container for the client’s information.

The class Message supports the messaging mechanism be-

tween client and server. Client and Server communicate us-

ing the Java RMI distribution mechanism [16]. The client

and the server GUI are implemented with the Standard Wid-

get Toolkit (SWT).

2



2.3. Crosscutting concerns

We have identified the following crosscutting concerns

and implemented them with AspectJ.

• Message encryption encrypts and decrypts the incom-

ing/outgoing messages. Encryption/decryption occurs

just before the execution of the methods send and

transmit. It replaces the method arguments with the

encrypted/decrypted version of the message.

• Message logging logs the incoming/outgoing messages

for each user. Its behavior executes before transmitting

a message and after receiving a message (before the en-

cryption and after the decryption).

• Error handling captures the communication exceptions

and raises an alert indicating communication problems.

Its behavior executes after an exception of type remote

is thrown.

• Server logging logs the server activity in a file. Its be-

havior executes before and after all the methods of the

IServerIM interface. This is, it observes the execu-

tion of each method of the server.

• Nickname uniqueness checks the existence of only one

nickname in the server. Its behavior executes just before

the server association methods (attach and detach).

In the case of association, it checks the existence of the

client’s nickname on the server. If the nickname exists,

it throws an exception. Otherwise, it adds the name to

a list and executes the association normally. In the case

of dissociation, it removes the client’s nickname from a

list.

1 public aspect EncryptionAspect{
2 pointcut encryptMessage(String string):

3 execution(void IClientIM.send(String)) && args(string);

4 pointcut reencryptMessage(Message messg):

5 execution(void ∗.retransmit(Message)) && args(messg);

6 pointcut decryptMessage(Message messg):

7 execution(void IClientIM.transmit(Message)) && args(messg);

8 void around(String arg) : encryptMessage(arg){
9 arg = encrypt(arg);

10 proceed(arg);

11 }
12 void around(Message message) : reencryptMessage(message){
13 message.sContents=encrypt(message.sContents());

14 proceed(message);

15 }
16 void around(Message message) : decryptMessage(message){
17 message.sContents=decrypt(message.sContents());

18 proceed(message);

19 }
20 }

Listing 1. Implementation of the encryption

concern

Listing 1 shows the implementation of the Message en-

cryption concern. It is clear from the code that the three ad-

vices of this aspect are changing the argument values of the

intercepted methods (lines 9-10, 13-14, 17-18). The original

message is replaced by the encrypted/decrypted version and

then it is re-injected to the original method (proceed call).

This concern can only be implemented by using invasive as-

pects, otherwise it must be hard-coded in the base program.

1 public aspect UniqueNameAspect issingleton() {
2 public pointcut ensureUniqueness(IServerIM serv,Client client):

3 execution(∗ IServerIM.attach(Client)) &&

4 target(serv) && args(client);

5 public pointcut removeFromList(IServerIM serv,Client client):

6 execution(∗ IServerIM.detach(Client)) &&

7 target(serv) && args(client);

8 private static ArrayList nameList=new ArrayList();

9 int around(IServerIM serv,Client client)

10 throws UsedNameException:ensureUniqueness(serv,client){
11 int retValue=−1;

12 if(!nameList.contains(client.getSName())){
13 nameList.add(client.getSName());

14 retValue=proceed(serv,client);

15 }
16 else{ throw new UsedNameException();}
17 return retValue;

18 }
19 after(IServerIM serv,Client client): removeFromList(serv,client) {
20 nameList.remove(client.getSName());

21 }
22 }

Listing 2. Implementation of the unique nick-
name concern

Listing 2 shows the implementation of the Nickname

uniqueness concern. This aspect manages a list of the cur-

rently associated clients nicknames (nameList line 8). If

the actual client nickname does not exist in the list (line 12)

then it is added to the list (line 13) and the intercepted method

is executed. Otherwise, the method is never executed and an

exception is raised. This aspect conditionally replaces the

execution of the methods it intercepts. Analogously to the

Message encryption concern, it can only be implemented by

using invasive aspects.

These examples illustrates that invasive aspects help im-

plementing the crosscutting concerns that modify the flow or

data in the program.

2.4. Validating the initial version

We test the initial version with 7 system-level test scenar-

ios. Each scenario validates a different dimensions of the

system. These dimensions are summarized as follows:

1. The association mechanism between client and server.

2. The association mechanism supports multiple clients.

3. Clients can send/receive messages.

4. The server distributes the messages among clients.

5. The server detects clients named with an existing nick-

name.

