
HAL Id: inria-00459608
https://inria.hal.science/inria-00459608

Submitted on 24 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Selecting Fault Tolerant Styles for Third-Party
Components with Model Checking Support

Junguo Li, Xiangping Chen, Gang Huang, Mei Hong, Franck Chauvel

To cite this version:
Junguo Li, Xiangping Chen, Gang Huang, Mei Hong, Franck Chauvel. Selecting Fault Tolerant Styles
for Third-Party Components with Model Checking Support. International SIGSOFT Symposium on
Component-based Software Engineering (CBSE), Jun 2009, East Stroudsburg, United States. �inria-
00459608�

https://inria.hal.science/inria-00459608
https://hal.archives-ouvertes.fr

Selecting Fault Tolerant Styles for Third-Party
Components with Model Checking Support

Junguo Li, Xiangping Chen, Gang Huang*, Hong Mei, and Franck Chauvel

Key Laboratory of High Confidence Software Technologies, Ministry of Education,
School of Electronics Engineering and Computer Science, Peking University,

Beijing, 100871, China
{lijg05,chenxp04,huanggang,franck.chauvel}@sei.pku.edu.cn,

meih@pku.edu.cn

Abstract. To build highly available or reliable applications out of unreliable
third-party components, some software-implemented fault-tolerant mecha-
nisms are introduced to gracefully deal with failures in the components. In
this paper, we address an important issue in the approach: how to select the
most suitable fault-tolerant mechanisms for a given application in a specific
context. To alleviate the difficulty in the selection, these mechanisms are
abstracted as Fault-tolerant styles (FTSs) at first, which helps to achieve re-
quired high availability or reliability correctly because the complex interac-
tions among functional parts of software and fault-tolerant mechanism are
explicitly modeled. Then the required fault-tolerant capabilities are specified
as fault-tolerant properties, and the satisfactions of the required properties for
candidate FTSs are verified by model checking. Specifically, we take applica-
tion-specific constraints into consideration during verification. The satisfied
properties and constraints are evidences for the selection. A case study shows
the effectiveness of the approach.

Keywords: Fault tolerance, model checking, fault-tolerant style, software
architecture.

1 Introduction

Third-party components, such as COTS (Commercial Off-The-Shelf) components and
service components, are commonly used to implement large-scale (often business
related) applications, which contributes to their ability to reduce costs and time. These
components share some common characters: a) they are produced and consumed by
different people. Application developers work as consumers to integrate third-party
components into applications, according to interfaces provided by components pro-
viders. b) They are reused as black boxes or “gray” boxes. Consumers are unaware of
technical details about how such a component is implemented as well as what’s the
difference between its updated version and its previous version.

* Corresponding author.

70 J. Li et al.

These characters raise a challenge to build highly available or reliable applications
out of unreliable components that lack special Fault Tolerance (FT) design1. Most of
the existing studies on the topic try to attach fault-tolerant mechanisms (for example,
reboot, retry, or replication) to the external of COTS components [11] or services [24]
as “wrappers” or “proxies”. They specify such applications at Software Architecture
(SA) level because SA is good at modeling interactions among multiple components.
The approach works well except that a question is not well answered yet: which fault-
tolerant mechanism is the most suitable one for a given third-party component in a
specific application? The question stems from two facts. On the one hand, the effec-
tiveness of a fault-tolerant mechanism depends on its fitness for an application con-
text, including fault assumption, application domain, system characteristics, etc. [23].
None of the existing mechanisms, such as reboot, recovery blocks and N-Version
Programming, are capable of tolerating all faults in all contexts. On the other hand, an
anticipated fault characters in a third-party component may change due to its upgrade.
So we need to select a suitable mechanism for third-party components during applica-
tion development or maintenance, taking into consideration the components’ fault
assumption, the application’s specific constraints, etc.

In the paper, we present a specification and verification-based solution to the prob-
lem. The contributions of the paper are two-fold. First, we offer solid evidences to
selecting the most suitable fault-tolerant mechanism for a component running in a
specific application. The evidences are obtained by model checking and they are nec-
essary to resolve conflicts between continually evolving components and the specific-
ity required by fault-tolerant mechanisms. Once a mechanism cannot successfully
recover a fault in an upgraded component, the approach applies to the component
again to select another. Second, we take application-specific dependency relationship
into consideration in formal specification of an FTSA. This relationship affects the
selection and usage of fault-tolerant mechanisms.

