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Abstract. Systems of equations with sets of integers as unknowns are considered. It is
shown that the class of sets representable by unique solutions of equations using the oper-
ations of union and addition S + T = {m + n |m ∈ S, n ∈ T} and with ultimately periodic
constants is exactly the class of hyper-arithmetical sets. Equations using addition only can
represent every hyper-arithmetical set under a simple encoding. All hyper-arithmetical sets
can also be represented by equations over sets of natural numbers equipped with union,
addition and subtraction S −· T = {m−n |m ∈ S, n ∈ T, m > n}. Testing whether a given
system has a solution is Σ1

1-complete for each model. These results, in particular, settle
the expressive power of the most general types of language equations, as well as equations
over subsets of free groups.

1. Introduction

Language equations are equations with formal languages as unknowns. The simplest
such equations are the context-free grammars [4], as well as their generalization, the con-
junctive grammars [15]. Many other types of language equations have been studied in the
recent years, see a survey by Kunc [11], and most of them were found to have strong con-
nections to computability. In particular, for equations with concatenation and Boolean
operations it was shown by Okhotin [19, 17] that the class of languages representable by
their unique (least, greatest) solutions is exactly the class of recursive (r.e., co-r.e.) sets.
A computationally universal equation of the simplest form was constructed by Kunc [10],
who proved that the greatest solution of the equation XL = LX, where L ⊆ {a, b}∗ is a
finite constant language, may be co-r.e.-complete.

A seemingly trivial case of language equations over a unary alphabet Ω = {a} has
recently been studied. Strings over such an alphabet may be regarded as natural numbers,
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and languages accordingly become sets of numbers. As established by the authors [8], these
equations are as powerful as language equations over a general alphabet: a set of natural
numbers is representable by a unique solution of a system with union and elementwise
addition if and only if it is recursive. Furthermore, even without the union operation
these equations remain almost as powerful [9]: for every recursive set S ⊆ N, its encoding
σ(S) ⊆ N satisfying S = {n | 16n+ 13 ∈ σ(S)} can be represented by a unique solution of a
system using addition only, as well as ultimately periodic constants. At the same time, as
shown by Lehtinen and Okhotin [12], some recursive sets are not representable without an
encoding.

Equations over sets of numbers are, on one hand, interesting on their own as a basic
mathematical object. On the other hand, these equations form a very special case of
language equations with concatenation and Boolean operations, which turned out to be
as hard as the general case, and this is essential for understanding language equations.
However, it must be noted that these cases do not exhaust all possible language equations.
The recursive upper bound on unique solutions [19] is applicable only to equations with
continuous operations on languages, and using the simplest non-continuous operations,
such as homomorphisms or quotient [18], leads out of the class of recursive languages. In
particular, a quotient with regular constants was used to represent all sets in the arithmetical
hierarchy [18].

The task is to find a natural limit of the expressive power of language equations, which
would not assume continuity of operations. As long as operations on languages are express-
ible in first-order arithmetic (which is true for every common operation), it is not hard to
see that unique solutions of equations with these operations always belong to the family of
hyper-arithmetical sets [14, 20, 21]. This paper shows that this obvious upper bound is in
fact reached already in the case of a unary alphabet.

To demonstrate this, two abstract models dealing with sets of numbers shall be in-
troduced. The first model are equations over sets of natural numbers with addition
S + T = {m+ n |m ∈ S, n ∈ T} and subtraction S−· T = {m− n |m ∈ S, n ∈ T, m > n}
(corresponding to concatenation and quotient of unary languages), as well as set-theoretic
union. The other model has sets of integers, including negative numbers, as unknowns, and
the allowed operations are addition and union. The main result of this paper is that unique
solutions of systems of either kind can represent every hyper-arithmetical set of numbers.

The base of the construction is the authors’ earlier result [8] on representing every
recursive set by equations over sets of natural numbers with union and addition. In Sec-
tion 2, this result is adapted to the new models introduced in this paper. The next task
is representing every set in the arithmetical hierarchy, which is achieved in Section 3 by
simulating existential and universal quantifiers over a recursive set. These arithmetical
sets are then used in Section 4 as constants for the construction of equations representing
hyper-arithmetical sets. Finally, the constructed equations are encoded in Section 5 using
equations over sets of integers with addition only and periodic constant sets.

