
HAL Id: inria-00456505
https://inria.hal.science/inria-00456505

Submitted on 15 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validation challenges in model composition: The case of
adaptive systems

Freddy Munoz, Benoit Baudry

To cite this version:
Freddy Munoz, Benoit Baudry. Validation challenges in model composition: The case of adaptive
systems. In Proceedings of ChaMDE 2000 - Workshop on Challenges in Model Driven Engineering in
conjounction with MODELS’08, 2008, Toulouse, France, France. �inria-00456505�

https://inria.hal.science/inria-00456505
https://hal.archives-ouvertes.fr

Validation challenges in model composition: The case of
adaptive systems∗

Freddy Munoz, Benoit Baudry

INRIA Bretagne Atlantique

Campus de Beaulieu F-35042, Rennes cedex
{fmunoz,bbaudry}@irisa.fr

Abstract. Model Driven Engineering helps dealing with complexity by
promoting models as abstraction units. Aspect Oriented Modeling helps
separating concerns that crosscut across different models. MDE and AOM have
well identified challenges that need to be addressed. However, there are new
challenges that appear when combining both techniques. In this paper we
present the challenges that appear when validating the model composition in the
context of MDE and AOM applied to adaptive systems.

Keywords: Model Driven Engineering, Aspect Oriented Modeling, Model
Composition Validation, Model Validation, Model Driven Engineering for
Adaptive Systems.

1 Introduction

Model Driven Engineering (MDE) promotes abstraction as a basis for managing
complexity. MDE proposes the systematic use of models as primary engineering
artifacts. Such models can have a variety of natures and range in abstraction and
complexity. Models from higher abstraction level are refined (transformed) into lower
levels until the implementation. Besides, models can be transformed from one domain
to another in order to ease the resolution of a defined problem.

Aspect Oriented Modeling (AOM) helps separating crosscutting concerns at
model level by encapsulating them into different modeling dimensions referred as
aspect. AOM enables a clear modularization of the different concerns constituting a
design model. It also allows designers to reason about each concern separately, and
later composed into a global model.

Research challenges have been widely identified for AOM and MDE [11]. Model
transformation testing[5], model verification and validation [9], and AOM weaving
mechanism definition [2] are just a few examples of the challenges faced by these
technologies.

Nevertheless, not all the challenges have been identified as far as validation in
MDE and AOM is concerned. Challenges regarding the composition and refinement
of aspect models need to be identified. This is critical to ensure that composed

∗ This work was partially funded by the DiVA project (EU FP7 STREP)

models will perform as expected, and therefore, their refined implementation will do
so [4, 8]. This is a fundamental issue for the adoption of AOM as a mechanism for
separation of concerns and MDE as a complexity coping mechanism.

In this paper we present the challenges that arise from the validation of model
composition. We specially address the challenges that arise in the case of adaptive
systems, where models are used to abstract from the executing platform and aspects
represent the dynamic variability of the system. Such challenges range from the
combinatorial explosion produced by the composition order of different aspects, to
the specification of the model resulting from the composition.

The remainder of this paper is organized as follows. Section 2 presents MDE and
AOM applied to adaptive systems. Section 3 presents the challenges that arise when
validating AOM and MDE in the context of adaptive systems. Finally, section 4
concludes.

2 MDE and AOM for adaptive systems

Designing, developing, maintaining and executing adaptive systems is very
complex and error prone. Model Driven and Aspect Oriented techniques can help
dealing with this complexity. In this section we present the contribution of MDE and
AOM to handle the complexity when dealing with adaptive systems.

