N

HAL

open science

Optimal stopping problems for some Markov processes

Mamadou Cissé, Pierre Patie, Etienne Tanré

» To cite this version:

Mamadou Cissé, Pierre Patie, Etienne Tanré.

Optimal stopping problems for some Markov pro-

cesses. The Annals of Applied Probability, 2012, 22 (3), pp.1243-1265. 10.1214/11-AAP795 . inria-

00458901v4

HAL 1d: inria-00458901
https://inria.hal.science/inria-00458901v4

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00458901v4
https://hal.archives-ouvertes.fr

The Annals of Applied Probability

2012, Vol. 22, No. 3, 1243-1265

DOI: 10.1214/11-AAP795

© Institute of Mathematical Statistics, 2012

OPTIMAL STOPPING PROBLEMS FOR SOME
MARKOV PROCESSES

By MamaDOU CissE, PIERRE PATIE! AND ETIENNE TANRE
ENSAE-Sénégal, Université Libre de Bruzelles and INRIA

In this paper, we solve explicitly the optimal stopping problem
with random discounting and an additive functional as cost of obser-
vations for a regular linear diffusion. We also extend the results to
the class of one-sided regular Feller processes. This generalizes the re-
sult of Beibel and Lerche [Statist. Sinica 7 (1997) 93-108] and [Teor.
Veroyatn. Primen. 45 (2000) 657-669] and Irles and Paulsen [Sequen-
tial Anal. 23 (2004) 297-316]. Our approach relies on a combination
of techniques borrowed from potential theory and stochastic calcu-
lus. We illustrate our results by detailing some new examples ranging
from linear diffusions to Markov processes of the spectrally negative

type.

1. Introduction. Consider a one-dimensional regular diffusion X =
(Xt)e>0 with state space E = (I,7), an interval of R, defined on a filtered
probability space (€, (F¢)e>0,P). We denote by (P;)zecr the family of prob-
ability measures associated to the process X such that P, (Xo=2x) =1, and
by E, the associated expectation operator. Next, let Zfo be the family of all
stopping times with respect to the filtration F(= (F;);>0). In this paper, we
are first concerned with the study of the following optimal stopping problem,
for any z € F,

(1) sup Em[eiATg(XT) - CTL

TexX
where g is a nonnegative continuous function on E, A = (A;)¢>0 is a contin-
uous additive functional of the form

t
2) A= /0 a(X.) ds
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with @ a continuous function on E such that a(z) >0 for all z € E and, for
any t > 0,

(3) Cy :/0 o(Xs)e e ds

with ¢ a nonnegative continuous function on E. We also aim to solve this
problem in the case where X is a Feller process of the spectrally negative
type, that is, when it has only negative jumps. It is of common use to name g
as the reward function, C'= (Ct)¢>0 as the cost of observations and A as the
random discount factor. We mention that in the case A =0 and ¢ =0 the
problem (1) has been studied by Dynkin [11] and Shiryaev [34] in the general
framework of Markov processes. Moreover, the case ¢ =0, that is, without
cost of observations, has been intensively studied in the literature for one-
dimensional diffusions. In particular, Salminen [32] by means of the Martin
boundary, suggested a solution to this problem in terms of the excessive
majorant function. More recently, Beibel and Lerche [4, 5], relying on mar-
tingales arguments, solve this optimal stopping problem explicitly. We also
mention that, by using standard fluctuation theory, Kyprianou and Pisto-
rius [19] offer solution to some optimal stopping problem arising in financial
mathematics for appropriate diffusions. A related result on optimal stopping
problems for one-dimensional diffusions with discounting has been presented
by Dayanik and Karatzas [10]. They characterize excessive functions via gen-
eralized concavity and determined the value function as the smallest concave
majorant of the reward function. In the former case, the value function is
given as the solution of a free boundary value problem associated to a sec-
ond order differential operator which is the infinitesimal generator of the
one-dimensional diffusion X. The term free, which comes from the a priori,
unknown region where the problem is investigated, forces one to set up an
artificial boundary condition of Neumann type to get a well-posed prob-
lem. This is the so-called smooth fit principle. All these techniques are well
explained in the book of Peskir and Shiryaev [27]. The literature regarding
optimal stopping problems associated to diffusion with jumps is more sparse
and focused essentially on the study of specific examples. In this vein, we
mention the paper of Alili and Kyprianou [1] where the authors deal with
the issue of pricing perpetual American put options in a market driven by
Lévy processes. We also indicate that Baurdoux [3] solved an optimal stop-
ping problem associated to generalized Ornstein—Uhlenbeck processes of the
spectrally negative type.

In this paper, we propose to solve the optimal stopping problem (1) with
a cost of observations of the form (3) for one-dimensional regular diffusions.
Our strategy can be described as follows. First, by a time change device,
we reduce the optimal stopping problem with random discounting to a one
with a deterministic discount factor but associated to an appropriate time
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change diffusion. Then, by an argument of potential theory, we transform
the problem (1) to an optimal stopping problem of the same form with
a new reward function but without cost of observations. We proceed by
using a result of Shiryaev [34] which states that in our context the optimal
stopping time is the first exit time of the process from a Borel set. Finally,
with this information at hand, we can use a Doob’s h-transform technique,
with a proper choice of the excessive function, to transform our problem
to an optimization problem which has been studied in detail by Beibel and
Lerche [5].