6. The server association mechanism removes a used nick-

name when disassociating a client.

3



7. The error handling mechanism handles the exceptions.

All the test scenarios pass on the initial version composed of

the core concern and 5 aspects.

2.5. Evolving the chat application

The initial version of the chat application allows any user

to associate with a server. Here, we add an authentication

mechanism to ensure that only the registered users are able

to associate with a server. We also want to ensure that the

clients of this new version are compatible with the old ver-

sion. As a consequence, a server without authentication

must be able to associate an authenticated client. Authenti-

cated servers must refuse the association of unauthenticated

clients. The chosen authentication protocol proceeds as fol-

lows: the client provides the nickname and password data to

the server. The server checks the nickname, password pair

internally. If the pair is authentic, then the server will asso-

ciate the client, otherwise the client is not associated.

In order to implement the evolution, we have

added two classes: AuthenticatedSever that ex-

tends StandardServer and overrides the method

attach(Client); AuthenticatedClient that

extends StandardClient and overrides the methods

transmit(Message) and receive(Message).

Additionally, we have performed minor changes in the class

Client and the client GUI adding support for password. Since

this evolution is only adding new behavior, the behavior for

the initial version should be kept. The crosscutting concerns

present in the initial version remains in this evolution with

no further implementation changes.

2.6. Validating the new version

We use the previous test scenarios for regression testing.

To do so, we replace the standard client/server with the au-

thenticated one. We also add 5 scenarios to validate the au-

thentication mechanism as well as the compatibility between

the two versions. The dimensions addressed by these scenar-

ios are summarized as follows:

8. The authentication mechanism detects invalid nick-

names and passwords.

9. The server detects void nicknames or password (or

both).

10. The client association mechanism is compatible with

the standard server.

11. The authenticated server is incompatible with the stan-

dard client.

12. The authenticated client messaging mechanism is able

to send messages to standard clients.

The results of the executing tests 1 to 12 are summarized in

table 1.

Table 1. Test results after evolution

Test 1 2 3 4 5 6 7 8 9 10 11 12

x x x x x x x X X X X x

2.7. Reasoning about the problems

Looking at the results of the test scenario execution it is

not easy to see where the problems are located. However,

a rigorous manual analysis will help detecting the problems.

We deal with the authenticated association issues and later

the compatibility issues.

The failure of the two first test cases tells that the client

cannot associate with the server or the server cannot authen-

ticate/associate the clients. The failure of tests 3, 4, 5, 6 and

7 are consequence of the failure of the test case 1 and 2. This

is because the preconditions cannot be fulfilled: there is no

connected client. The success of tests 8 and 9 provides no

information about the association mechanism. The success

of the first test is fundamental to obtain more information

about tests 3 to 7. This guides our analysis to examine the

association and the authentication mechanism.

After rigorously inspecting the base program we found no

errors, however, we need to take into account that the chat

runs with aspects. Before examining the aspects code, we

try to run the server without aspects that could interfere with

the association/authentication mechanism. We remove only

the invasive aspects because they are the only ones that can

change the final behavior of the application. Moreover, the

test scenarios that fail (except for the test case 5) evaluate

only the functionalities implemented in the base program.

Table 2 shows the test results after removing the Nickname

uniqueness aspect. Now test cases 1 to 4 pass, however, the

test case 5 fails because it depends on the aspect. Remov-

ing the aspect helped to localize the problem (the Nickname

uniqueness aspect is interfering with the association mecha-

nism). Nevertheless, we still ignore the specific localization

of the failure and its cause.

After rigorously inspecting the aspect code and the places

it affects, we finally localize the specific cause of the prob-

lem. The problem occurs because the aspect captures a

wrong join point, the execution of the attach method in

the StandardServer class. The point-cut descriptor cap-

tures all the executions of the attach method in the server.

This, while the body of the advice realizing the crosscutting

concern is designed to be executed just once at each join

point. This means, once from the beginning to the end of

the method execution.