In the solution, we specify fault-tolerant mechanisms at first, which improve third-
party components’ availability or reliability, as a special software architectural style,
i.e. fault-tolerant styles (FTSs). Then we define semantics of Fault-Tolerant Software

g

1. Specifying

2. Translating 3. Model Checking

Required Fault-
Tolerant

Capabilities

Application s
Software

Architecture

Properties
Satisfaction

List

Application-Specific
Constraints

Fault-Tolerant
Properties

Verification
Model

[fault-tolerant
capabilities are
not satisfied]

1.1. Specifying fault-tolerant
mechanisms as styles

1.2. Specifying fault-tolerant
capabilities as properties

[fault-tolerant
capabilities

are satisfied]

1.3. Specifying an application
architecture conforming to a
fault-tolerant style as an FTSA

Fig. 1. A process for selecting suitable fault tolerance mechanisms for an component in an
application

1 We only discuss software-implemented fault tolerance (SIFT) design in the paper.

 Selecting FTSs for Third-Party Components with Model Checking Support 71

Architectures (FTSAs) conforming to an FTS. The definition supports an application-
specific constraint (dependency relationships among components), which is seldom
considered before. Based on formally specified fault-tolerant properties like fault as-
sumptions, fault-tolerant capability, and application-specific constraints, we verify
whether an FTS preserves required properties by model checking. The result determines
the suitableness of a mechanism for a specific component in an application. An auto-
matic translation from FTSAs’ behavioral models into model checker’s input (verifica-
tion model) is also given. Fig. 1 presents an overview of the proposed approach.

The remainder of the paper is organized as follows: Section 2 gives an overview of
FT and a motivating example of selecting an FTS for an EJB component. Section 3
describes the concept of FTS and FTSA, and how to model FTSs before Section 4
describes how to formalize FTSA, fault-tolerant properties and application-specific
constraints. Section 5 focuses on translating the above formalized model into Spin
model checker’s input. Section 6 shows how to use the approach to solve the problem
in the motivating example. Section 7 clarify some notable points in the approach and
discuss the limits of the approach. At last, we give an insight into conclusions and
future work in Section 8.

2 Background and a Motivating Example

In this section, we give an overview of software-implemented fault tolerance mecha-
nism and a motivating example to clarify the problem solved in the paper.

2.1 Software-Implemented Fault Tolerance

Software-implemented fault tolerance is an effective way to achieve high availability
and reliability. An activated fault in a component causes errors (i.e. abnormal states
that may lead to failures), which is manifested as a failure to its clients. Failures pre-
vent software from providing services or providing correct services for clients [3]. A
fault-tolerant mechanism uses a set of software facilities to take two successive steps
to tolerate faults: the error detection step aims to identify the presence of an error,
while the recovery step aims to transit abnormal states into normal ones (some mask-
ing-based fault-tolerant mechanisms do not take the recovery step). The difference
among various mechanisms is the way to detect errors and to recover states. Existing
fault-tolerant mechanisms are classified as design diversity-based, data diversity-
based or environment (temporal) diversity-based mechanisms. Design diversity-based
mechanisms require different designs and implementations for one requirement. As a
result, even if a failure happened in one version, correct results from other versions
can mask it. Data diversity-based mechanisms use data re-expression algorithms to
generate a set of similar input data, execute the same operation on those inputs, and
use a decision algorithm to determine the resulting output. Environment (temporal)
diversity-based mechanisms try to obtain correct results by re-executing failed opera-
tions, with different environment configurations. This kind of mechanism is efficient
to deal with environment-dependent failure that only happened in a specific execution
environment.

72 J. Li et al.

Fault-Tolerant Style (FTS) specifies the structural and behavioral characters of an
fault-tolerant mechanism very well. Usually FTSs can be modeled in: a) Box-and-line
diagrams and formal (or informal) behavioral descriptions [27]; b) Architectural
Description Languages (ADLs) [10, 13, 25]; or c) UML or an UML profile [26, 14].
The latter two are widely used in current practices. We take an UML profile for both
SA and FT as the modeling language in the study, but pure ADLs can also be used.

2.2 A Motivating Example

ECperf [9] is an EJB benchmark application, which simulates the process of manufac-
turing, supply chain management, and order/inventory in business problems. Create-a-
New-Order is a typical scenario in ECperf, i.e. a customer lists all products, adds some
to a shopping cart, and creates a new order. We use Software Architecture (SA) model
to depict the interactions among EJBs in the scenario in Fig. 2. We assume these EJBs
are black boxes and we have nothing known about their implementation details. The
structural model of ECperf comes from runtime information analysis, with the monitor-
ing support provided by a reflective JEE Application Server (AS) [16].

newOrder

FBPK

«NFTUnit»
Order

FBPK

create
create

create
create

«NFTUnit»
OrderSes

«NFTUnit»
client

«NFTUnit»
OrderEnt

«NFTUnit»
OrderLineEnt

«NFTUnit»
ItemBmpEJB

«NFTUnit»
Corp

«NFTUnit»
Util

«NFTUnit»
Mfg Legend:

fault-tolerant
component

non-fault-tolerant
component

applies-FT-operation-
to connector

conveys-information-
to connector

fault-tolerant
facility component

«FTCmd»name

«FTInfo»name

name connector

«NFTUnit»
name

«FTUnit»
name

«FTFaci»
name

Fig. 2. The part of software architecture of ECperf in the Create-a-New-Order scenario

ECperf cannot tolerate any faults originally, but it needs to be fault tolerable, espe-
cially for ItemBmpEJB, which is a frequently used bean-managed persistent EJB in
the Create-a-New-Order scenario. There are on average more than 400 invocations for
ItemBmpEJB, compared with only one invocation for OrderEnt in the scenario. The
availability of ItemBmpEJB may be imperiled by database faults or unreliable con-
nections to databases. These faults are permanent – they do not disappear unless the
database or the connections are recovered, unlike transient faults which may disap-
pear in a nondeterministic manner even when no recovery operation is performed.
In addition, these faults are activated only under certain circumstances like
heavy-load or heavy communication traffic. So the first fault-tolerant requirement is
to make ItemBmpEJB capable of tolerating environment-dependent and non-transient
(EDNT) faults.