The remaining part of the paper is organized as follows. In the next sec-
tion, we overview the basic facts about one-dimensional diffusions. In Sec-
tion 3, we state and prove our main result which consists of solving the
general optimal stopping problem (1). We also show, in Section 4, how to
generalize our result to the class of regular one-sided Feller processes. The
last section is devoted to the treatment of new examples ranging from lin-
ear diffusions to processes with one sided jumps, such as spectrally negative
Lévy processes and self-similar positive Markov processes of the spectrally
negative type.

2. Preliminaries. In this part, we provide some well-known facts about
linear diffusions which can be found, for instance, in Ité6 and McKean [15]
and in Borodin and Salminen [8]. We recall that (€2, (F;)¢>0,P) is a filtered
probability space. We consider a linear diffusion X = (X;):>0 with state
space E, as the solution to the stochastic differential equation (SDE)

(4) dXt = b(Xt) dt + J(Xt) th,

where W = (W;)¢>0 is a one-dimensional Brownian motion. It is supposed
that o and b are continuous and o(x) > 0 for all x € E. We assume that X
is regular, that is,

P, (T < +00) >0 Va,y e E,

where T, = inf{t > 0; X; = y}. The transition semigroup (7} )¢>0 maps Cp(E),
the space of bounded and continuous functions on F, into itself. It follows
that X is a Feller process. Moreover, for every ¢ > 0 and x € E the corre-
sponding measure A +—— P;(x, A), with A a Borel set, is absolutely continu-
ous with respect to the speed measure m, a positive o-finite measure on E.
More specifically, we have

Py(z, A) = /A prle, yymidy),

where p;(-,-) stands for the transition probability density which may be
taken to be positive, jointly continuous in all variables and symmetric. The
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scale function s of X is an increasing continuous function from E to R,
satisfying, for any a <x <b,
s(b) — s(x)

s(b) — s(a)

S (z) = exp{—?/x :2(2) dz}.

We also recall that the infinitesimal generator L of X is the second order
differential operator given, for a function f € C2°(E), the space of infinitely
continuously differentiable functions with compact support, by

Lf(x) = 30°(x) f"(x) + b(z) [ (x).
Next, from the general theory of one-dimensional diffusion (see [15], page 128),

the Laplace transform of the first hitting time 7;, is expressed, for any ¢ > 0,
as

P.(T, <Tp) =

and is given by

ht
¢ (7) <y
hg (y)’ 7
) Bufe ) ={
hy (@)
PR x>y,
hq (y)
where h (vesp., h; ) is the increasing (resp., decreasing) continuous solution

to the differential equation
(6) Lh(z) =qh(z), xz€FE,
with appropriate conditions at the nonsingular boundary points. These func-

tions, b, and h,, are called the fundamental solutions of the equation (6).
They are linearly independent and their Wronskian is defined by
_ d d . _
Wit s () = g () - () — B () - (1),
and the Wronskian with respect to d/ds(z) denoted by wy is the constant
given by
™ = e )
qa— s/ (m)

Moreover, for any q > 0, the Green function or the g-potential density u? is
defined as the Laplace transform of the transition probability density, that is,

+oo
uq(x,y)z/ e p(z,y)dt  Va,y€E.
0

In particular, we have
—17+ —
oo i @h ).z <y,
(8) u (.1‘,2/) {w_lh—i—(y)h;(l‘), x>y
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We say that the process X is recurrent if and only if limg_,o u?(x,y) = oo, for
all z,y € E, which is equivalent to P,(T}, < o0) =1, for all z,y € E. A diffu-
sion which is not recurrent is called transient. In this case, the potential u
defined as

u(x,y) = ;ig(l)uq(fc,y)

is finite for all z,y € E. Finally, we mention that if X is transient with
limy oo Xy = r then for any x <y

400
U(.T,y) :/0 pt(xvy) dtv
=s(r) = s(y).

3. Optimal stopping problem for linear diffusions. Our aim is now to
find the value of the function V;C defined as the solution of the optimal
stopping problem (1), that is,

VA ()= sup E,[e "Tg(Xr) - Orl,
TeTX

where A = (A¢)>0 is a continuous additive functional of the form (2) and the
cost of observations C; = fg c(Xs)e s ds with ¢ and g nonnegative contin-
uous functions. Our main result is stated in Theorem 3.9 below. It consists
of reducing the optimal stopping problem (1) into a new one which can be
described as follows. On the one hand, it has a modified reward function
but without both cost of observations and discounting factor. On the other
hand, it is associated to a new diffusion obtained from the original one by
a random time change and by a Doob’s h-transform. It turns out that solving
this latter optimal stopping problem amounts to finding the solution of an
optimization problem which has been studied by Beibel and Lerche [5]. More
precisely, our approach can then be split into the following three steps.

(1) First, we time change X by the inverse of the continuous increasing
functional A and we use the well-known fact that in our context the two
processes have identical hitting time distributions. Hence, we may consider
without loss of generality the problem (1) with linear discounting, that is,
Ay = qt for some constant ¢ > 0.