Table 2. Test results after removing the Nick-

name uniqueness aspect

Test 1 2 3 4 5 6 7 8 9 10 11 12

X X X X x X X X X X X x

Figure 2 depicts schematically the association

4



AuthenticatedSever.attach(client)

exist(client.name)

false

add(client.name) StandardServer.attach(client) exist(client.name)

throw userException

true

AuthenticatedSever.attach(client) StandardServer.attach(client)

AuthenticatedSever.attach(client) StandardServer.attach(client)

(a)

(b)

AuthenticatedSever.attach(client)

method call

advice execution

advice condition

method execution

Legend

Figure 2. Schematic view of the association flow. (a) association without the Nickname uniqueness aspect.

(b) association with the Nickname uniqueness aspect.

flow without (a) and with (b) the Nickname unique-

ness aspect. In the case with the aspect (b), it cap-

tures the first call that performs the authentication

(AuthenticationServer.attach(client)).

Then, the aspect finds that the client nickname is not in the

registry (exist(client.name)=false) and adds its

name into the registry (add(client.name)). The aspect

also captures the second call that performs the association

(StandardServer.attach(client)). It is here

where the aspect finds that the name exists in the registry and

throws an exception. This problem is hard to detect because

it can be a combination of a failure in the point-cut descriptor

and a limited implementation of the advice. To solve this

problem we could modify the advice implementation or

the point-cut descriptor. However, we think that the advice

implementation realizes in a proper manner the crosscutting

concern. Therefore, we modify the point-cut description.

Once we had detected and fixed the association problem,

we explore the compatibility problems. The failure of test

12 is due to a compatibility problem when sending/receiv-

ing messages. Following the procedure we used to localize

cause of the association issue we localize the case of the com-

patibility issue. The problem is localized in the Encryption

aspect and is analogous to the association problem. The ad-

vice captures the execution of the messaging methods twice,

therefore, it encrypts/decrypts the messages twice. On the

other hand, the standard client encrypts/decrypts the mes-

sages only once. We solve this problem by changing the

point-cut descriptor to match only one execution each time.

2.8. Discussion

Through this experiment we have shown that despite the

features provided by invasive aspects, they can hamper the

software evolution. The main issue is that it is very hard to

reason about the aspects impact on the final application, and

it is very hard to trace them as the source of the problems to

aspects.

The successive execution of a set of test scenarios and the

manual inspection of code helped us tracing the problems to

aspects. However, this process is tedious, time consuming

and error prone. Besides, there is no generic formula to trace

this kind of problems. In the chat application, the problems

were localized by removing the aspect. This was possible

because the test scenarios we used were testing the base pro-

gram functionalities. Nevertheless, it is not always possible

to simply remove the aspects.

Actually there is a missing element in the AOP support.

The tedious process we performed tells us that there is a need

to abstract from code to reason about the interactions be-

tween aspects and the base program. To tackle this issue, we

propose a framework for specifying the (1) the invasiveness

patterns that aspects realize, and (2) the invasiveness patterns

expected on the base program. This means specifying the

interaction between aspects and base program. Such speci-

fication assist developers to localize and solve problems due

to faulty invasive aspects.

3. Specifying aspects-base program interaction

The specification of interactions between aspects and base

program consists of two parts. In the first, we characterize

aspects with specific invasiveness patterns (Aspect specifica-

tions). In the second, we specify the invasiveness patterns the

base program allows from aspects.

For the first we propose to use our previous work [12] on

classifying invasive aspects. For the second we propose to

specify assertions that allow/forbid invasiveness patterns to

interact with the base program elements.

The goal of these specifications is to obtain information

about the potential unexpected interactions that invasive as-

pects can produce. Such information will help developers to

reason about the harmfulness of aspects. Therefore, it assists

developer to track potential faults (introduced by invasive as-

pects).

3.1. Aspect specification

In [11, 12] we present a classification of invasive aspects.

Such classification is the result of an analysis of the invasive

mechanisms that AspectJ [6] provides. It allows us to iden-

tify specific invasiveness patterns and therefore abstract from

code. Such abstraction helps reasoning about the interaction

of aspects and the base program. We use this classification to

characterize aspects with invasiveness patterns.

In AspectJ, aspects crosscut the base program at two lev-

els. At class level (aspect) modifying the program structure

5



and at method level (advice) manipulating the method’s be-

havior. Our classification addresses these two levels. In the

following, we list the classification elements with a brief de-

scription. Aspect invasiveness patterns are marked with ‡,

and advice invasiveness patterns are marked with †.