This result brings to mind a study by Robinson [20], who considered equations, in which
the unknowns are functions from N to N, the only constant is the successor function and
the only operation is superposition, and proved that a function is representable by a unique
solution of such an equation if and only if it is hyper-arithmetical. Though these equations
deal with objects different from sets of numbers, there is one essential thing in common: in
both results, unique solutions of equations over second-order arithmetical objects represent
hyper-arithmetical sets.
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Some more related work can be mentioned. Halpern [5] studied the decision problem of
whether a formula of Presburger arithmetic with set variables is true for all values of these
set variables, and showed that it is Π1

1-complete. The equations studied in this paper can
be regarded as a small fragment of Presburger arithmetic with set variables.

Another relevant model are languages over free groups, which have been investigated,
in particular, by Anisimov [3] and by d’Alessandro and Sakarovitch [2]. Equations over sets
of integers are essentially equations for languages over a monogenic free group.

An important special case of equations over sets of numbers are expressions and circuits
over sets of numbers, which are equations without iterated dependencies. Expressions and
circuits over sets of natural numbers were studied by McKenzie and Wagner [13], and a
variant of these models defined over sets of integers was investigated by Travers [22].

2. Equations and their basic expressive power

The subject of this paper are systems of equations of the form



ϕ1(X1, . . . ,Xn) = ψ1(X1, . . . ,Xn)
...

ϕm(X1, . . . ,Xn) = ψm(X1, . . . ,Xn)

where Xi ⊆ Z are unknown sets of integers, and the expressions ϕi and ψi use such oper-
ations as union, intersection, complementation, as well as the main arithmetical operation
of elementwise addition of sets, defined as S + T = {m + n |m ∈ S, n ∈ T}. Subtraction
S − T = {m − n |m ∈ S, n ∈ T} shall be occasionally used. The constant sets contained
in a system sometimes will be singletons only, sometimes any ultimately periodic constants
will be allowed (a set of integers S ⊆ Z is ultimately periodic if there exist numbers d > 0
and p > 1, such that n ∈ S if and only if n + p ∈ S for all n with |n| > d), and in
some cases the constants will be drawn from wider classes of sets, such as all recursive sets.
Systems over sets of natural numbers shall have subsets of N both as unknowns and as
constant languages; whenever subtraction is used in such equations, it will be used in the
form S−· T = (S − T ) ∩ N.

Consider systems with a unique solution. Every such system can be regarded as a
specification of a set, and for every type of systems there is a natural question of what kind
of sets can be represented by unique solutions of these systems. For equations over sets of
natural numbers, these are the recursive sets:

Proposition 1 (Jeż, Okhotin [8, Thm. 4]). The family of sets of natural numbers rep-
resentable by unique solutions of systems of equations of the form ϕi(X1, . . . ,Xn) =
ψi(X1, . . . ,Xn) with union, addition and singleton constants, is exactly the family of re-
cursive sets.

Turning to the more general cases of equations over sets of integers and of equations
over sets of natural numbers with subtraction, an upper bound on their expressive power
can be obtained by reformulating a given system in the notation of first-order arithmetic.

Lemma 1. For every system of equations in variables X1, . . . Xn using operations express-
ible in first-order arithmetic there exists an arithmetical formula Eq(X1, . . . ,Xn), where
X1, . . . ,Xn are free second-order variables, such that Eq(S1, . . . , Sn) is true if and only if
Xi = Si is a solution of the system.
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Constructing this formula is only a matter of reformulation. As an example, an equation
Xi = Xj +Xk is represented by (∀n)

[
n ∈ Xi ↔ (∃n′)(∃n′′)n = n′+n′′∧n′ ∈ Xj ∧n

′′ ∈ Xk

]
.

Now consider the following formulae of second-order arithmetic:

ϕ(x) = (∃X1) . . . (∃Xn)Eq(X1, . . . ,Xn) ∧ x ∈ X1

ϕ′(x) = (∀X1) . . . (∀Xn)Eq(X1, . . . ,Xn) → x ∈ X1

The formula ϕ(x) represents the membership of x in any solution of the system, while
ϕ′(x) states that every solution of the system contains x. Since, by assumption, the system
has a unique solution, these two formulae are equivalent and each of them specifies the
first component of this solution. Furthermore, ϕ and ϕ′ belong to the classes Σ1

1 and Π1
1,

respectively, and accordingly the solution belongs to the class ∆1
1 = Σ1

1 ∩Π1
1, known as the

class of hyper-arithmetical sets [14, 21].