(2) Then, we characterize the potential associated to the functional C
and we show how to reduce our problem to an optimal stopping problem
without cost of observations but involving a new reward function.

(3) Finally, we borrow an idea of Williams [35] and Pitman and Yor [28]
for constructing conditioned diffusions by the method of h-transform. We
transform the problem described in item (2) to an optimal stopping problem
without discounting factor which has been solved by Shiryaev [34].
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3.1. Time change for nonnegative additive functional. We start our pro-
gram by considering that A is a nonnegative continuous additive functional
of X of the form (2) and we assume, without loss of generality, that Ay, = 0o
P, a.s. Since A is a continuous increasing function, it admits an inverse func-
tional which we denote by V' and given, for all ¢ > 0, by

Vi =inf{s > 0; A > t},

L1
= | ———ds,
[ aw

where Y; = Xy, for any ¢ > 0. Moreover, if X is the solution to the SDE (4),
then it follows, from the It6’s formula, that Y is the unique solution to the
SDE

avi= (3 ) o+ (= )iy

where W is a Brownian motion with respect to the filtration F¥ = (Fy, );>0.
The process Y remains a linear diffusion with respect to the filtration FY . In
particular, it is a Feller process (see, e.g., Lamperti [20]) and its infinitesimal
generator LY takes the form

1
9 LY f(z)= —L
) f@) = oL @)
for a smooth function f on E. Next, we consider an open interval B C F
and denote by Tg the first exit time of the process Y from B, it is plain

that we have the following identity:
TY = ATg a.s.

We are now ready to state the following.

LEMMA 3.1. For any x € E, we have, with the obvious notation,

sup E, [e_ATg(XT) —C7]
TexX

-l [ (Joue-a]

where Y is characterized by its infinitesimal generator (9).

(10)

Proor. From [31], Section II1.21, page 277, we have that for every FX-
stopping time T, Ap is an FY -stopping time. Thus, we obtain that

Vs
sup E, [e_ATg(XT) —C7] = sup E, [e_Sg(XVS) — / c(Xv)e_A” dv} .
TenX Sexy, 0

The proof follows by performing the change of variable u = A, in the integral
on the right-hand side of the previous identity. [
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Consequently, in the sequel we can assume, without loss of generality,
that the additive functional A is linear, that is, A; = ¢t for some ¢ > 0 and
the cost of observations is Cy = fot c(Xs)e ¥ ds.

3.2. Get rid of the cost of observations. Let us now introduce the func-
tion § defined, for any x € F, by

(11) 6(z) = Ey[Coo].

In the following, we provide an expression of § in terms of the characteristics
of X and give some conditions under which it is continuous and finite.

LEMMA 3.2. For any q >0 and x € E, we have

T

5() = w! (h;(z) /l "t W)e(y)m(dy) + b () / h;(y)c(y)m(dy>> ,

where wq stands for the Wronskian of h; and h;’ with respect to the scale
function s, as defined in (7) and m is the speed measure of X. Moreover,
if ¢ satisfies the integrability condition for any x € F,

(12 [ ey @ Anetwmidy) <o,
then 0 is continuous and finite on E.

Proo¥r. By using Fubini’s theorem, we obtain that

() = /O " e R, [o(X,)| ds = /E u(z, y)e(y)midy)

— " [ e vhg @ ApewImdy),
E

where we have used the identity (8). The proof of the claims follows readily.
O

REMARK 3.3. We note that if g = 0 and X is transient with lim;_,,, X; =,
then ¢ is given by

(13) 5(93)Z/E(S(T)—S(y))C(y)m(dy)-

In this case, we mention that Khoshnevisan, Salminen and Yor [16] identify
the law of the perpetual integral functional Cy, of a transient diffusion as
the law of the first hitting time of a random time change diffusion.

We are now ready to state the following.

LEMMA 3.4. If 6§ is finite on E then, for any x € E, we have

sup Eyle™g(Xr) - Or] = sup E.le 7" (9(X1) + 6(X1))] = 6().
TexX Texk
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PRrROOF. Note that for any F-stopping time 7', we have the identity in law

Coo L Op + e C 0 1,

where (60;)¢>0 stands for the shift operator, that is, for any ¢,s > 0,6,w(s) =
w(t + s). Since ¢ is finite, the strong Markov property yields

sup E,[e"g(Xp) — Cr] = sup Ey[e " (g(X7)+6(X1))] — 6().
TenX, TenX, n

A nice consequence of the previous result is that the general optimal
stopping problem (1) is equivalent to an optimal stopping problem without
cost of observations. Before stating our next result, let us introduce a few
further notation. Let O denote all the open subsets of E containing the
starting point x of X. Let YX» be the class of stopping times of the form
Tp =inf{t > 0; X; ¢ B} where Be O.