† Augmentation: After crosscutting, the body of the inter-

cepted method is always executed. The advice aug-

ments the behavior of the method it crosscuts with new

behavior that does not interfere with the original behav-

ior. Examples of this kind of advices are those realizing

logging, monitoring, traceability, etc.

† Replacement: After crosscutting, the body of the inter-

cepted method is never executed. The advice com-

pletely replaces the behavior of the method it crosscuts

with new behavior. This kind of advices eliminate a part

of the base program.

† Conditional replacement: After crosscutting, the body of

the intercepted method is not always executed. The

advice conditionally invokes the body of the method

and potentially replaces its behavior with new behavior.

Examples of this kind of advices are advices realizing

transaction, access control, etc.

† Multiple: After crosscutting, the body of the intercepted

method is executed more than once. The advice invokes

two or more time the body of the method it crosscuts

generating potentially new behavior.

† Crossing: After crosscutting, the advice invokes the body

of a method (or several methods) that it does not inter-

cepts. The advice have a dependency to the class own-

ing the invoked method(s).

† Write: After crosscutting, the advice writes an object field.

This access breaks the protection declared for the field

and can modify the behavior of the underlying compu-

tation.

† Read: After crosscutting, the advice reads an object field.

This access breaks the protection declared for the field

and can potentially expose sensitive data.

† Argument passing: After crosscutting, the advice modifies

the argument values of the method it crosscuts and then

invokes the body of the method. The body of the method

always executes at least once.

‡ Hierarchy: The aspect modifies the declared class hierar-

chy. For example, the aspect adds a new parent interface

to an existing one.

‡ Field addition: The aspect adds new fields to an existing

class declaration. These fields depending on their pro-

tection can be acceded by referencing an object instance

of the affected class.

‡ Operation addition: The aspect adds new methods to an

exiting class declaration. These methods depending on

their protection can be acceded by referencing an object

instance of the affected class.

All the advices of the Encryption aspects (Listing 1) are clas-

sified Argument passing. This because they modify the argu-

ment values of the methods they intercept. The advices of the

Nickname uniqueness aspect (Listing 2) are classified Con-

ditional Replacement (lines 9-18) and Augmentation (lines

19-21). The first conditionally replaces the execution of the

methods it intercepts, the second is orthogonal to the meth-

ods it intercepts.

3.2. Core specification

We specify the base program (core) by asserting the pat-

terns of invasiveness allowed/forbidden to interact with it.

Such specification emanates from the base program design-

ers and declares an expected interaction.

Aspects crosscut the base program at the level of classes

(modifying the class structure), methods (modifying the de-

clared behavior) and fields (accessing the data contained in

object fields). This motivates us to attach specifications to

each one of these elements. By default (implicit specifica-

tion) only the patterns Augmentation, Crossing, Read are al-

lowed to advise the base program. This is because a priori

these classes do not alter the program flow, data or structure,

hence, they are less harmful than the others.

...
+attach(client:Client):int
....

...
- clients:Set(Client)
... 

StandardServer

c

a

b

Figure 3. Base program specification covering

Specification for classes: Specify the invasiveness pat-

terns allowed englobing two levels. The first is related to

the class structure modifications like the addition of a field.

The second is related with methods and fields declared in

the class. A class is specified with an allowed invasiveness

patterns that applies to its fields and methods. This specifica-

tion can allow any invasiveness pattern forbidden by default,

and forbid any invasiveness pattern allowed by default. This

specification corresponds to (a) in figure 3 covering all the

class definition.

Specification for fields: Specify the invasiveness patterns

that a field allows in terms of how advices access it. This

specification can allow Write and forbid Read. This speci-

fication corresponds to (b) in figure 3 covering only a field

definition.

Specification for methods: Specify the invasiveness pat-

terns allowed on a specific method. It can allow Replace-

ment, Conditional replacement, Multiple, Write, Argument

passing. It can forbid Augmentation, Crossing, Read. This

specification corresponds to (c) in figure 3 covering only a

method definition.

6



It is worth mentioning that a class specification can be

reused in the case of the inheritance. For example, The class

B extends class A. If C is the specification of A, and B is not

explicitly specified, then C is the specification of B.

In the case of conflicts between the specifications of fields,

methods and classes we propose the following: The specifi-

cation of fields is always used if it exists. If a method is

specified (explicitly), its specification is used instead of the

global.