 Selecting FTSs for Third-Party Components with Model Checking Support 73

A common constraint in applications is dependency among components. A com-
ponent in an application may use other components to fulfill desired functionalities.
We call the former a depending component, and the latter a depended-on component
and there is a dependency between them [17]. We classify dependencies as weak ones
or strong ones: If every time a depending component C1 uses a depended-on compo-
nent C2, and C1 has to look up or acquire C2 as the first step, there is a weak depend-
ency. On the other hand, if C1 can invoke C2 directly by a reference R that is created
during C1’s first initialization, it is a strong dependency. Strong dependency is com-
mon because the design improves application’s performance if the invocation happens
frequently. With the proliferation of Dependency Injection design in component-
based development, the heavy dependency is more popular. Strong dependencies
require a coordinated recovery capability. If C2 failed at some time, the R in C1 is
invalid either. Any new invocation for C2 by the R would definitely cause a failure.
From the point of view of fault, it is a global error that needs to be recovered coordi-
nately, which is stated in our previous work [17]. Either the R is updated or C1 is
recovered when recovering C2. By analyzing runtime information, we find OrderEnt
strongly depends on ItemBmpEJB because there is a lookup invocation in OrderEnt
when it calls ItemBmpEJB at the first time, and there is not any lookup invocation
later when calling ItemBmpEJB again. As a result, both of them should be configured
with a fault-tolerant mechanism as a whole. Another application-specific constraint is
that ItemBmpEJB’s response time must be within 10 seconds because 10 seconds is
long enough for a client waiting for a response.

When all fault-tolerant requirements and application-specific constraints are given,
the problem is: which fault-tolerant mechanism is the most suitable one for
ItemBmpEJB and OrderEnt, without any modifications on their source code? To
solve the problem, we describe our approach step by step in the following sections.

3 Modeling Fault-Tolerant Mechanisms as Styles

In this section, we specify the structural and behavioral characters in fault-tolerant
mechanisms as Fault-Tolerant Styles (FTSs) (Step 1.1 and 1.3 in Fig. 1). By survey-
ing the literature on FT [2, 3], we derive some reusable parts that can be combined to
form different FTSs. The well organized FTSs form the foundation of selecting a
suitable mechanism for an application.

3.1 The Concept of Fault-Tolerant Styles

Although different fault-tolerant mechanisms are distinguished by their structure and
interactions with functional components, their primary activities are similar. They con-
trol the messages passed in or received from a component, and monitor or control a
component’s states. An architectural style is a set of constraints on coordinated architec-
tural elements and relationships among them. The constraints restrict the role and the
feature of architectural elements and the allowed relationships among those elements in
a SA that conforms to that style [21]. From the point of view of architectural style, enti-
ties in a fault-tolerant mechanism are modeled as components, interactions among the
entities are be modeled as connectors, and constraints in a mechanisms are modeled as

74 J. Li et al.

Table 1. The stereotype definition for both fault-tolerant components and connectors in FTSA

UML Stereo-
type

Type Meaning

«FTUnit» Component Components that have fault-tolerant capabilities
«NFTUnit» Component Components that have not fault-tolerant capabilities
«FTFaci» Component Facility components that enable fault tolerance. By obeying

specific structural constraints and coordination, «FTFaci»
elements interact with «NFTUnit» elements, to make the latter
fault-tolerable.

«FTCmd» Connector Changing states
«FTInfo» Connector Conveying information

an FTS [18, 26], which is a kind of architectural style. The architecture of a fault-
tolerant application is a Fault-Tolerant Software Architecture (FTSA), which conforms
to an FTS and tolerates a kind(s) of faults.

We use a UML profile for both SA and FT [20, 26] and made necessary extensions
to specify FTSs and FTSAs (see Table 1), because UML is widely used and easy for
communication. There are three kinds of components in the profile: «NFTUnit» com-
ponents are business components without fault-tolerant capability; «FTUnit» compo-
nents are business components with fault-tolerant capability either by its internal
design or by applying a set of «FTFaci» components to an «NFTUnit» component.
We define a stereotype «FTFaci» for well-designed and reliable components, which
provide FT services for «NFTUnit»components. There are two kinds of connectors:
«FTInfo» connectors are responsible for conveying a component’s states to another;
«FTCmd» connectors are responsible for changing an «NFTUnit» component’s states.
An «NFTUnit» component and its attached «FTFaci» components, which interact
with each other in a specific manner, form a composite «FTUnit» component.