LEMMA 3.5. Let f be a continuous nonnegative function. Then, for any
q>0and x € F,

(14) sup Em[eﬂﬂﬂf(XT)] = sup Ex[eﬂITBf(XTB)]'
TexX TpeXo

PrROOF. Let X be defined by

X . X, if t < €q,
LR ) if t > ey,

where e, is an exponential variable of parameter ¢ > 0 taken independent

of F and 0 is a cemetery state. Note that X is always transient and clearly

with a function f as above and using the convention f(0) =0, we have, for
any x € £

E.[f(X:)] = Egle™ f(Xy)]-
Therefore, there is a one-to-one correspondence between the excessive func-
tions for X and the g-excessive ones for X (see Definition 3.6 below).
Moreover, the g-excessive functions of the Feller process X are lower semi-
continuous ([13], Theorem 2.1). Then, from Shiryaev [34], Corollary 3,
page 129, we obtain that

A~

sup Eo[f(Xr)]= sup Eolf(Xz,)]
TexX Tp€Xo

Hence,

sup Ex[e_qTf(XT)] = sup Ex[e_qTBf(XTB)].
TexX TpeXo |

3.3. Doob’s h-transform. Our aim in this part is to show how to trans-
form an optimal stopping problem with discounting factor to an optimal
stopping problem without discounting. To this end, we recall some basic
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facts on excessive functions and Doob’s h-transform and we refer to the
book of Borodin and Salminen [8], Section II.5, pages 32-35.

DEFINITION 3.6. A nonnegative measurable function h: E — R U {oco}
is called g-excessive, ¢ > 0, for the process X if the following two statements
hold true: for any x € E,

(i) e ?E,[h(X})] < h(z),t >0,
(i) Timpo e PE,[A(X,)] = h(z).

A g-excessive function is called g-invariant if for any « € E and ¢ > 0 we have
e "R [h(X;)] = h(z).

A function h is g-excessive (resp., g-invariant) if and only if the process
e 9 h(X;) is a positive supermartingale (resp., martingale). For every y €
(1,7) the functions x — u?(x,y), v+ hf (z) and = — h, (x) are g-excessive.
These functions are minimal in the sense that any other arbitrary nontrivial
g-excessive function h can be expressed as a linear combination of them.

DEFINITION 3.7. Let ¢ >0 and h be a g-excessive function. For any
x € E such that 0 < h(x) < 400, and ¢t > 0, we define the new probability
measure P? as
h(Xy)
h(x)
The process X under the probability measure P” is called the Doob’s h-

transform (or g-excessive transform) of X. It is also a regular diffusion pro-
cess and thus a Feller process.

dPh = ¢4t dP,  on F;.

Next, we use an idea of Williams [35] and Pitman and Yor [28] for con-
structing conditioned diffusions by the method of h-transform by means of
the Laplace transform of first passage times. In fact, we slightly generalize
their methodology by considering as g-excessive function the Laplace trans-
form of the first exit time of an open set by X. To this end, let B € O and
we recall that we denote by T the first exit time from B by X, that is,

Tp =inf{t > 0; X, ¢ B}.
For any = € FE, we write the Laplace transform of the stopping time T as
o7 () = Eyle™1"].
Thus, without loss of generality, the continuity of X allows us to restrict O
to open intervals (a,b) for some [ <a <b <r. It is well known that the

function ¢ is solution to the following Sturm-Liouville boundary value
problem

{Lu( ):qu() .I‘E(a,b),
u(a) = u(b) =
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In other words, ¥ can be written as a linear combination of the fundamental
solutions h, and h,. Setting

hB (y) — ¢B (y>
¢P ()’
it is plain that the mapping h? is a g-excessive function for X. Thus, as in
the Definition 3.7, we define the probability measure IP’QB as

(15) dP"” = =T pB(Xp, )dP,  on Frt-

The diffusion X under the family of probability measures Ph” = (IP’QB)gCG E
is transient with

(16) P’ (X, €B) =1,

except if ¢ =0, where £ stands for the lifetime of X under Ph”. Clearly,
the probability IP’QB (£ < 00) is either 1 or 0 for all x. Moreover, since X is

solution to the SDE (4), then under the probability P"”, the diffusion X
can be characterized as the solution of the SDE

dX; = (b(Xy) +1log (WP (Xy))o? (Xy)) dt + o(Xy) AW,

where W is a standard Brownian motion under the new probability IPQB.

REMARK 3.8. As explained in [28], we take P"” to be defined by the
requirement that for each x € B the process X runs up to the time Tp
has the same law under IP’QB as it does under PP, conditional on Tg < ey,
where e, is an independent exponentially distributed random variable with
parameter g > 0.

We are now ready to state and prove the main theorem of this section.

THEOREM 3.9. If § is finite then solving the problem (1) amounts to
solving the following optimal stopping problem.:

Xry) +6(X1y)
17 sup EM’ 9(Xr B2,
( ) TBGIE)O ’ h‘B(XTB)

where the probability IP’QB is defined in (15). If there exists an open inter-
val B* of E such that

g(u’) +6(u”) g(u) +d(u)
hB” (u*) Beouecon  hP(u)

then, the value function of (17) is given by (18) with the optimal stopping
time Tgx.

(18) where u* € 0B*,|u*| < o0,
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REMARK 3.10. (1) We mention that the optimization problem (18) has
been studied in detail by Beibel and Lerche [5]. We refer to their paper for
more precise information concerning its solution for all possible choices of
the reward function g. We also point out that, in the specific case a =0
and X is a standard Brownian motion, a similar optimization problem was
studied by Graversen and Peskir [12].