3.3. Specification matching

We compare the core and aspect specifications in order

to detect when aspects or advices violate the core specifica-

tions. An aspect or an advice violates a core specification

when it realizes invasiveness patterns that the core specifi-

cation forbid. This gives us information about the invasive

aspects harmfulness. Such information is used to assist the

developer to reason about the impact of aspects on the com-

posed program.

We detect violations of specification in the following way:

At the aspect level, for each aspect we obtain the classes it

targets adding fields, methods or modifying the hierarchy.

Then, we compare the specification of forbidden patterns on

each class with the specification of the aspect. At the advice

level, for each advice we obtain the methods it advises. Then,

we compare the specification of forbidden patterns on each

method with the specification of the advice. For the advices

accessing fields, the matching is analogous to the previous.

4. A specification framework for interactions

We have implemented a tool for matching specification as

well a language to express the base program specifications

called ABIS (Aspect-Base Interaction Specification)1ABIS

is built on top of the AJDT eclipse plug-in and is completely

integrated with eclipse. After a short presentation of the

global structure of ABIS we detail how each aspect and ad-

vice is automatically classified. Then we describe how to

specify the base program with the expected invasiveness pat-

terns.

Figure 4 presents the ABIS’ organization. We extend the

AspectJ AST Visitor (1) in order to create a simplified

(SAST) version of the Abstract Syntax Tree (AST). ABIS

obtains information about the structure of the program (as-

pects and base program) from AJDT and builds a model of

the program structure (2). This model contains the relations

between aspects and the base program (advised and intro-

duced element relations). An automatic classification pro-

cess inspects the SAST and classifies each aspect and advice

according to its invasiveness pattern (3). Then the model and

the classified advices are checked following the previously

1Available at http://contract4aj.gforge.inria.fr

AJDT

Base code

Model 

Factory

Aspect 

Model 

Factory

Spec 

Matcher

eclipse GUI

process

execution

/result

source code

AST Visitor

Analyzer/

classification 

process

SAST

java source with 

specifications
aspectJ source

Model

2

1

4
3

5

Legend

Figure 4. ABIS structure diagram

presented matching process (4). If specification violations

are found, then they are reported to the eclipse GUI (5).

4.1. Automatic classification of aspects

ABIS is able to automatically identify invasiveness pat-

terns in aspects and advices according to their de-facto prop-

erties. Then, by using the identified patterns, aspects and ad-

vices are classified according to the classification presented

in section 3.1.

advice

parameter arg

body

assignment

lhs arg

rhs encrypt call

argument arg

proceed call
paratemer arg

1

2

3

Figure 5. SAST of Encryption aspect, Listing 1,
lines 9-12

Figure 5, shows the SAST of the first advice of the En-

cryption aspect (Listing 1, lines 9-12). The root node of the

SAST corresponds to the advice declaration. From the root

node, we find the parameter declaration and the advice body

node. The children of the body node are the statements de-

clared on the advice. The node assignment corresponds

to the assignment in line 10 of Listing 1. The node proceed

call represents the call to the proceed(arg) method

(line 11 of Listing 1) (it executes the intercepted method)

and its children are the arguments it receives.

The classification algorithm applied to the Encryption as-

pect is the following:

1. Initially, select all the advice argument nodes (step 1,

argument arg).

7



2. Traverse the SAST searching for the nodes representing

a call to the proceed method (proceed node).

(a) If all the arguments nodes reference the ad-

vice parameter nodes, then select it (step 2,

proceed(arg)).

(b) If the proceed arguments are different from the ad-

vice parameters, then classify the advice as Pa-

rameter passing.

3. Starting from the last selected proceed node, select the

assignment nodes on top of it. If the left hand side (lhs)

of an assignment references one of the advice arguments

(step 3, arg=Encrypt(arg)), then classify the ad-

vice as Parameter passing.

This algorithm represents the set of rules used to identify

the Parameter passing invasiveness pattern. In general, in-

vasiveness patterns are identified by applying a set of rule to

the advice SAST.

foreach root.childs as node do

 select into argument node.type="argument" end select

 select into proceed node.type="proceed" then

  foreach proceed as proc do

    if NOT argument.contains (proc.childs) then

       classification:=classification + "argument passing"

    end if

  end foreach

 end select

...

SAST Classification rules

Match

Figure 6. Automatic advice classification

Figure 6 depicts the automatic classification process or

advices. The process proceeds as follows: once obtained

the advices SASTs a set of identification rules are applied to

them. The results of this inquiry are the invasiveness patterns

that the inspected SAST realizes. For example, an identifica-

tion rule can check whether the left hand side of an assign-

ment node is a reference to an object field, and then detected

the invasiveness pattern Write.