Based on the profile, we model fault-tolerant mechanisms as FTSs. Each mecha-
nism’s structure is modeled in UML2.0 component diagram (see Fig. 3 (a)). In order
to model the mechanism’s behavior in a similar manner, we use UML2.0 sequence
diagram. UML2.0 sequence diagram provides a visual presentation for temporal rela-
tions among concerned entities, but its capability to explicitly specify internal states
and states transition are limited. So we introduce a special calculation occurrence
from the general execution-occurrence definition in UML2.0 sequence diagram. Exe-
cution-occurrences are rectangles drawn over lifelines in a sequence diagram, and
represent the involvement of components in an interaction or scenario (see Fig. 3 (b)).
A calculation occurrence is a special execution-occurrence to define, initialize or
change variables in an interaction. The order of different calculation occurrences in a
scenario stands for the temporal relations among interactions.

Micro-reboot mechanism [7] is an illustrative mechanism to be modeled as FTS. A
Micro-reboot style consists of some «FTFaci» components (ExceptionCatcher, Reis-
suer, and BufferRedirector) and an «FTCmd» Reboot connector for an «NFTUnit»
component (Fig. 3). The ExceptionCatcher catches all unexpected exceptions in the
«NFTUnit» component. After the caught exceptions are analyzed and the failed com-
ponent is identified, the failed component is rebooted. Meanwhile, the BufferRedirec-
tor blocks incoming requests for the component during recovery. When the failed
component is successfully recovered, the BufferRedirector re-issues the blocked re-
quests and the normal process is resumed.

 Selecting FTSs for Third-Party Components with Model Checking Support 75

reqreqreq req

«FTCmd»retry «FTCmd»
reboot

«NFTUnit»
client

«FTFaci»
Buffer

Redirector

«FTFaci»
Reissuer

«FTFaci»
Exception
Catcher

«NFTUnit»
server

«FTFaci»

FTMgr

«FTInfo»
nofifyError

«FTCmd»
returnError

«FTCmd»enable

(a) The structure of Micro-reboot style

req req

resp
resp

«NFTUnit»
client

«FTFaci»
Buffer

Redirector

«FTFaci»
ExceptionC

atcher

«FTFaci»
FTMgr

«NFTUnit»
server

«FTInfo»except

«FTCmd»retry

«FTCmd»reboot

req

notifyError()

backup()

«FTFaci»
Reissuer

req

«FTCmd»enable(true)

req

resp
resp

«FTCmd»enable(false)
req

alt [correct response]

o1: Init(client.Failed,bit,0);
Init(server.ServFailed,bit,0);
Init(server.FType,bit,1)
Init(StartTime, getSysTime())

o3: server.ServFailed=Recover()

o6:Assert(client.Failed==0);
EndTime=getSysTime()

o5: client.state=
global_exception

o4: Assert(server.ServerFailed==0)

analysis() Calculation
Occurences

o2: server.ServFailed =FaultDist()

success

failed«FTCmd»
returnError«FTInfo»

except«FTInfo»
except

«FTInfo»
except

(b) The behavioral of Micro-reboot style

Fig. 3. The structural (a) and behavior (b) specifications of Micro-reboot style

We also model other FTSs such as Simple Retry style and Retry Blocks style.
Simple Retry style is similar to Micro-reboot style except it only re-invokes a failed
component again, without rebooting it. Retry Blocks style is similar to Simple Retry
style except it uses data re-expression component to mutate inputs before retrying.
These FTSs are not shown in the paper due to the space limitations.

3.2 The Classification of Fault-Tolerant Styles

We identify some common and key «FTFaci» components and «FTCmd» connectors
in Table 2, which can be used for third-party components. They are classified by their

76 J. Li et al.

functionalities: detecting errors, recovering error states, or smoothing the recovery
procedures. A complete FTS consists of an error-detection part, a recovery part, and
an auxiliary part (Some FTSs only have two parts or even one part, depending on
different FT design principles). Combinations based on the above FT components or
connectors form different FTSs. In Fig. 4, seven major FTSs are given by the combi-
nation of these entities. These FTSs stands for typical fault-tolerant mechanisms for
third-party components. Recovery Blocks and N-Version Programming are design
diversity-based mechanisms; N-Copy Programming and Retry Blocks are data diver-
sity-based mechanisms; and Micro-reboot, Simple Retry, and Checkpoint-restart are
environment (temporal) diversity-based mechanisms.

The identification of common «FTFaci» components and «FTCmd» connectors
makes FTSs flexible. A FTS’s error detection part or recovery part can be replaced by
another if necessary. For example, Recovery Block style, which works on a primary
component and a secondary component implementing same functions, requires an
AcceptanceTest to determine whether the primary works correctly or not. But if the
primary mainly thrown exceptions when a failure happened, AcceptanceTest is not
good at dealing with such abnormal. It can be replaced by ExceptionCatcher, which

Table 2. Key modules in fault-tolerant mechanisms

Type Component/ Con-
nectors in FTSA

Explanation Mechanism
examples

«FTFaci»
ExceptionCatcher

Catches thrown exceptions by a
component

Micro-reboot.

«FTCmd»
Watchdog

Periodically sends a request to a
component to testify its liveness.

Watchdog.