(2) If B* is a bounded interval, that is, B* = (u},u3), (18) reads

g(ut) +8(u3) _ glus) +5(u3) g(u) +6(w)

P = v = Sup sup
hB (U1) hB (UQ) BeOuecdB hB(U)

ProoOF OoF THEOREM 3.9. First, we deal with the additive functional C'.
Since ¢ is finite, we have, from Lemma 3.4, that solving the problem (1) is

equivalent to solving the following optimal stopping problem without cost
of observations:

sup Eg[e” " (9(Xr) +6(X7))].
TeTX

Then, from Lemma 3.5, we deduce that

sup Eule™ " (g(X1) +6(X7))] = sup Eule™ 7 (g(Xry) +6(X7y)))-
TexX TpeXo

Next, we use the Doob’s h-transform device. Let IP’}IZB be the probability
measure defined in (15), then we have

- Xry) +6(X
sup Eule 7% (g(Xr,) + 6(X1y,))] = sup EP° gl TBB) (Xap)]
TpeXo TpES0 hB(Xry)

which completes the proof of the first assertion. Finally, since X under IP)QB
is transient, it is stated above that T < co a.s., the value function of the
last optimal stopping problem is the solution to the following optimization
problem:
9(u) +0(u)
sup sup —/——=——-.
Beoucop P (u) O

4. Extension to one-sided regular Feller processes. Let us now con-
sider X to be the cadlag modification of a one-sided regular Feller process
defined on a filtered probability space (€2, (F)i>0,P) and taking values in
an interval E C R. It means that X is a regular Feller process having jumps
only in one direction which we assume, without loss of generality, to be
of the spectrally negative type. That is, X does not have positive jumps;
Py (sup;>o(X: — X¢—) > 0) = 0,Vx € E. For sake of simplicity, we also as-
sume that the process X has infinite lifetime. We wish to extend the results
of the previous section to this class of stochastic processes. In comparison
to the diffusion case, the difficulty is that we do not have, in general, any
information on the excessive functions for this class of Markov processes.
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Indeed, the infinitesimal generator associated to X is an integro-differential
linear operator for which there does not exist general results regarding the
solutions to the boundary value problem (6). Nevertheless, as explained in
the following, the one-sided feature of X allows us to identify increasing
excessive functions.

ProOPOSITION 4.1.  For any q > 0, there exists a unique increasing left-
continuous function h;’ :E—[0,00], such that, for any xz,y € E with x <y,
h}(z
Ex[eiqu] = —‘i( )
hq (y)

In the case X is recurrent, the function x — h;’(a:) s continuous.

PROOF. As a consequence of the regularity assumption, it is well known
(see, e.g., [7]) that for each singleton {y} € F, X admits a local time at y,
which we denote by LY = (LY);>. The continuous additive functional LY is
determined by its g-potential, ug, which is finite for any ¢ >0 and given by

u¥(z) =, [/o e 1 de] .

From the definition of LY and the strong Markov property, we obtain the
identity (see [7], Chapter V.3)
y
E, [e~T] = “(@),
uq(y)
Next, following It6 and McKean [15] or Pitman and Yor [28], for instance,

we write ¢y(z,y) = Ez[e"9Tv] and for a fixed 2o € F, we define
¢ (ya'ZO)v Y < 20,
n={ 7
1/¢q(207y)> Yy > 2.

Next, using the fact that X has no positive jumps, we get for any z < z <y,
and by means of the strong Markov property,

@bq(xuy) = qbq(x,z)cbq(z,y).
Thus, from the identity

z,y € L.

b(,2) = hf ()1} ()
we deduce that the choice of the reference point zy affects h;r only by
a constant factor. The monotonicity of the mapping h; follows readily
from its definition and the absence of positive jumps for X. We recall that
x— E,[e"9v] is a g-excessive function (see, e.g., [7], page 74). By linearity,
the mapping = — h;r(a:) is also g-excessive and thus finely continuous. So,
the Feller property of X implies that the increasing excessive function h;r is
lower semi-continuous (see [13]) and hence, left-continuous. Then, the claim
of the last assertion is a straightforward consequence of the fact that if X
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is also recurrent then the fine topology coincides with the initial topology
of F (see, e.g., [2], page 243). O

We point out that, in Patie and Vigon [26], Proposition 4.1 is extended
to a larger class of homogenous Markov processes with only negative jumps.
Following the proof of Theorem 3.9, and observing that h(=%%) (1) = h (u)/

h; (z), the proof of the theorem below goes through verbatim.

THEOREM 4.2. With the notation used in Theorem 3.9 we assume that

D* = sup g(u)Jr—i— 5(u) — s g(u)++ o(u)
uweE  hq (u) w>zuck  hq (u)

Then, for any x € E

sup Eu[e” " g(Xr) — Cr] = D*hf (x) — ().
TexX
If there exists a point u* > x such that D* = %, then the optimal
stopping time of the problem (1) is given by
Ty =inf{t > 0; X; > u™}.

REMARK 4.3. Since Lemma 3.1 applies also in this more general frame-
work, one could have also considered a random discounting factor in the
previous result.

5. Examples. We now illustrate our methodology by presenting the solu-
tions to some new optimal stopping problems. We consider both the diffusion
case and also the case when the processes are of the spectrally negative type.