Adaptive systems are software systems capable of change their internal structure
and behavior in response to changes in their environment [1]. They are typically
deployed in heterogeneous computing devices ranging from mobile devices such as
phones or PDAs to large computer systems. Generally, several variation points are
defined in order to develop an adaptive system. Each variation point represents a
different option in the system implementation that might be chosen to adapt the
system. The selection of different variation points to derive the adapted system leads
to a huge number of possible configurations. Reasoning over that huge set of
configurations to choose the best possible configuration to adapt is too time
consuming because of the large number of evaluations needed. Moreover, the
adaptation logic relies on reconfiguration policies that are generally complex low-
level and hand-written in the application producing large and complex reconfiguration
files. These factors make the construction, execution and maintenance of adaptive
systems highly complex. MDE and AOM help dealing with this complexity by the
meaning of abstraction and separation of concerns [19].

MDE techniques provide the means to automate and optimize the creation of
reconfiguration scripts. Besides, MDE helps abstracting from the target platform by
defining models independent of target devices and technologies. Models representing
the system in execution (models at runtime) help to manage the execution at more
abstract level; therefore, they enable designers to reason about the system properties
and adaptation logic at higher level.

Aspect-Oriented modeling techniques [10, 13, 15, 18] help encapsulating distinct
variation points into aspects separated from the base model functionalities. Different
aspects might be composed with the base model in order to obtain different

configurations. This reduces the reasoning space to a limited number of aspects,
therefore avoiding the combinatorial explosion due to different variants.

Fig. 1. Overall MDE/AOM approach for adaptive systems

Figure 1, presents an overall approach for adapting systems by using MDE and
AOM techniques. At design-time, the application base (AM) and variant architecture
(AS) models are designed. At this time, the adaptation model, which states when, and
how to adapt is built. At runtime, the adaptation mechanism processes the adaptation
model in order to adapt when needed (1). When an adaptation is required, the
adaptation mechanism chooses (driven by the adaptation model) a set of aspects
(variants) and weaves them into the base (2). This weaving results in multiple models
that could be used to adapt the executing system. The adaptation mechanism chooses
only one model (3) and then automatically generates the reconfiguration scripts used
to adapt the executing system (4).

3 Challenges

MDE and AOM can help dealing with the complexity involved in the life cycle of
adaptive systems. However, their usage raises new challenges regarding the validation
of model composition. In the following we summarize the challenges and research
questions related to the validation in the context of adaptive system.

Validation of composed models (3 in figure 1): The selection of the best possible

configuration is critical for adaptive systems. The aspects modifying the base
configuration must produce configurations that will not break down the system and
that response in the best possible way to environmental changes . Therefore, it is
crucial to ensure that the composed models fit the adaptation requirements. A model

that is valid with respect to the adaptation requirements will lead to a correct
adaptation. Testing techniques such as combinatorial testing [12, 24] and search based
testing [17] may help validating that the composed model fits the adaptation
requirements. Such testing techniques provide the means to explore a huge adaptation
space and test whether the chosen configurations are fitted adaptations. Formal
behavioral specification techniques [25] may also be useful to verify that the
composed models will fit the adaptation invariants.
 It is an intuition to think that, if the chosen aspects are valid and the base model is
valid, then the composed model will be valid. Is this always true? How can it be
ensured? These questions are fundamental because they may allow to reason about
the aspects and model validity separately and then compose a valid model. However,
event if this is true, it is still an issue how to validate the aspect models and how to
validate the base model. Moreover, the composition engine must also be valid in order
to produce valid compositions.

Combinatorial explosion of composed models (2 in figure 1): The weaving of

different aspects leads to different composed models. Likewise, the weaving order of
aspects may also generate different models. Therefore, the rate of models resulting
from the composition of different aspects and composition orders grows exponentially
with the amount of aspects to weave. Moreover, there is no assurance that the
composed models will be valid or fits the adaptation requirements. This is a serious
issue because it is necessary to validate a huge amount of composed models. Such
validation may consume an unrealistic amount of time.