E
rror

D
etection

«FTFaci»
AcceptanceTest

Decides the correctness of a returned
value

Recovery Blocks,
Retry Blocks.

«FTCmd» Reboot Resets a failed component’s states by
reboot

Micro-reboot.

«FTFaci»
StateSetter

Set a component’s states, according to
given parameters.

Checkpoint-restart.

«FTFaci» Switcher Sends a request to a version/instance of a
component.

Recovery Blocks.

R
ecovery

«FTFaci»
DistributerCollector

Sends identical requests to multiple
versions/instances of a component, and
determines a result by comparing all the
returned values.

N-Version Pro-
gramming (NVP),
N-Copy
Programming (NCP)

«FTFaci»
DataReexpression

Slightly modifies an input Recovery Blocks,
NCP.

«FTFaci»
BufferRedirector

Buffers all requests to a failed component
and redirects them when it is recovered

Micro-reboot.

«FTCmd» Reissuer Re-sends a request to the target
component, after a varied waiting time

Checkpoint-restart.

A
uxiliary

«FTFaci» FTMgr Coordinates operations between error
detector and recovery, or between several
recovery operations

Used in All most all
mechanisms.

 Selecting FTSs for Third-Party Components with Model Checking Support 77

is good at dealing with failures manifested as exceptions. The occasion of a replacement
is usually decided by the time when a fault assumption is changed, and the verification
of the correctness of the replacement is supported by our model checking approach
described in Section 5 if only the correctness is also specified as a property.

The combined FTSs would be more plentiful if more «FTFaci» components or
«FTCmd» connectors are included. But keep in mind that not all existing fault-tolerant
mechanisms are meaningful for third-party components. Because implementation de-
tails of these components are hidden from application developers, and components’
internal states are invisible except those accessed through a predefined interface. Most
of the mechanisms in the classification can be externally attached to components. A
notable example is checkpoint-restart mechanism. Almost all checkpoint-restart proto-
cols require accessing a component’s internal states. Considering an impractical
assumption that all components provide an interface to get/set their internal states,
checkpoint-restart can only apply to a considerably small number of third-party compo-
nents that provide state manipulation operations. The similar situation exists in replica-
tion mechanism too.

Fault
Tolerance

Style

Error
Handling

Auxiliary
Part

Recovery
Part

Fault
Handling

Error
Detection

Part

Concurrent
Detection

Preemptive
Detection

Heartbeat

Watchdog

Acceptance
Test

Exception
Catcher

Reissuer

Reinitialize

Distributer/
Collector

Switcher

Buffer/Redirector

Reconfiguration

Data Re-expression

N-Copy
Programming

Style

N-Version
Programming

Style

M
ic

ro
-r

eb
oo

t
S

ty
le

Simple Retry
Style

Checkpoint-
Restart Style

Recovery
Block Style

Retry Block
Style

FT Manager

Checkpoint

StateSetter

Fig. 4. The classification of FTSs according to their design principles. We assign the common
«FTFaci» components and «FTCmd» connectors to a classification framework give by [3], and
we show how to form a FTS by combining some of them.

4 Modeling Fault-Tolerant Properties and Application-Specific
Constraints

4.1 Fault-Tolerant Properties and Application-Specific Constraints

Given a specific application, a set of requirements on fault-tolerant capabilities, and a
set of candidate FTSs, it is critical to select the most suitable one for concerned

78 J. Li et al.

components in the application to meet the requirements. In this section, we abstract
both fault-tolerant capability requirements and fault assumptions on components as
fault-tolerant properties, and specify application-specific constraints (Step 1.2 in Fig.
1). In the next section, we translate an FTS’s behavioral models in UML sequence
diagram, the properties, and the constraints into verification models, and use model
checking to verify the FTS’s satisfaction of the properties and the constraints.

Table 3. Fault-tolerant properties and application-specific constraints

Type Property Name & Description
Transient fault assumption (P1): When a component is providing services and a
transient fault is activated in it then, its states will be resumed if a fault-tolerant
mechanism was applied. Transient faults are nondeterministic and are also called
“Heisenbugs”.
Environment-dependent and non-transient (EDNT) fault assumption (P2):
When a component is providing services and an EDNT fault is activated in it then,
its states will be resumed if a fault-tolerant mechanism was applied. EDNT faults are
deterministic and activated only on a specific environment.

F
ault A

ssum
ptions

Environment-independent and non-transient fault assumption (EINT) (P3):
When a component is providing services and an EINT fault is activated in it then, its
states will be resumed if a fault-tolerant mechanism was applied. EINT faults are
deterministic and are independent of specific environment.
Fault containment (P4): If an error is detected in a component, other components
would not be aware the situation.
Fault isolation (P5): When a failed component is being recovered, no new incoming
requests can invoke the component.
Fault propagation (P6): If an un-maskable fault is activated in a component and it
cannot be recovered successfully, the client, who issues the request and activates the
fault, would receive an error response.

G
eneric F

ault-
T

olerant C
apabilities

Coordinated error recovery (P7): If a global error, which affects more than one
component, happened, the error can be recovered.
Weak dependency (P8): Component C1 weakly depends on component C2.
Strong dependency (P9): Component C3 strongly depends on component C2.