5.1. An optimal stopping problem with cost of observations for one-sided
Lévy processes. Let Z = (Z;)i>0 be a spectrally negative Lévy process
starting from x € R, that is, a process with stationary and independent
increments having only negative jumps. Plainly, the law of Z is character-
ized by 1, the Laplace exponent of Z;, which admits the following Lévy—
Khintchine representation, for any u > 0,

0
(19) Y(u) = %U2U2 +bu+ / (€™ =1 —uzly_ip<o))v(dz),

—0o0
where b € R and 0 > 0 and the measure v is such that ffoo(l ANy v (dy) < oo.
Next, recalling that v is a convex function on [0,00) with lim, . ¥ (u) =
+00, we denote by 6 the nonnegative largest root of the equation v (u) = 0.
We also mention that being continuous and increasing on [0, 00), 1 has
a well-defined inverse function ¢:[0,00) — [f,00) which is also continuous
and increasing. We refer to the excellent monographs of Bertoin [6] and
Kyprianou [18] for background on Lévy processes. We now consider a per-
petual American option in a market driven by Z where the agent takes into
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account some costs from hedging, which might come from some transaction
costs or liquidity issues. We assume that the agent hedges continuously and
that he chooses the cost of observations ¢(z) = exp(yz) to be of exponential
form. The payoff at time ¢ > 0 of such a product can be written as

t
(20) eqtg(ezt)—/ eVZSequds,
0

where ¢ > 0 is the risk-free rate, v > —1 and g is a smooth function. Next,
assuming that ¢ = (1) it is easy to check that one may choose the proba-
bility P, as the risk neutral probability measure. Therefore, in the sequel,
we suppose that the characteristics b,o and v are chosen such that

(21) g=1(1).

5.1.1. The Brownian motion with drift case. We start with the case
where Z; = t(b) = bt + W, is a Brownian motion with drift b starting from 0
and the reward function g is defined, for any 0 < L < K, by

L—z, if o <L,

{ 0, if L<xz<K,

r— K, if x> K.

This function corresponds to the payoff function of a strangle option which
is a combination of a put with exercise price L and a call with exercise
price K. In this case, the condition (21) is fulfilled if ¢ = % +b. We want to
compute the constant

g w® T v s
Viy = sup Egle T gle"r ) — e’ e B ds|.
TeEX o 0

(22) g(x) =

The case without cost of observations, that is, ¢ = 0, has already been studied
by Beibel and Lerche [4]. Next, it is well known that the functions k" and hy
defined in (5) are given by

hi () = D1e™'?, hy (x) = Dae™*®,

where a1 = —b++/2¢ + b% and ap = —b— +/2q + b%, and Dy, D5 are positive
real numbers. The function §, defined in (11), is finite if ¢ > by + g and is
given by
e
)= ——F—5—,
0= =

Next, we introduce the function

z € R.

_ gle) ()
pe® + (1 —p)eat’
which, according to Theorem 3.9, gives the solution to our problem. Then,
2
if ¢ >~b+ % and b > —1 then oy > 1 and ap < —1. Thus, we verify easily

Gp(z)
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the following inequalities:

(23) sup(e”“*(8(x) + g(x))) > sup(e”***(d(x) + g(x))) >0
<0 x>0
and
(24) sup(e”“**(d(x) + g(x))) > sup(e”***(6(z) + g(x))) > 0.
x>0 <0
Note that
o peme g (1 p)ena) !
sup Gp(x) = sup G,(x :< inf
>0 () 2>0:(z)+g(2)>0 (@) 220:0(2)+9(2)>0  g(z) +6(x)
and
b P gty
sup G, (x) = sup G,(x :< inf ) .
z<0 P( ) 2<0;6(x)+g(x)>0 P( ) 2<0;6(x)+g(z)>0 g(l‘)—|—(5(1‘)

Then for all p € (0,1)

1
0< sup Gp(x) < —sup(e” ¥ (g(z) +0(z))) < 400
x>0;6(z)+g(x)>0 P x>0

and

0< sup Gp(z) < sup(e” **"(g(x) + d(x))) < +o0.
2<0;6(z)+g(z)>0 1—p z<0

We assume that log(L) < 0 =W} <log(K),q>1/2+band b > —1. Then (23)
and (24) hold and, as in Beibel and Lerche [4], Lemma 1, page 98, there exists
a number p* € (0,1) such that

sup Gp+(x) = sup Gp=(x).

>0 <0
Let x1,29 and p* be solutions with x; > log K, x9 <log L and p* € (0,1) of
the following system:

(@=70—7*/2)(e" —K) +e ™ (q—7b—7%/2)(L —e™) +e "
preciTl 4 (1 _p*)eale - precizz 4 (1 _p*)eagxg )
25 e2(Yb+7%/2—q) —e™  prage®® 4 (1 —p*)age>?
BN TR T e tem - e (1= e
e (g—9b—2%/2) —eT™  prone™® 4 (1 —pFlagetn
(21 —=K)(g—b—7%/2) +emm  pren®i 4 (1 —p¥en
Let
Ao @m0 = /(e —K)+ e (g=9b—7?/2)(L —€™) f e
- p*eoqil?l + (1 _p*)eaga:l - p*ealitg + (1 _ p*)€a2:l?2
Then,
T
sup Eo [eng(Wr}b)) - / c(Wh))e—e ds} =M — ;2
TexX 0 q—b—72/2
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and the optimal stopping time is

Tiay ag) = nf{t > 0, W) ¢ (21,29)}.