Aspects effects and interactions (2, 3 in figure 1): Different aspects have

different effects on the base model. Some aspects may add new system properties
whereas others may remove them. The effect of aspects may depend on the order in
which they are weaved. For instance, consider two aspects, one relating the
communication (C) and another relating the security concerns (S). When C is woven
first, the system network response is very short, whereas when S is woven first, the
system network response is slower but more secure. Some weaving orders or
combinations of aspects could add or remove system properties unexpectedly.
Controlling the emergence of properties introduced/ removed by aspects is very
important to ensure that the composition result will be valid and aspects will perform
as expected. Similar problems have been studied at code level. Solutions such as the
specification of the aspect behavior [3, 6, 20] are used to increase the maintainability
of aspect-oriented programs. The properties added/ removed by the aspects are
controlled by the specifications.
 Aspects adapting a system will interact in a variety of ways. Some interactions may
include/ exclude the weaving of some aspects; other interactions may interfere or
partially invalidate the effect of aspects over the system. Moreover, interactions and
the effect of aspects may change according to the target model they are weaved into.
Therefore, detecting aspects interactions in advance is very important to avoid
composition conflicts and know before hand the aspects dependencies [22, 23]. This
issue is related to critical pair analysis [7, 16, 21] in which the conflicts between
different interacting features are detected via graph analysis. Critical pair analysis
detects functional inclusive/ exclusive aspects configurations. However, interaction

issues can be beyond functional interactions. Aspects can have a qualitative impact
over the system, for instance making the quality of service better or worst. At code
level, the characterization of interactions could be used to determine patterns of
interactions for instance to detect aspect interferences [14].

Runtime / Design time validation: Since adaptation happens at runtime, adaptive
systems have to respond to hard time and hardware constraints when adapting, a
fundamental question is how much of the validation and analysis can be done
statically? The ideal will be to calculate at design time all the possible interactions
and effect of aspects and their possible weaving orders. However, this may not be
possible due to the huge amount of possible weaving orders

An idea to cope with these issues is defining contracts on the aspect models. These

contracts may be an abstract specification of the effect of the aspects over the system
and the interactions between aspects. For instance, they can explicitly declare that an
aspect will increase the overall system security but making it slower. They could also
allow us to calculate optimal and valid weaving orders. By specifying include/
exclude relations between aspects. Moreover, they may be helpful to detect
interactions conflicts at design time, thus saving some computation time when
adapting at runtime. The abstract description of the aspects’ effect will help
determining whether aspects may be valid or not in relation to a base model.

4 Conclusions

In this paper we have identified the challenges that appear when validating the
model composition in the context of adaptive systems. Issues such as the weaving
order of aspect models, interaction issues and the validation of the composed model
are not trivial. Tackling these issues is fundamental to assess the usage of MDE and
AOM.

We have pointed out possible ways to address the validation challenges presented
here. We specially suggest the definition of contracts to tackle several challenges and
ease the solution of others. In future work we will explore how contracts must look
like, which information they must contain and how to successfully use them at design
time and runtime.

References

1. Aksit, M. and Z. Choukair, Dynamic, Adaptive, and Reconfigurable Systems Overview and

Prospective Vision, in 23rd Int’l Conf. Distributed Computing Systems Workshops (ICDCSW).
2003: Providence, Rhode Island USA.

2. Aldawud, O., et al. AOM: 11th International Workshop on Aspect-Oriented Modeling. in 10th
International Conference On Model Driven Engineering Languages And Systems. 2007.
Nashville, TN, USA.

3. Aldrich, J., Open Modules: Modular Reasoning About Advice, in ECOOP 2005: 19th European
Conference on Object-Oriented Programming. 2005: Glasgow, UK.

4. Baleani, M., et al. Correct-by-construction transformations across design environments for
model-based embedded software development. in Design, Automation and Test in Europe, 2005.
Proceedings. 2005.

5. Baudry, B., et al. Model Transformation Testing Challenges. in IMDT workshop in conjunction
with ECMDA-FA 06. 2006. Bilbao, Spain.

6. Clifton, C. and G.T. Leavens. Observers and Assistants: A Proposal for Modular Aspect-
Oriented Reasoning. in FOAL 2002: Foundations of Aspect-Oriented Languages (AOSD-2002).
2002. Enschede, The Netherlands.