Lemma 2. For every system of equations in variables X1, . . . Xn using operations and
constants expressible in first-order arithmetic that has a unique solution Xi = Si, the sets
Si are hyper-arithmetical.

Though this looks like a very rough upper bound, this paper actually establishes the
converse, that is, that every hyper-arithmetical set is representable by a unique solution of
such equations. The result shall apply to equations of two kinds: over sets of integers with
union and addition, and over sets of natural numbers with union, addition and subtraction.
In order to establish the properties of both families of equations within a single construction,
the next lemma introduces a general form of systems that can be converted to either of the
target types of systems:

Lemma 3. Consider any system of equations ϕ(X1, . . . ,Xm) = ψ(X1, . . . ,Xm) and in-
equalities ϕ(X1, . . . ,Xm) ⊆ ψ(X1, . . . ,Xm) over sets of natural numbers that uses the fol-
lowing operations: union; addition of a recursive constant; subtraction of a recursive con-
stant; intersection with a recursive constant. Assume that the system has a unique solution
Xi = Si ⊆ N. Then there exist:

(1) a system of equations over sets of natural numbers in variables
X1, . . . ,Xm, Y1, . . . , Ym′ using the operations of addition, subtraction and union
and singleton constants, which has a unique solution with Xi = Si;

(2) a system of equations over sets of integers in variables X1, . . . ,Xm, Y1, . . . , Ym′ using
the operations of addition and union, singleton constants and the constants N and
−N, which has a unique solution with Xi = Si.

Inequalities ϕ ⊆ ψ can be simulated by equations ϕ ∪ ψ = ψ. For equations over sets
of natural numbers, each recursive constant is represented according to Proposition 1, and
this is sufficient to implement each addition or subtraction of a recursive constant by a large
subsystem using only singleton constants. In order to obtain a system over sets of integers,
a straightforward adaptation of Proposition 1 is needed:

Lemma 3.1. For every recursive set S ⊆ N there exists a system of equations over sets of
integers in variables X1, . . . ,Xn using union, addition, singleton constants and constant N,
such that the system has a unique solution with X1 = S.

This is essentially the system given by Proposition 1, with additional equations Xi ⊆ N.
Now a difference X −· R for a recursive constant R ⊆ N shall be represented as (X +

(−R)) ∩ N, where the set −R = {−n | n ∈ R} is specified by taking a system for R and
applying the following transformation:
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Lemma 3.2 (Representing sets of opposite numbers). Consider a system of equations over
sets of integers, in variables X1, . . . ,Xn, using union and addition, and any constant sets,
which has a unique solution Xi = Si. Then the same system, with each constant C ⊆ Z

replaced by the set of the opposite numbers −C, has the unique solution Xi = −Si.

The last step in the proof of Lemma 3 is eliminating intersection with recursive con-
stants. This is done as follows:

Lemma 3.3 (Intersection with constants). Let R ⊆ N be a recursive set. Then there exists
a system of equations over sets of natural numbers using union, addition and singleton
constants, which has variables X,Y, Y ′, Z1, . . . , Zm, such that the set of solutions of this
system is {

(X = S, Y = S ∩R, Y ′ = S ∩R, Zi = Si)
∣∣ S ⊆ N

}
,

where S1, . . . , Sm are some fixed sets.

In plain words, the constructed system works as if an equation Y = X ∩R (and also as
another equation Y ′ = X ∩R, which may be ignored). This completes the transformations
needed for Lemma 3.

The last basic element of the construction is representing a set of integers (both positive
and negative) by first representing its positive and negative subsets individually:

Lemma 4 (Assembling positive and negative subsets). Let sets S ∩ N and (−S) ∩ N be
representable by unique solutions of equations over sets of integers using union, addition,
and ultimately periodic constants. Then S is representable by equations over integers using
only union, addition and ultimately periodic constants.