5.1.2. The spectrally negative Lévy case. In the second example, we con-
sider as the reward function
g() = (& — K)*.
We write, for any x € F,
T
(26) Vz(x) = sup E, [eqT(eZT —K)" — a/ e1Zsemas ds} ,
TeX o 0

where o > 0 and we recall that we choose g =1(1).

PROPOSITION 5.1.  We assume that py, =1(1) —1(v) >0 and

1 K
(27) r<at=— 1og<L>.
v ( o

Then
, * e’ e
Vz(x)=e""" ((e’” - K) " +a ) —a—
D~ D~

and the optimal stopping time is Ty~ =inf{t > 0;Z; > x*}.

PrOOF. First, by means of Fubini’s theorem and using the fact that
py >0, we easily get that, for any x € F,
oo 0 T
d(z) = o, / e~ M2t dt = qe® / e~ IO g = o —
0 0 Dy
Then, from Lemma 3.4, we deduce that
Vy(z) = sup E.le 9T ((e?T — K" +6(Z7))] — ().

TeX o

Next, we recall from Bertoin [6], pages 189 and 190, that, for any = <y,
Ey[e " Tv] = ¢ =2 r>0.
Then, writing

Glu) = (e“—K)*’—l—(S(u)’

eu—a:

we have that

—1
G'(u)=e"" <K]l{u210g;<} + %evlv .
y
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Since G'(u) >0 on (—oo,z*] and G'(u) <0 otherwise, we deduce from (27)
that

sup G(u) =sup G(u) < oo.
uck u>xT

The proof of the claim follows then by applying Theorem 4.2. [J

5.2. Optimal stopping problems associated to self-similar positive Markov
processes of the spectrally negative type. Let Z = (Z;)i>0 again be a spec-
trally negative Lévy process. We introduce, for any a > 0, the process
X = (Xt)t>0 defined by

(28) log(Xy) = Za4,, t>0,

where
S
Ay :inf{s >0: %, :/ e dr > t}.
0

We denote its law by Q, when it starts from x > 0. Lamperti [21] showed
that X is an a-self-similar positive Markov process on (0, 00), that is, a Feller
process which enjoys the following a-self-similarity property, for any ¢ > 0,

(29) (Xeot)t>0,Qx) @ ((cXt)1=0, Qz)-
It is plain that X is also of the spectrally negative type, in the sense that it
has no positive jumps. Next, we recall that the law of Z is characterized by
its Laplace exponent, 1, which is of the form (19). In the sequel, writing 6
for the largest root in [0,00) of the equation ¢(u) =0, we assume that the
following conditions
(30) f<a and lim M:oo

u—o0o
hold. The first condition secures that the lifetime of X is infinite since in the
case 0 < 0 < «, we consider X to be the unique recurrent extension which
hits and leaves 0 continuously (see Rivero [30] for more details). Under the
second condition, the paths of the process X are of unbounded variation on
any compact interval and the process X is regular. Next, we introduce more
notation taken from Patie [25]. Define for any integers n

n
an(,0) " = [[wlak),  ao(y,a) =1,
k=1
and we introduce the entire function Z which admits the series representation
[e.e]
Tya(z)= Zan(¢,a)z”, zeC.
n=0
It is important to note that whenever 8, the largest root of the equation

P(u) =0, satisfies 6 < a, it follows that all of the coefficients in the definition
of Z  are strictly positive. Then, Patie [25], Theorem 2.1, characterized the
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Laplace transform of
T, =1inf{t > 0; Xy > a}
as follows. Suppose that 0 <z < a. Then, for any ¢ > 0, we have

I «

(31) E:B[equa] _ w,a(w )

Zy,a(qa®)
Next, we introduce the Ornstein—Uhlenbeck process associated to X which
is defined, for any ¢ > 0, by
(32) U= 6/)\(_t)XeX(t)> t>0,
where ey (t) = &/\_1, X = aX and we write vy () the continuous
increasing inverse function of ey. These processes were introduced and stud-
ied by Carmona, Petit and Yor [9]. In particular, they proved that U is
a Feller process and under the conditions (30), U has also infinite lifetime
and is regular. In [23], the author computed the Laplace transform of the

first passage times above of U as follows. With the obvious notation, for any
r>0and 0<z<a,

_ log(14-X¢t)
- A

where
(34) Ty alg;x) = Z W&n(w a)x”

n=0
and I' stands for the gamma function. By means of classical criteria on
power series, it is easily seen that, under the second condition in (30),
that Zy o(q;x) is an entire function in x and is analytic on the domain
{g € C;R(q) > —1}. We shall also need the following representation of the
function Zy, (q; z)

1 o0
(35) Tyalgix) = ] / L’b,a(m:)e*rrq*l dr,
0

(g
which is readily obtained by using the integral representation of the gamma
function I'(q) = [7° e "r? 1 dr,R(q) > 0. We postpone to the end of this
section the description of some specific examples of these power series. Let
us assume that g is a continuous function and ¢,5 > 0. We are ready to
introduce the following optimal stopping problems:

A _
VX(2) = sup Eyle T g(Xr)),
TeTX

V()2 sup E,leTg(Ur)),
TEY o
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t
V;LA(JJ) 2 sup Ex[equTg(UT)], At:/ U “ds,
TeEX 0

O(ZT
Vf’q(az) 2 sup E, [eng< ¢ = >] .
TES w0 1+ 8 [; e¥%sds

We note that in the case Z is a Brownian motion with drift, the last optimal
stopping problem is intimately connected to the so-called integral option
problem studied by Kramkov and Mordetski [17].