A
pp.–

Specific
C

onstraints

Timely constraint (P10): A component always delivers correct response within 10
seconds.

Fault assumption is a kind of important properties. It assumes the characters of

faults in a component or an application. Only when an FTS can deal with a certain
kind of fault, it is meaningful to discuss the FTS’s other capabilities. Properties
P1, P2, and P3 shown in Table 3 denote three fault assumptions. These three properties
form a dimension of selecting FTSs. Then fault containment, fault isolation, fault
propagation, and recovery coordination are four generic fault-tolerant capabilities.
They are shown in Table 3 as P4 to P7 and form another dimension of the selection. P4
stipulates that the source of a failure should be masked, for fear of error propagation.
Because not all errors can be masked, property P6 states that if a failed component
cannot be recovered, the error should be allowed to propagate to others to trigger a
global recovery processes. This is important for some faults that can be tolerated by
coordinated recovery among several dependent components. P5 stipulates that new

 Selecting FTSs for Third-Party Components with Model Checking Support 79

incoming requests cannot arrive at a failed component. P7 is related to application-
specific constraints P8 and P9, so it will be explained later. At last, application-
specific constraints can also affect the selection of suitable FTSs. Properties P8 to P10
describe some application-specific constraints. P8 and P9 stipulate weak and strong
dependencies among components, respectively. Property P10 states a performance-
related constraint: a component’s response time must not be more than a certain time
in all circumstances.

It should be noted that the above fault-tolerant properties only covers some impor-
tant and typical ones, and they are distilled from a study of FT [3, 2]. Other properties,
such as those presented in Yuan et al.’s study [13], can also be appended to the table.

4.2 Specifying Properties

Before formally specifying fault-tolerant properties, we define a base for FTSA. In an
FTSA model, components C={c1, c2, …, cn}, where each ci)1(ni ≤≤ is a «NFTUnit»
component. States of an component belong to a states set S={normal, local_error,
global_error} and SstatecCc ∈∈∀ ., . Local errors are abnormal states that affect
only one component and can be resumed by recovering this component individually,
whereas global errors may affect more than one component and need to be recovered
by coordination of all affected components. Each «NFTUnit» component has a vari-
able Failed to indicate whether the component is failed or not, and ErrorName to
indicate the name of an error.

⎩
⎨
⎧ =

=∈∀
otherwisetrue

normalstateciffalse
FailedcCc

,

.,
.,

The variable ServFailed is an alias of Failed in a component that provides services
for others. Each «NFTUnit» component has an Ftype to indicate its fault assumption
in a scenario. ∈∈∀ FtypecCc ., {transient, EDNT, EINT}. For each «NFTUnit» com-
ponent, it is attached by a fault activation function FaultDist, which specifies faults’
activation occasions and duration in the component decided by Ftype and the given
failure-interval distribution. The function may transit a component’s state from nor-
mal to local_error or global_error.

The above definition only covers FT-related issues. To represent application-
specific constraints, we classify them as two types because application-specific con-
straints are various. Generally, if a constraint manifested as “p implies q”, it is treated
as fault-tolerant properties, like P10 in Table 3. If a constraint cannot be manifested as
“p implies q”, it would be treated as an extra modification of the state transition of
FTSA. In our study, we take dependencies as an example of such constraints. It is one
of important application-specific constraints in FT. For each c1 and c2 in C, we denote

21 cc wp if c1 weak dependent on c2, and 21 cc sp if c1 strong dependent on c2, other-
wise, c1 is independent from c2 (i.e. there is no dependent relationships between
them).

The lifecycle of a component is modeled as a process. The initial trigger of a com-
ponents’ state transition is a request for its service. A component’s state transition

function δ under the constraint of dependent relationship are: if 21 cc sp ,

80 J. Li et al.

⎪⎩

⎪
⎨
⎧

=
==
==

=
normalstateciferrorlocal

normalstatecandnormalstatecifstatec
normalstatecandnormalstatecifFtypecFaultDist

statec
!.,_

.!.,.
..),.(

).(

2

211

211

1δ

Otherwise (i.e. 21 cc wp or c1 is independent from c2),

⎩
⎨
⎧ =

=
otherwisestatec

normalstatecifFtypecFaultDist
statec

,.

.),.(
).(

1

11
1δ

An FTS’s recovery part has a Recover function to transit a component’s error state to
a normal one. «FTFaci» FTMgr holds a list comp containing components which is con-
figured to be fault tolerable. The components in comp have an extra recovering state,
which is visible only by the FTMgr, and a variable to indicate the name of an error.