3. Representing the arithmetical hierarchy

Each arithmetical set can be represented by a recursive relation with a quantifier prefix,
and arithmetical sets form the arithmetical hierarchy based on the number of quantifier
alternations in such a formula. The bottom of the hierarchy are the recursive sets, and
every next level is comprised of two classes, Σ0

k or Π0
k, which correspond to the cases of the

first quantifier’s being existential or universal. For every k > 1, a set is in Σ0
k if it can be

represented as
{w | ∃x1∀x2 . . . Qkxk R(w, x1, . . . , xk)}

for some recursive relation R, where Qk = ∀ if k is even and Qk = ∃ if k is odd. A set is
in Π0

k if it admits a similar representation with the quantifier prefix ∀x1∃x2 . . . Qkxk. It is

easy to see that Π0
k = {L | L ∈ Σ0

k}. The sets Σ0
1 and Π0

1 are the recursively enumerable
sets and their complements, respectively. The arithmetical hierarchy is known to be strict:
Σ0

k ⊂ Σ0
k+1 and Π0

k ⊂ Π0
k+1 for every k > 0. Furthermore, for every k > 1 the inclusion

Σ0
k ∪Π0

k ⊂ Σ0
k+1 ∩Π0

k+1 is proper, i.e., there is a gap between the k-th and (k+ 1)-th level.
For this paper, the definition of arithmetical sets shall be arithmetized in base-7 nota-

tion1 as follows: a set S ⊆ N is in Σ0
k if it is representable as

S = { (w)7 | ∃x1 ∈ {3, 6}∗∀x2 ∈ {3, 6}∗ . . . Qkxk ∈ {3, 6}∗(1x11y11 . . . xk1yk1w)7 ∈ R},

for some recursive set R ⊆ N, where (w)7 for w ∈ {0, 1, . . . , 6}∗ denotes the natural number
with base-7 notation w. The strings xi ∈ {3, 6}∗ represent binary notation of some numbers,

1Base 7 is the smallest base, for which the details of the constructions could be conveniently implemented.
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where 3 stands for zero and 6 stands for one. The notation (x)2 for x ∈ {3, 6}∗ shall be
used to denote the number represented by this encoding. The digits 1 act as separators.
Throughout this paper, the set of base-7 digits {0, 1, . . . , 6} shall be denoted by Ω7.

In general, the construction of a system of equations representing the set S begins with
representing R, and proceeds with evaluating the quantifiers, eliminating the prefixes 1x1,
1x2, and so on until 1xk. In the end, all numbers (1w)7 with (w)7 ∈ S will be produced.
These manipulations can be expressed in terms of the following three functions:

Remove1(X) = {(w)7 | (1w)7 ∈ X},

E(X) = {(1w)7 | ∃x ∈ {3, 6}∗ : (x1w)7 ∈ X},

A(X) = {(1w)7 | ∀x ∈ {3, 6}∗ : (x1w)7 ∈ X}.

The expression converting numbers of the form (1w)7 to (w)7 is constructed as follows:

Lemma 5 (Removing leading digit 1). The value of the expression

(X−{1} ∩ {0}) ∪
⋃

i∈Ω7\{0}

⋃

t∈{0,1}

[
(X ∩ (1iΩt

7(Ω
2
7)

∗)7)−
· (10∗)7

]
∩ (iΩt

7(Ω
2
7)

∗)7 (3.1)

on any S ⊆ (1(Ω∗
7 \ 0Ω

∗
7))7 is {(w)7 | (1w)7 ∈ S}. The value on S ⊆ (10Ω∗

7)7 equals ∅.

With Lemma 5 established and the expression (3.1) proved to implement the function
Remove1(X), the notation Remove1(X) is used in equations to refer to this subexpression.

Next, consider the function E(X) representing the existential quantifier ranging over
strings in {3, 6}∗. This function can be implemented by a single expression as follows:

Lemma E (Representing the existential quantifier). The value of the expression

(X ∩ (1Ω∗
7)7) ∪

([
(X ∩ ({3, 6}+

1Ω∗
7)7)−

· ({3, 6}+
0
∗)7

]
∩ (1Ω∗

7)7

)

on any S ⊆ ({3, 6}∗1Ω∗
7)7 is E(S) = {(1w)7 | ∃w

′ ∈ {3, 6}∗(w′
1w)7 ∈ S}.

Note that E(X) can already produce any recursively enumerable set from a recursive
argument, and therefore it is essential to use subtraction in the expression.