Aspects invasive patterns are detected according to the as-

pect structural declarations. For example, if an aspect de-

clares Inter-Type field, then the detected invasive pattern is

Field Addition.

4.2. Writing specification in the base pro-
gram

The base program specification is represented as meta-

information by using Java 5 annotations [2]. The param-

eterized annotation @Spec([allow=..|forbid=..])

specifies the expected invasiveness pattern in the base pro-

gram. It can be attached to classes, fields and methods, and

the possible values for its parameters vary as described in

section 3.2.

The parameters allow and forbid are exclusive, i.e.

only one can be used in each specification. The allow pa-

rameter indicates the invasiveness patterns allowed to inter-

act with the base program. The default policy is to allow the

non-invasiveness patterns Augmentation, Crossing and Read.

Analogously the forbid parameter indicates the invasive-

ness patterns forbidden to interact with the base program.

1 @Spec(allow={"ConditionalReplacement"})

2 public synchronized int attach(Client client)

3 throws RemoteException {
4 ...

5 }

Listing 3. attachmethod specified with an an-

notation

Listing 3 shows the attach method of the standard

server specified with an annotation (line 2). Finally, this

method allows advices realizing the following patterns to ad-

vise it: Augmentation, Crossing, Conditional replacement

and Read. All the other patterns are forbidden.

4.3. Contribution of the ABIS framework

ABIS statically computes and gives information, at

compile-time, about the specification violation. This infor-

mation is a useful and valuable:

1. Feedback for developers in the process of writing ad-

vices a specifying the base program.

2. For verifying an aspect-oriented program when aspects

and the base program are developed separately.

3. For verifying an aspect-oriented program when aspects

or the base program evolve.

The compile-time feature of the tool is also a drawback. The

current implementation is unable to detect and check dy-

namic join points (for example using the if keyword in As-

pectJ).

5. Case study revisited

In this section we revisit the case study presented in sec-

tion 2 by specifying the interaction between aspects and base

program. Then, we use these specifications to spot and solve

the problems that arise after the base program evolution.

5.1. Specifying the initial version

We annotate the initial version of the chat application

specifying the allowed invasiveness pattern. The annotations

we added allow the invasiveness patterns that interact safely

with the base program. Therefore, only the advices realizing

the specified patterns can advise the base program.

1 public class StandardClientImpl implements IClientIM{
2 @Spec(allow={"ArgumentPassing"})

3 public synchronized void transmit(Message message) ...

4 @Spec(allow={"ArgumentPassing"})

5 public void send(String sContents){ ... }
6 @Spec(allow={"ArgumentPassing"})

7 private void retransmit(Message message){ ... }
8 ...

8



9 }

Listing 4. StandarClient with annotations

Listing 3 and 4 present the fragment of the specified meth-

ods. The methods send, transmit and retransmit

were specified to allow the invasiveness pattern Argument

passing. Aspect were automatically specified by ABIS.

Thanks to these specifications, ABIS informs that no aspect

is violating the base program specifications. Furthermore,

the addition of annotations is transparent for the tests we ex-

ecute, hence, the test results are not affected.

5.2. Evolution with specification, problems
detection and solving

After specifying the initial version of the chat applica-

tion, we evolve it as explained in section 2.5. As a result

of this evolution, ABIS reports that some aspects are violat-

ing the base program specifications. The reports indicate that

the aspects EncryptionAspect and UniqueName are

violating the specifications on AuthenticatedClient

(attach method) and AuthenticatedServer (send

and transmit methods) respectively. This means that po-

tentially unexpected behavior can emerge from the weavage

of these invasive aspects advising new join points.

Using this information we trace unexpected interactions

to the violator advices (problems presented in section 2.7).

Knowing the violating pattern helps us reasoning about the

causes of the unexpected interaction, hence, reasoning about

the source of the problem. For example, the violating pattern

Conditional Replacement tells us that something is wrong

because it is possible that a method, which must always exe-

cute, sometimes will not be executed.

The further correction of the problems is a developer de-

cision, however, the violated specification may help making

the solution. In this case, we have applied the same proce-

dure used in section 2.7, i.e. change the point-cut descriptors.

