
HAL Id: inria-00459163
https://inria.hal.science/inria-00459163

Submitted on 23 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emergent middleware: rethinking interoperability for
complex pervasive systems

Paul Grace, Carlos Flores, Gordon Blair

To cite this version:
Paul Grace, Carlos Flores, Gordon Blair. Emergent middleware: rethinking interoperability for com-
plex pervasive systems. 10th ACM/IFIP/USENIX International Conference on Middleware Poster
Session, Dec 2009, Urbanna, Illinois, United States. �inria-00459163�

https://inria.hal.science/inria-00459163
https://hal.archives-ouvertes.fr

Emergent Middleware: Rethinking Interoperability for
Complex Pervasive Systems

Paul Grace
Computing Department

Lancaster University, UK

p.grace@lancaster.ac.uk

Carlos Flores
Computing Department
Lancaster University, UK

c.florescortes@lancaster.ac.uk

Gordon Blair
Computing Department

Lancaster University, UK

gordon@comp.lancs.ac.uk

ABSTRACT
Complex systems are characterized by extreme heterogeneity and
dynamic composition, and hence pose significant challenges to
achieve interoperability. For example, where multiple middleware
solutions and protocols are employed, these must be connected in
order for applications to operate. We propose a new approach to
interoperability that focuses of monitoring, learning and synthesis
of middleware behaviour.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems – Distributed applications.

General Terms
Design.

Keywords
Middleware, Interoperability, Learning, Synthesis.

1. MOTIVATION
Complex pervasive systems are replacing the traditional view of
homogenous distributed systems, where domain specific
middleware solutions are used to design and deploy distributed
applications. For example, enterprise middleware for enterprise
systems, or Grid middleware for Grid applications. Instead,
pervasive applications are composed from multi-faceted systems
of systems where subsystems (each of which is a separately
designed and developed system e.g. a sensor network) works
together to meet the global aims of the application. The following
are illustrative of the types of pervasive applications embracing
these philosophies:

• In Environmental Monitoring and Control, field-deployed
sensors connect to high-performance grid and cluster
computers to better monitor and predict natural phenomena
such as floods, hurricanes, and volcanic eruptions.

• In Transport, embedded sensors in cars, vehicular networks
and traffic monitoring systems are integrated to improve both
traffic safety and traffic flow.

• In Healthcare, remote patient monitoring devices are
integrated into large-scale healthcare systems to improve
standards of patient care.

To provide these application services, heterogeneous systems
must interoperate; where interoperability is defined as “the extent
by which two implementations of systems or components from
different manufacturers can co-exist and work together by merely
relying on each other’s services as specified by a common

standard”[1]. This is a principal goal of middleware, and indeed,
if common standards were agreed and adopted universally then
this problem would be largely solved; however, systems-of-
systems have two key properties that ensure that current
middleware practices are not suitable and we must rethink
approaches to achieve interoperability in this domain:
1. Extreme heterogeneity. Pervasive sensors, embedded

devices, PCs, mobile phones, and supercomputers are
connected using a range of networking solutions, protocols
and middleware are themselves composed to create complex
systems-of-systems.

2. Dynamic Communication. Connections between systems are
not made until runtime; no design or deployment decision
e.g. choice of middleware can inform the interoperability
solution.

With such characteristics using common middleware technologies
(with or without common standards) is unsuitable in practice, as a
number of technologies co-exist for technical, commercial, or
legacy reasons. Indeed, interoperation is required to connect
heterogeneous middleware platforms and protocols (e.g. SOAP,
CORBA, EJB). Importantly, systems cannot also be aware which
technologies they need to interoperate with until runtime.

Hence, we require new ideas that go beyond the state-of-the art in
middleware that can identify at runtime what the interoperability
challenges are, what middleware solutions are required to connect
these systems, and generate or synthesize such software on the fly.

2. INTEROPERABILITY: THE CONNECT
APPROACH
Rather than create a middleware solution destined to be yet
another legacy platform, work on the Connect project
(http://www.connect-forever.eu) is based upon the concept of
emergent middleware; where such middleware provides runtime
interoperability between two systems that spontaneously interact
on the fly. Connect synthesizes ‘connectors’ that resolve
interoperability at the data (e.g. heterogeneous data formats),
application protocol (for example, different instant messaging or
printing protocols) and middleware protocol (e.g. different service
discovery or RPC protocols) layers.

The creation of interoperability ‘connectors’ is performed in three
distinct phases:

• Monitoring and discovery. The operation of the two or more
systems required to connect is monitored and/or discovered.
This involves the extraction of information about the systems
using traditional discovery protocols e.g. that provided by
protocols such as SLP, or in description languages such as

WSDL. Monitoring of protocol messages and behaviours is
also used to build a picture of how the protocols operate.