With the existential quantifier implemented, the next task is to represent a universal
quantifier. Ideally, one would be looking for an expression implementing A(X), but, unfor-
tunately, no such expression was found, and the actual construction given below implements
the universal quantifier using multiple equations. The first step is devising an equation rep-
resenting the function f(X) = {(x1w)7 | x ∈ {3, 6}∗, (1w)7 ∈ X}, which appends every
string of digits in {3, 6}∗ to numbers in its argument set.

Lemma 6. For every constant set X ⊆ (1Ω∗
7)7, the equation

Y = X ∪Append3,6(Y ), where

Append3,6(Y ) =
⋃

i,j∈{3,6}

[([(
Y ∩ (jΩ∗

7)7

)
+ (20∗)7

]
∩ (2jΩ∗

7)7

)
+ ((i− 2)0∗)7

]
∩ (ijΩ∗

7)7

∪
⋃

i∈{3,6}

[
(Y ∩ (1Ω∗

7)7) + (i0∗)7

]
∩ (i1Ω∗

7)7

has the unique solution Y = {(x1w)7 | x ∈ {3, 6}∗, (1w)7 ∈ X}.
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Lemma A (Representing the universal quantifier). Let S, S̃ ⊆ ({3, 6}∗1Ω∗
7)7 be any sets,

such that S̃ ∩S = ∅ and for x′, x ∈ {3, 6}∗ (x1w)7 ∈ S and (x′1w)7 /∈ S implies (x′1w)7 ∈

S̃. Then the following system of equations over sets of integers in variables Y , Ỹ and Z

Y = Z ∪Append3,6(Y )

Ỹ = E(S̃) ∪Append3,6(Ỹ )

Z ⊆ (1Ω+
7 )7

Y ⊆ S ⊆ Y ∪ Ỹ ,

has the unique solution Z = A(S) = {(1w)7 |∀x ∈ {3, 6}∗ : (x1w)7 ∈ S}, Y = {(y1w)7 |y ∈

{3, 6}∗,∀x ∈ {3, 6}∗ : (x1w)7 ∈ S}, Ỹ = {(y1w)7 | y ∈ {3, 6}∗, ∃x ∈ {3, 6}∗ : (x1w)7 ∈ S̃}.

Once the above quantifiers process a number (1xk1xk−1 . . . 1x11w)7, reducing it to
(1w)7, the actual number (w)7 is obtained from this encoding by Lemma 5.

Theorem 1. Every arithmetical set S ⊆ Z (S ⊆ N) is representable as a component of
a unique solution of a system of equations over sets of integers (sets of natural numbers,
respectively) with ϕj , ψj using the operations of addition and union and ultimately periodic
constants (addition, subtraction, union and singleton constants, respectively).

4. Representing hyper-arithmetical sets

Following Moschovakis [14, Sec. 8E] and Aczel [1, Thm. 2.2.3], hyper-arithmetical sets
B1, B2, . . . shall be defined as the smallest effective σ-ring, which is the recursion-theoretic
counterpart to Borel sets (the smallest family of sets containing all open sets and closed
under countable union and countable intersection).

Let f1, f2, . . . be an enumeration of all partial recursive functions and let τ1, τ2 be two
recursive functions. Then, for all k ∈ N,

Bτ1(k) = N \ {k}, Cτ1(k) = {k}

Moreover, for all numbers k ∈ N, if fk is a total function, then

Bτ2(k) =
⋃

n∈N

Cfk(n), Cτ2(k) =
⋂

n∈N

Bfk(n),

where the former operation is known as effective σ-union, while the latter is effective σ-
intersection. Note that the only distinction between Be and Ce is that the former is defined
as a union and the latter as an intersection. As the definitions are dual, Be = Ce.

The family of sets B = {Be, Ce | e ∈ I}, where I ⊆ N is an index set, is called an
effective σ-ring, if it contains {Bτ1(e), Cτ1(e) | e ∈ N} and is closed under effective σ-union
and effective σ-intersection. Then the hyper-arithmetical sets are defined as the smallest
effective σ-ring, which can be formally defined as the least fixed point of a certain operator

on the set A = 2N×2N×2N

, where a triple (e,Be, Ce) indicates that the sets Be and Ce have
been defined for the index e in the above inductive definition, and an operator Φ : A → A
represents one step of this inductive definition. Furthermore, this least fixed point can be
obtained constructively by a transfinite induction on countable ordinals, which is essential
for any proofs about hyper-arithmetical sets. It is known [14, Sec. 8E] [1, Thm. 2.2.3]
that for some (easy) choices of τ1 and τ2 the smallest effective σ-ring coincides with ∆1

1 sets.
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Fix those two functions and the corresponding B. Note that the definition is valid not for
every choice of τ1 and τ2: in particular, they must be one-to-one and have disjoint images.