7. Detlef, P., Hypergraph rewriting: critical pairs and undecidability of confluence, in Term graph
rewriting: theory and practice. 1993, John Wiley and Sons Ltd. p. 201-213.

8. Dion, B., Correct-by-Construction Methods for the Development of Safety-Critical Applications.
SAE transactions, 2004. SAE Paper # 4AE-129(SAE World Congress).

9. Faivre, A., S. Ghosh, and A. Pretschner. MoDeVVA: 5th workshop on Model Driven
Engineering, Verification, And Validation: Integrating Verification And Validation In MDE. in
1st International Conference on Software Testing, ICST 2008. 2008. Lillehammer, Norway.

10. France, R., et al., Providing Support for Model Composition in Metamodels, in EDOC’07: 11th
Int. Enterprise Computing Conference. 2007: Annapolis, Maryland, USA.

11. France, R. and B. Rumpe, Model-driven Development of Complex Software: A Research
Roadmap, in 2007 Future of Software Engineering. 2007, IEEE Computer Society.

12. Grindal, M., Handling Combinatorial Explosion in Software Testing, in Computer Science.
2007, University of Skövde and Enea: Skövde, Sweden.

13. Jayaraman, P., et al., Model Composition in Product Lines and Feature Interaction Detection
Using Critical Pair Analysis, in Model Driven Engineering Languages and Systems. 2007. p.
151-165.

14. Katz, S., Diagnosis of Harmful Aspects Using Regression Verification, in FOAL: Foundations
Of Aspect-Oriented Languages, C.C.a.R.L.a.G.T. Leavens, Editor. 2004: Lancaster, UK.

15. Lahire, P., et al., Introducing Variability into Aspect-Oriented Modeling Approaches, in Model
Driven Engineering Languages and Systems. 2007. p. 498-513.

16. Leen, L., E. Hartmut, and O. Fernando, Efficient Conflict Detection in Graph Transformation
Systems by Essential Critical Pairs. Electron. Notes Theor. Comput. Sci., 2008. 211: p. 17-26.

17. McMinn, P., Search-based software test data generation: a survey. Software Testing
Verification Reliability, 2004. 14: p. 105 -- 156.

18. Morin, B., O. Barais, and J.-M. Jézéquel. Weaving Aspect Configurations for Managing System
Variability. in Second International Workshop on Variability Modelling of Software-intensive
Systems. 2008. Essen, Germany.

19. Morin, B., et al. An Aspect-Oriented and Model-Driven Approach for Managing Dynamic
Variability. in 11th International Conference on Model Driven Engineering Languages and
Systems (MODELS). 2008. Toulouse, France

20. Munoz, F., B. Baudry, and O. Barais, Improving Maintenance in AOP Through an Interaction
Specification Framework, in ICSM08: 24th IEEE International Conference on Software
Maintenance. 2008, IEEE Computer Society: Beijing, China.

21. Praveen, J., et al., Model Composition in Product Lines and Feature Interaction Detection
Using Critical Pair Analysis. Model Driven Engineering Languages and Systems, 2007: p. 151-
-165.

22. Sanen, F., et al. Classifying and documenting aspect interactions. in ACP4IS06 Proceedings of
the Fifth AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software.
2006. Bonn, Germany.

23. Truyen, E., et al., Support for distributed adaptations in aspect-oriented middleware.
Proceedings of the 7th international conference on Aspect-oriented software development, 2008:
p. 120-131.

24. Yilmaz, C., M.B. Cohen, and A.A. Porter, Covering Arrays for Efficient Fault Characterization
in Complex Configuration Spaces. IEEE Transactions on Software Engineering, 2006. 32: p. 20-
-34.

25. Zhang, J. and B.H.C. Cheng, Model-based development of dynamically adaptive software, in
ICSE '06: Proceedings of the 28th international conference on Software engineering. 2006,
ACM: Shanghai, China. p. 371--380.