Once applied the corrections, ABIS reports that no specifica-

tion is violated and aspects are valid in relation with the base

program specifications.

5.3. Discussion

Specifying interactions gives feedback about the harmful-

ness of aspects. This information assists developers in the

process of creating an aspect-oriented program and ensur-

ing that aspects perform as expected. It also helps develop-

ers to be conscious about the aspects they write and enforces

the reasoning about the interaction between aspects and base

program.

The violation of an specification indicates that a developer

may review the code of the violator aspects and reason about

their impact on the base program. Besides, specifying inter-

actions reduce the effort and time required to locate faulty

aspects because there is no need to successively execute a set

of tests. We thinks that all these reasons justify the effort and

time involved in specifying (annotating) the base program.

The Open Closed Principle [9] describes that a module/-

class should be open for extension but closed for modifica-

tion. Of all the principles of object oriented design, this is the

most important. It means that we should write modules so

that they can be extended without requiring them to be mod-

ified. In other words, we must be able to change the mod-

ules behavior without changing their code. Our framework is

completely coherent with this principle. Aspects offer a new

way to extend the behavior of classes without modifying their

code (classes are opened). Therefore, developers have to an-

ticipate these potential extensions and specify which kind of

behavior modification (invasiveness pattern) is allowed.

6. Related work

The characterization of aspects has already been explored.

In [14] categories of direct and indirect interactions between

aspects and methods are identified. Direct interaction is

whether an advice interferes with the execution of a method,

whereas indirect is whether advices and methods may read-

/write the same fields. This classification is similar to ours,

however, it addresses a different dimension. We identify

invasiveness patterns instead of direct/indirect interactions.

Moreover, in our work the identification of invasive patterns

is only a portion of a whole specification framework. In [7]

aspects are characterized among Spectative, Regulatory and

Invasive aspects according to their invasiveness. This classi-

fication is similar to ours, however, our characterization of is

more fine grained.

Several approach have been proposed to control the inter-

actions between aspects and the base program. Spectators

and Assistants [4] proposes to control interactions by speci-

fying the invasive aspects that can advise the base program.

It classifies aspect among Spectators (non invasive advices)

and Assistants (invasive advices). Then, the base program

explicitly demands the assistance of assistant aspects (identi-

fied by their names). We propose the same type of specifica-

tions, but we address a finest granularity and abstraction by

referring to invasiveness patterns instead of specific invasive

aspects.

Open Modules [1] is a system that focuses on the expo-

sure of specific join-points. This approach hides all the join-

points, then each module declares the join-point it will ex-

pose. Open Modules goes in a similar direction than our

work. However, we perform this task in a very different way.

Open Modules exposes join-points without distinguishing the

aspects advising them, whereas we expose joint-point to as-

pects realizing specific invasiveness patterns. Moreover, our

approach is intended to verify and validate aspect-oriented

programs and assist developers when creating aspects.

XPI [5] are interfaces that mediate between aspects and

the base program. They establish a set of design rules to im-

9



plement aspects and the base program in such a way that the

evolution is coordinated through the XPI. This approach re-

straint the manners in which developers may write programs.

Instead, to check whether advices may be harmful to the base

program, then advising developers to check the potential un-

expected interaction introduced by invasive aspects.

An approach to assist developers is proposed in [15].

Through an analysis that compares the changes in the set of

matched join-points for two different version of a program

it reveals unexpected changes in the matching behavior of

point-cuts. This analysis serves to assist developers finding

bugs introduced by broken point-cuts. This work is close

to ours. However, the dimensions in which this is accom-

plished are very different. Our approach advises developer

about the potential undesired interactions introduced by inva-

sive aspects instead of broken point-cuts. Moreover, our ap-

proach require the specification of the base program, which

we think enforces the reasoning about the interactions with

aspects.

7. Conclusions
The evolution of aspect-oriented programs is a compli-

cated issue because necessary interactions of one version can

introduce issues after evolution. This occurs as a conse-

quence of the AOSD-Evolution paradox and invasive aspects.

Through the evolution of an aspect-oriented chat application

we have shown that tracing problems to unexpected interac-

tions is a long and tedious process. Such a process involves

rigorous manual inspection of code and the execution of sev-

eral test scenarios.