With every set Be ∈ B one can associate a tree of Be, labelled with sets from B: its root
is labelled with Be, and each vertex Bτ2(e′) (Cτ2(e′), respectively) in the tree has children
labelled with {Cfe′ (n) | n ∈ N} ({Bfe′ (n) | n ∈ N}, respectively). Vertices of the form Bτ1(e′)

or Cτ1(e′) have no children; these are the only leaves in the tree.
A partial order ≺ is well-founded, if it has no infinite descending chain. Extending this

notion to oriented trees, a tree is well-founded if it contains no infinite downward path.

Lemma 7. For each pair of sets Be, Ce ∈ B the trees of Be, Ce are well-founded.

The well-foundedness of a set allows using the well-founded induction principle: given
a property φ and a well founded order ≺ on a set A, φ(n) is true for all n ∈ A if

(∀m ≺ n φ(m)) ⇒ φ(n).

This principle shall be used in the proof of the main construction, which is described in the
rest of this section. Note, that the basis of the induction are ≺-minimal elements n of A,
as for them φ(n) has to be shown directly.

Fix Bi0 as the target set in the root. Consider a path of length k in this tree, going
from Bi0 to Ci1 , Bi2 , . . . , Bik (or Cik , depending on the parity of k). Then, for each j-th
set in this path, ij = fτ−1

2
(ij−1)(nj) for some number nj, and the path is uniquely defined by

the sequence of numbers n1, . . . , nk. Consider the binary encoding of each of these numbers
written using digits 3 and 6 (representing zero and one, respectively), and let Resolve be a
partial function that maps finite sequences of such “binary” strings representing numbers
n1, . . . , nk to the number ik of the set Bik or Cik in the end of this path. The value of this
function can be formally defined by induction:

Resolve(〈〉) = i0, Resolve(x1, . . . , xk) = f
τ−1

2
(Resolve(x1,...,xk−1))

((xk)2),

Note that Resolve may be undefined if some τ2-preimage is undefined.
The goal is to construct a system of equations, such that the following two sets are

among the components of its unique solution:

Goal0 = {(1xk1xk−1 . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ BResolve(x1,...,xk)},

Goal1 = {(1xk1xk−1 . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ CResolve(x1,...,xk)}.

These sets encode the sets B0, B1, . . . needed to compute Bi0. In this way the (possi-
bly infinite) amount of equations defining sets in hyper-arithmetical hierarchy is encoded
in a finite amount of equations using only small number of variables. The set Bi in
the node with path to the root encoded by xk, xk−1, . . . , x1 ∈ {3, 6}∗ is represented by
{(1xk1 . . . 1xk10w)7 | (w)7 ∈ Bi} ⊆ Goal0.

The following set defines the admissible encodings, that is, numbers encoding paths in
the tree of Bi0 :

Admissible = {(1xk1xk−11 . . . 1x110w)7|k > 0, xi ∈ {3, 6}∗, Resolve(x1, . . . , xk) is defined}

The next two sets represent the leaves of the tree of Bi0 , and the numbers in those leaves:

R0 = {(1xk1xk−1 . . . 1x110w)7 |

k > 0, xi ∈ {3, 6}∗,∃e ∈ N : Resolve(x1, . . . , xk) = τ1(e), (w)7 ∈ Bτ1(e)},
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R1 = {(1xk1xk−1 . . . 1x110w)7 |

k > 0, xi ∈ {3, 6}∗,∃e ∈ N : Resolve(x1, . . . , xk) = τ1(e), (w)7 ∈ Cτ1(e)}.

Lemma 8. The sets Goali, Admissible, Ri are r.e. sets, Resolve is an r.e. predicate.