Based on the above definitions, informally expressed fault-tolerant properties and
application-specific constraints in Table 3 are formalized as:

P1: client.o1.Failed = false ^ server.o2.ServFailed = true ^ server.o2.Ftype = transient
⇒ server.o4.Failed = false
P2: client.o1.Failed = false ^ server.o2.ServFailed = true ^ server.o2.Ftype = EDNT
⇒ server.o4.Failed = false
P3: client.o1.Failed = false ^ server.o2.ServFailed = true ^ server.o2.Ftype = EINT ⇒
server.o4.Failed = false
P4: client.o1.Failed = false ^ server.o2.ServFailed = true ⇒ client.o6.Failed = false
P5: client.o1.Failed = false ^ server.o2.ServFailed = true ^ FTmgr.o3.comp[server].
state = recovering ⇒ Cc ∈∀ , c != server, c.ErrorName != FTmgr.o3.comp
[server].ErrorName
P6: client.o1.Failed = false ^ server.o2.ServFailed = true ^ server.o4.ServFailed = true
⇒ client.o6.Failed = true
P7: client.o1.Failed = false ^ server.o2.ServFailed = true ^ server.o2.state =
global_error) ⇒ client.o6.Failed = false ^ server.o6.Failed = false.
P8: 21 cc wp

P9: 23 cc sp

P10: client.o1.Failed = false ^ (server.o2.ServFailed = false V server.o2.ServFailed =
true) ⇒ client.o6.EndTime - client.o1.StartTime <= 10.

The o1, o2, o3, o4 and o6 in the above formal specification are calculation occur-
rences in the extended sequence diagram (based on Fig. 3 (b)). The StartTime and
EndTime variables in P7 are user defined variables which record the time of starting a
request and receiving a response.

5 Translating Behavioral Models and Properties into Verification
Models

We verify FTSs’ satisfaction of fault-tolerant properties and application-specific
constraints by Spin model checker [12], because it is proven effective in many indus-

 Selecting FTSs for Third-Party Components with Model Checking Support 81

trial applications [12]. However a system to be verified in Spin must be modeled in
Promela (Process Meta-Language). Programs in Promela cannot be visualized as
UML diagrams, and are often called verification model.

We predefine a set of templates to automatically translate the extended UML2.0
sequence diagrams into Spin’s verification model (Step 2 in Fig. 1). The automatic
translation of standard elements in UML2.0 sequence diagram has been addressed in
related literature [5]. Interaction elements in UML2.0 sequence diagram, such as
timeline and message dispatch, are mapped to basic block or elements in Promela,
such as process (proctype) and channel (chan element). Structured control operators
in UML2.0 sequence diagrams, such as conditional execution and loop execution, are
mapped to control-flow constructs in Promela, such as the selection statement (if…fi)
and loop statement (do…od).

Calculation occurrences defined in our extension are mapped to code blocks in
Promela processes, based on the position where the calculation occurrence is placed
on. Variables defined in calculation occurrences are mapped to variables in Promela,
and all of them are initialized in the Promela-defined init process. The variables may
be re-assigned by FaultDist function that we defined to simulate faults, by Recover
function that simulate a fault-tolerant mechanism, or by build-in functions such as
obtaining system clock. The fault simulation function is mapped to a separate param-
eterized process that interacts with other processes.

Finally, conclusions in properties predicate are mapped to assertion statements in
Promela. The positions of the assertions are decided by the quantifiers (universal or
existential) of predicate and execution occurrences in which the conclusions covered.
For example, a universal quantifier is prefixed to a component in the conclusion of
property P5 in Section 4.2, so the corresponding assertion should be placed in all
processes corresponding to timelines of components, and its position in the processes
must be after the position of the last execution occurrence (o2) in P5. For some appli-
cation-specific properties that cannot be specified as predicates, such as P8 and P9,
they are represented by affecting components’ state transitions.

In model checking process (Step 3 in Fig. 1), Spin simulates an FTS’s behavior and
traverses all its states combinations. As we explained before, a component’s states are
defined and stored in variables defined in the calculation occurrences. These states are
initialized at the beginning, and re-assigned by fault simulation function and state
transit rules. When Spin control flow arrives at an assertion, it checks the truth or not
of the assertion. It either confirms that the properties hold or reports that they are
violated. A false assertion means the style does not preserve the property represented
by the assertion and a counter-example is provided. Otherwise, the above verification
process continues. When all assertions are true, it means the FTS satisfies all the con-
cerned properties.

6 Utilization of the Approach for ECperf

In the previous sections, we explain how to specify fault-tolerant mechanisms that can
be used for third-party components, how to specify fault-tolerant properties and appli-
cation-specific constraints, and how to translate these specifications to verification
model of Spin. In this section, we use the approach to selecting a suitable mechanism
for ECperf.