This paper tackles this problem by specifying the inter-

actions between aspect and the base program. Aspects are

specified with the invasiveness patterns they realize, and the

base program with assertions allowing or forbidding inva-

siveness patterns. The violations of these specifications are

used to alert developers about the risk introduced by unex-

pected interactions. This assists developers reviewing the

harmful code and to reason about its interaction with the base

program. By specifying and evolving the chat application we

have shown that specifying interactions reduces the time and

effort necessary to locate problems introduced by unexpected

interactions.

The specification of aspect-oriented programs improves

their maintenance and evolvability. It also increases the con-

fidence that developers have on aspect. This because devel-

opers can ensure that critical parts of the base program will

not be modified unexpectedly by future addition of aspects.

8. Acknowledgments
This work was partially supported by the european project

DiVA (EU FP7 STREP).

References

[1] J. Aldrich. Open modules: Modular reasoning about advice.

In A. P. Black, editor, ECOOP 2005 - Object-Oriented Pro-

gramming, 19th European Conference, Glasgow, UK, July

25-29, 2005, Proceedings, volume 3586 of Lecture Notes in

Computer Science, pages 144–168. Springer, 2005.

[2] J. Bloch. A metadata facility for the java programming

language. Technical report jsr 175, Sun Microsystems,

www.jcp.org, 2002.

[3] C. Bockisch, M. Arnold, T. Dinkelaker, and M. Mezini.

Adapting virtual machine techniques for seamless aspect sup-

port. In ACM, editor, ACM Sigplan International Conference

on Object-oriented Programming, Systems, Languages, and

Applications (OOPSLA) 2006, 2006.

[4] C. Clifton and G. T. Leavens. Observers and assistants: A pro-

posal for modular aspect-oriented reasoning. In R. Cytron and

G. T. Leavens, editors, FOAL 2002: Foundations of Aspect-

Oriented Languages (AOSD-2002), pages 33–44, Mar. 2002.

[5] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari,

Y. Cai, and H. Rajan. Modular software design with crosscut-

ting interfaces. IEEE Software, pages 51–60, Jan./Feb. 2006.

[6] http://www.aspectj.org. Aspectj.

[7] S. Katz. Diagnosis of harmful aspects using regression verifi-

cation. In C. Clifton, R. Lämmel, and G. T. Leavens, editors,

FOAL: Foundations Of Aspect-Oriented Languages, pages 1–

6, Mar. 2004.

[8] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-

gramming. In M. Akşit and S. Matsuoka, editors, Proceed-

ings European Conference on Object-Oriented Programming,

volume 1241, pages 220–242, Berlin, Heidelberg, and New

York, 1997. Springer-Verlag.

[9] B. Meyer. Object-Oriented Software Construction. Number

ISBN 0136290493. Prentice Hall, first edition, 1988.

[10] M. Mezini and K. Ostermann. Conquering aspects with cae-

sar. In AOSD ’03: Proceedings of the 2nd international con-

ference on Aspect-oriented software development, pages 90–

99, New York, NY, USA, 2003. ACM.

[11] F. Munoz, O. Barais, and B. Baudry. Vigilant usage of as-

pects. Workshop on Aspects, Dependencies and Interactions.

ECOOP 2007, Berlin, Germany, July 2007.

[12] F. Munoz, B. Baudry, and O. Barais. A classifica-

tion of invasive patterns in aop. Research report inria-

00266555, IRISA Research Center, http://hal.inria.fr/inria-

00266555/en/, March 2008.

[13] R. Pawlak. Spoon: annotation-driven program transformation

— the aop case. In AOMD ’05: Proceedings of the 1st work-

shop on Aspect oriented middleware development, New York,

NY, USA, 2005. ACM.

[14] M. Rinard, A. Salcianu, and S. Bugrara. A classification sys-

tem and analysis for interactions in aspect-oriented programs.

In Foundations of Software Engineering (FSE), pages 147–

158. ACM, Oct. 2004.

[15] M. Störzer and J. Graf. Using pointcut delta analysis to sup-

port evolution of aspect-oriented software. In ICSM, pages

653–656. IEEE Computer Society, 2005.

[16] Sun Microsystems. Java Remote Method Invocation Specifi-

cation, Nov. 1996.

[17] T. Tourwé, J. Brichau, and K. Gybels. On the existence of

the AOSD-evolution paradox. In L. Bergmans, J. Brichau,

P. Tarr, and E. Ernst, editors, SPLAT: Software engineering

Properties of Languages for Aspect Technologies, Mar. 2003.

10