Consider the following system of equations:

X0 = E(Remove1(X1)) ∪R0 (4.1)

X1 = Z ∪R1 (4.2)

Ỹ = E(Remove1(X1)) ∪Append3,6(Ỹ ) (4.3)

Y = Z ∪Append3,6(Y ) (4.4)

Y ⊆ Remove1(X0 ∩Admissible) ⊆ Y ∪ Ỹ (4.5)

Z ⊆ (1Ω+
7 )7 (4.6)

X0,X1 ⊆ Admissible (4.7)

X0 ∩R1 = X1 ∩R0 = ∅ (4.8)

Its intended unique solution has X0 = Goal0 and X1 = Goal1, and accordingly encodes
the set Bi0 , as well as all sets of B on which Bi0 logically depends. The system implements
the functions E(X) and A(X) to represent effective σ-union and σ-intersection, respectively.
For that purpose, the expression for E(X) introduced in Lemma E, as well as the system
of equations implementing A(X) defined in Lemma A, are applied iteratively to the same
variables X0 and X1. Intuitively, the above system may be regarded as an implementation
of an equation X0 = A(E(X0)) ∪ const.

The proof uses the principle of induction on well-founded structures. The membership
of numbers of the form (1xk1xk−1 . . . 1x110w)7 in the variables X0 and X1, where k > 0,
xi ∈ {3, 6}∗ and w ∈ Ω∗

7 \ 0Ω
∗
7, is first proved for larger k’s and then inductively extended

down to k = 0, which allows extracting Bi0 out of the solution. The well-foundedness of the
tree of Bi0 means that although Bi0 depends upon infinitely many sets, each dependency is
over a finite path ending with a constant, that is, the self-dependence of numbers in X0,X1

on the numbers in X0,X1 reaches a constant R0, R1 in finitely many steps (yet the number
of steps is unbounded).

Lemma 9. The unique solution of the system (4.1)–(4.8) is

X0 = Goal0 = {(1xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ BResolve(x1,...,xk)}

X1 = Goal1 = {(1xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ CResolve(x1,...,xk)}

Y = {(xk+11xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗,∀xk+1 : (w)7 ∈ BResolve(x1,...,xk+1)}

Ỹ = {(xk+11xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗,∃xk+1 : (w)7 ∈ CResolve(x1,...,xk+1)}

Z = Goal1 \R1 = {(1xk . . . 1x110w)7 |

k > 0, e ∈ N, xi ∈ {3, 6}∗, Resolve(x1, . . . , xk) = τ2(e), (w)7 ∈ Cτ2(e)}

Then, in order to obtain the set Bi0 , it remains to intersect X0 = Goal0 with the
recursive constant set (10Ω∗

7)7, and then remove the leading digits 10 by a construction
analogous to the one in Lemma 5.

Theorem 2. For every hyper-arithmetical set B ⊆ Z (B ⊆ N) there is a system of equations
over subsets of Z (over subsets of N, respectively) using union, addition and ultimately
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periodic constants (union, addition, subtraction and singleton constants, respectively), such
that (B, . . .) is its unique solution.

5. Equations with addition only

Equations over sets of natural numbers with addition as the only operation can represent
an encoding of every recursive set, with each number n ∈ N represented by the number
16n + 13 in the encoding [9]. In order to define this encoding, for each i ∈ {0, 1, . . . , 15}
and for every set S ⊆ Z, denote:

τi(S) = {16n + i | n ∈ S}.

The encoding of a set of natural numbers Ŝ ⊆ N is defined as

S = σ0(Ŝ) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Ŝ),

Proposition 2 ([9, Thm. 5.3]). For every recursive set S there exists a system of equations
over sets of natural numbers in variables X,Y1, . . . , Ym using the operation of addition and
ultimately periodic constants, which has a unique solution with X = σ0(S).

This result is proved by first representing the set S by a system with addition and union,
and then by representing addition and union of sets using addition of their σ0-encodings.

The purpose of this section is to obtain a similar result for equations over sets of integers:
namely, that they can represent the same kind of encoding of every hyper-arithmetical set.

For every set Ŝ ⊆ Z, define its encoding as the set

S = σ(Ŝ) = {0} ∪ τ6(Z) ∪ τ8(Z) ∪ τ9(Z) ∪ τ12(Z) ∪ τ13(Ŝ).

The subset S ∩ {16n + i | n ∈ Z} is called the i-th track of S.
The first result on this encoding is that the condition of a set X being an encoding of

any set can be specified by an equation of the form X + C = D.