PROPOSITION 5.2. Let us write for some function h

ou(h() =arg ma HL

(1) If ax = a«(Zy,a(q-)) exists and x < a, then
Ty o(qz®)
VX (2) = 2227 L o(a,).
o @ Ty.a(qag) ()
(2) If a, = a*(Iwa(%; X)) exists and x < a, then

Ly ,ala/o; xz®)
VY (z) = =2 ’ gla).
0 (=7, (afaxar)
(3) If as :a*(Iv,Z),a(%;X')) exists and x < a, then

7T . «
Vo) = (1) e LA )
ax) Lyaly/a;xag)
(4) If ax = ax(Zya($3x7)) exists and x < a, then

VSa(a) = wY (1)

_ ZTyale/x; x2%)
= Jrallp
v.a(d/X; x0%)
In all the above cases the optimal stopping time is given by T,, .

PROOF. The first item follows readily from the identity (33) and Theo-
rem 4.2. Next, let

Ty)fa = inf{t > 0; X; = y(1 + aXt)/*}.

The Mellin transform of the positive random variable T, y)fa has been com-
puted by Patie (see [23], Theorem 2). However, for sake of completeness,
we provide a slightly different proof here which relies on a device intro-
duced by Shepp [33]. In the proof of [25], Theorem 1, it is shown that the
mapping x — Ly, o (rz®) is an r-eigenfunction for the infinitesimal generator
of X. Thus, by the Dynkin formula, using the fact that the function Zy .
is increasing and applying the dominated convergence theorem, we deduce
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that
Eole T Ly o (ry* (1 + aXT,,))] = Ty o (ra®).

Integrating both sides of the previous identity by the measure e Xrpa/X=1 gy
using Fubini’s theorem and the change of variable v = T‘(Ty{(a + Xx), we get

- Zy.a(9/x x2%)
E.[(1 4 xT.X,)9/X] = =2 :
I we) ] Ly.a(a/x; xa®)
where we have used (35). Moreover, from the definition of U (32), we observe
the identity

(36) TyU = UX(T;fa) a.s.

Hence, we obtain that
B, eTY] = Lyala/x; xz%)
" = .
Zyala/x;xa)

We deduce the item (2) by an application of Theorem 4.2. We complete the
proof of the proposition from [23], Corollary 3.2. [

REMARK 5.3.  We note that the identity (36) combined with the item (2)
of the previous proposition allows us to solve the following nonhomogeneous
optimal stopping time problem

X
X (1) = Ex[ 14+ 2)T)~ 1 <7T>}

Indeed, we easily deduce that

Ty a(q/x; x7%)
VX (g) = 20O A7 T o),
30(2) Tyala/x; xag) (@)
where a, is characterized by

o —arg max — 9
u>x,uck I¢7Q(Q/X; Xua)

In what follows, we provide some examples of the power series and we
refer to [25] for the description of additional examples.

The modified Bessel functions. We consider Z to be a Brownian motion
with drift v > 0, that is, ¢(u) = Ju® + vu and we set a = 2. Its associated
self-similar process is well known to be a Bessel process of index v. We have
F'n—v+1)

.o\—1 _on
an(¢’2) _2 n‘ F(—V+1) ’

CLO:l.

Thus, we get
To.p(@) = (2/2)"*T(—v + 1)1, (V22),
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where I,(z) =>">7 % stands for the modified Bessel function of

index v (see, e.g., [22], Chapter 5) and

.1‘2
IM}(Q;J«“Q) = (D<q7 1- v, ?)a

where ®(q,v,xz) =3 ", (Z(f)]i’;l!x” stands for the confluent hypergeometric

function of the first kind (see, e.g., [22], Section 9.9, page 260) and (q), =

% stands for the Pochhammer symbol.

Some generalized Mittag—Leffler functions. In [24], the author introduced
a parametric family of one-sided Lévy processes which are characterized by
the following Laplace exponent, for any 1 < a <2, and 7> 1— «,

(37) Py(u) =((u+7=1a— (7= 1a)-
Its Lévy measure is absolutely continuous with a density f given by
eloty—1)y

f(y)zcm7 y <0,

where C' is a positive constant. We focus on the case v =1 in (37). We have
P1(u) =9(u) = (u)o and
an(th; )t = 7F(O‘IE7Z$ D)
Thus, the power series can be written as
Tyo(x) =T(a)Mqy,q(ax),
Lyalg; ) = (@) MG o (ax),
where M, g(x) =3 72, 1“(#1,8) [resp., M{ 5(z) =322, %] stands for

the Mittag—Leffler function of parameters a, > 0 (resp., of parameters
a, 3,q > 0) introduced by Prabhakar [29].

a():l.
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