• Learning. Using the prior information as a starting point,
machine learning approaches are employed to learn how one
must interoperate with a particular system i.e. how exactly
the middleware and application protocols behave.

• Synthesis. Based upon the learned models of behaviour, the
differences and similarities of protocols can be identified;
such information can be used to synthesize a connector that
will operate as a mediator or bridge between systems.

Hence, this approach goes beyond current state of the art in
dynamic interoperability; application software does not need to be
altered at design time (as with the majority of middleware
solutions) nor is there a requirement for a common framework
with a priori knowledge (and implemented solutions) of the
bridging protocols to be deployed for connection to be achieved
e.g. as provided in INDISS [2], ReMMoC [3], and uMiddle [4].

3. CASE STUDY: SERVICE DISCOVERY
A particular example of middleware heterogeneity is in the field
of service discovery. Because of the heterogeneity of pervasive
environments in terms of network styles (e.g. fixed-infrastructure,
mobile ad-hoc) and device capabilities (e.g. resource constrained
versus resource rich) there exist a suite of discovery protocols.
Protocols have been developed for operating in environments
such as sensor networks, enterprise networks (e.g. Bonjour, Jini
and UDDI) and mobile ad-hoc networks among others. All these
protocols share a same common purpose: to advertise and
discover services. However, they differ in a number of distinct
concerns that are magnified by the different environments they are
employed within: i) the languages used to describe and advertise
service’s behaviour; ii) the content and format of the protocol
messages; iii) the distributed architecture of directories where
service advertisements are maintained (indeed some protocols
have no directory architecture); iv) the discovery behaviour
model, e.g. if the protocol behaves actively to request services, or
passively listens for service announcements; v) the network
communication protocol employed to route messages, e.g. IP
Multicast versus a peer-to-peer overlay; vi) the non-functional
features included in service description and discovery, e.g.
security, privacy and trust properties.

Figure 1. Connecting SLP, UPnP and Bonjour with SeDiM

As an initial approach to ensuring dynamic interoperability
between heterogeneous discovery protocols we have developed
SeDiM. This is an adaptive middleware that monitors the
environment to determine which protocols are in use i.e. what
protocols are being used for lookup and which are being used for
advertisement; from this information it creates service discovery
protocol bridges. This involves the specialisation of a common
component software architecture to particular protocol i.e. adding
protocol specific code to create the behaviour. SeDiM then uses a
translation pattern between instances of the specialised protocol
configurations. This process is illustrated in figure 1. Here two
legacy applications are deployed atop UPnP and SLP; SeDiM
detects this and automatically deploys appropriate component
architectures to bridge the two.

SeDiM relies on pre-implementation of the protocol specialisation
component at present. However, we are currently investigating
approaches to synthesise the discovery protocol connectors.

4. CONCLUSIONS: FUTURE ROADMAP
There has been considerable research on interoperability in
distributed systems; while progress has been made, the state of the
art remains rather patchy, particularly when addressing the
complexity of contemporary, highly heterogeneous distributed
systems. CONNECT aims to identify a common framework for
Emergent Middleware covering discovery, interaction and quality
of service; and automatically synthesize Emergent Middleware.

There are research challenges we hope to address; i.e. how to
learn the behaviour of a middleware protocol; how to discover the
message format of a protocol at runtime; how to leverage
semantics to determine a common understanding between two
systems; how to synthesise middleware; how to maintain end-to-
end QoS in connectors e.g. dependability and security.

These are big challenges that we believe can revolutionize the
state of the art in distributed systems in general, and middleware
more specifically.

5. ACKNOWLEDGMENTS
This work is funded under the CONNECT Project (http://connect-
forever.eu) (FP7 Theme / ICT-2007.8.6, FET Proactive 6: ICT
Forever Yours)

6. REFERENCES
[1] Tanenbaum, A. and van Steen, M. 2007. Distributed Systems:

Principles and Paradigms. Prentice-Hall.
[2] Bromberg, Y. and Issarny, V. 2005. INDISS: interoperable

discovery system for networked services. In Proceedings of the
ACM/IFIP/USENIX 2005 international Conference on
Middleware. G. Alonso, Ed. Middleware Conference.
Springer-Verlag New York, New York, NY, 164-183.

[3] Grace, P., Blair, G. S., and Samuel, S. 2003. ReMMoC: A
Reflective Middleware to support Mobile Client
Interoperability. In Proceedings of the Int. Symposium on
Distributed Objects and Applications, 1170-1187

[4] Nakazawa, J., Tokuda, H., Edwards, W. K., and
Ramachandran, U. 2006. A Bridging Framework for
Universal Interoperability in Pervasive Systems. In
Proceedings of the 26th IEEE international Conference on
Distributed Computing Systems.