Lemma 10 (cf. [9, Lemma 3.3]). A set X ⊆ Z satisfies an equation

X + {0, 4, 11} =
⋃

i∈{0,1,3,4,6,7,
8,9,10,12,13}

τi(Z) ∪ {11}

if and only if X = σ(X̂) for some X̂ ⊆ Z.

Now, assuming that the given system of equations with union and addition is decom-
posed to have all equations of the form X = Y + Z, X = Y ∪ Z or X = const, these
equations can be simulated in a new system as follows:

Lemma 11 (cf. [9, Lemma 4.1]). For all sets X,Y,Z ⊆ Z,

σ(Y ) + σ(Z) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if Y + Z = X

σ(Y ) + σ(Z) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if Y ∪ Z = X.

Using these two lemmata, one can simulate any system with addition and union by a
system with addition only. Taking systems representing different hyper-arithmetical sets,
the following result on the expressive power of systems with addition can be established:



ON EQUATIONS OVER SETS OF INTEGERS 487

Sets representable Complexity of decision problems
by unique solutions solution existence solution uniqueness

over 2N, with {+,∪} ∆0
1 (recursive) [8] Π0

1-complete [8] Π0
2-complete [8]

over 2N, with {+} encodings of ∆0
1 [9] Π0

1-complete [9] Π0
2-complete [9]

over 2N, with {+,−· ,∪} ∆1
1 (hyper-arithmetical) Σ1

1-complete Π1
1 6 · 6 ∆1

2

over 2Z, with {+,∪} ∆1
1 Σ1

1-complete Π1
1 6 · 6 ∆1

2

over 2Z, with {+} encodings of ∆1
1 Σ1

1-complete Π1
1 6 · 6 ∆1

2

Table 1: Summary of the results.

Theorem 3. For every hyper-arithmetical set S ⊆ Z there exists a system of equations over
sets of integers using the operation of addition and ultimately periodic constants, which has
a unique solution with X1 = T , where S = {n | 16n ∈ T}.

6. Decision problems

Having a solution (solution existence) and having exactly one solution (solution unique-
ness) are basic properties of a system of equations. For language equations with continuous
operations, solution existence is Π0

1-complete [19], and it remains Π0
1-complete already in the

case of a unary alphabet, concatenation as the only operation and regular constants [9], that
is, for equations over sets of natural numbers with addition only. For the same formalisms,
solution uniqueness is Π0

2-complete.
Consider equations over sets of integers. Since their expressive power extends beyond

the arithmetical hierarchy, the decision problems should accordingly be harder. In fact,
the solution existence is Σ1

1-complete, which will now be proved using a reduction from the
following problem:

Proposition 3 (Rogers [21, Thm. 16-XX]). Consider trees with nodes labelled by finite
sequences of natural numbers, such that a node (x1, . . . , xk−1, xk) is a son of (x1, . . . , xk−1),
and the empty sequence ε is the root. Then the following problem is Π1

1-complete: “Given
a description of a Turing machine recognizing the set of nodes of a certain tree, determine
whether this tree has no infinite paths”.

In other words, a given Turing machine recognizes sequences of natural numbers, and
the task is to determine whether there is no infinite sequence of natural numbers, such that
all of its prefixes are accepted by the machine. The Σ1

1-complete complement of the problem
is testing whether such an infinite sequence exists, and it can be reformulated as follows:

Corollary 1. The following problem is Σ1
1-complete: “Given a Turing machine M working

on natural numbers, determine whether there exists an infinite sequence of strings {xi}
∞
i=1

with xi ∈ {3, 6}∗, such that M accepts (1xk1xk−1 . . . 1x11)7 for all k > 0”.

This problem can be reduced to testing existence of a solution of equations over sets of
numbers.

Theorem 4. The problem of whether a given system of equations over sets of integers with
addition and ultimately periodic constants has a solution is Σ1

1-complete.

Now consider the solution uniqueness property. The following upper bound on its
complexity naturally follows by definition:



488 A. JEŻ AND A. OKHOTIN

Theorem 5. The problem of whether a given system of equations over sets of integers
using addition and ultimately periodic constants has a unique solution can be represented
as a conjunction of a Σ1

1-formula and a Π1
1-formula, and is accordingly in ∆1

2. At the same
time, the problem is Π1

1-hard.

The exact hardness of testing solution uniqueness is still open. The properties of dif-
ferent families of equations over sets of numbers are summarized in Table 1.
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