82 J. Li et al.

FBPKFBPK FBPK

«FTCmd»enable

«NFTUnit»
Order

«F
TC

m
d»

re
bo

ot

«F
TI

nf
o»

ex
ce

pt
io

n

«F
TC

m
d»

re
try

newOrder
create

«FTCmd»retry

«FTCmd»enable

«FTInfo»exception

create

create

create

«F
TC

m
d»

re
bo

ot

«NFTUnit»
OrderSes

«NFTUnit»
client

«NFTUnit»
OrderEnt «NFTUnit»

OrderLineEnt

«NFTUnit»
ItemBmpEJB

«FTFaci»
Exception
Catcher

«FTFaci»
Reissuer

«FTFaci»
Buffer

Redirector

«F
TF

ac
i»

Ex
ce

pt
io

n
C

at
ch

er

«F
TF

ac
i»

R
ei

ss
ue

r

«F
TF

ac
i»

Bu
ffe

r
R

ed
ire

ct
or

«FTFaci»

FTMgr

«NFTUnit»
Corp

«NFTUnit»
Util

«NFTUnit»
Mfg

FBPK
create

create

FBPK

create

«FTCmd»returnError

«F
TC

m
d»

re
tu

rn
E

rro
r

Fig. 5. The fault-tolerant architecture of ECperf that conforms to Micro-reboot style

Application-specific constraints can narrow the scope of candidate FTSs. ECperf
runs on a sequential execution environment (JEE AS), so N-Version Programming
style and N-Copy Programming style cannot be used because they require concurrent
execution support. There exist no other variants of ECperf, so Recovery Blocks style
cannot be used because it requires multiple alternatives for a same design.
ItemBmpEJB does not provide interfaces to access its internal states, so Checkpoint
and Restart style is excluded. Then the remaining candidates include Retry Blocks
style, Simple Retry style, and Micro-reboot style. There are no more ECperf-specific
characters help to select or exclude one of the above candidates. To select a suitable
FTS from existing ones, we carry out a model checking process to verify if they sat-
isfy fault-tolerant properties stated in Section 4.1 and ECperf-specific constraints.

We create three different versions of fault-tolerant ECperf by modifying its original
SA. Each version conforms to one of the above three FTS (Fig. 5 shows the version
conforming to Micro-reboot style). The behavioral models of the enhanced versions
are translated into Promela programs, and we use Spin to verify their satisfactions on
properties P1 to P7, and P10 listed in Table 3 in Create-a-New-Order scenario. To
verify property P10, we calculate the average response time of ItemBmpEJB with the
help of runtime information, and estimate average response time of «FTFaci» compo-
nents in Micro-reboot style. The result is shown in Table 4 and Micro-reboot style is
the winner because it fits the EDNT fault assumption and supports coordinated recov-
ery, but Retry Blocks style and Simple Retry style cannot.

We also perform a set of comparative experiments to validate the practical correct-
ness of the selection. In the experiments, micro-reboot mechanisms and simple retry
mechanism are attached to the components at the external, with the supports of
the reflective JEE AS. We periodically inject Java exceptions into ItemBmpEJB to

 Selecting FTSs for Third-Party Components with Model Checking Support 83

simulate EDNT faults. As a result, the rates of successful submitted orders using Mi-
cro-reboot and Simple Retry are 87.3% and 50.7%, respectively, compare to 45.4%
with no FT. It is clear that Micro-reboot style works better than Simple Retry style.
The experimental result is coincident with the model checking result.

Table 4. The satisfaction of properties for Retry Blocks style, Simple Retry style, and Micro-
reboot style. (●: preserve; ○: do not preserve). Fault assumptions form a dimension, other fault-
tolerant properties and some application-specific constraints form another dimension. The
results in the dash-line rectangle shows that Micro-reboot style satisfied all concerned proper-
ties and constraints under EDNT fault assumption, while Retry Blocks style and Simple Retry
style cannot.

(a) Retry Blocks style

 P4 P5 P6 P7 P10
P1 ● ● ● ● ●
P2 ○ ○ ○ ○ ○
P3 ○ ○ ○ ○ ○

(b) Simple Retry style

 P4 P5 P6 P7 P10

P1 ● ● ● ● ●
P2 ○ ○ ○ ○ ○
P3 ○ ○ ○ ○ ○

(c) Micro-reboot style

 P4 P5 P6 P7 P10
P1 ● ● ● ● ●
P2 ● ● ● ● ●
P3 ○ ○ ○ ○ ○

7 Discussion and Related Work

In the area of Architecting Fault-Tolerant Systems [1], components (computing
entities), connectors (communication entities), and configuration (topology of com-
ponents and connectors) have been used to model fault-tolerant software as FTSA.
Previous work in the area mainly focus on how to model a specific fault-tolerant
mechanism [10, 13, 14, 26, 27], for example, exception handling-based mechanism
[14, 27]. A few studies consider the reasoning or analysis on an FTS. Yuan et al. [27]
specify a Generic Fault-Tolerant Software Architecture (GFTSA), which obeys ideal-
ized Fault-Tolerant Component style, in formal language Object-Z, and perform man-
ual formal proofs to demonstrate fault-tolerant properties the GFTSA preserves. The
authors also present a template to automate the customization process when using the
style. Sözer et al. [26] specify the structure of a local recovery style in an UML pro-
file, and perform performance overhead and availability analysis. In contrast, we
uniformly model and analysis various mechanisms that can be used for third-party
components as fault-tolerant styles.

Verifying fault-tolerant software via model checking has been studied in previous
work to prove the correctness of fault-tolerant design. Bernardeschi et al. [4] applies
model checking to fault-tolerant software specified in Calculus of Communicating
Systems (CCS)/Meije process algebra. Fault-tolerant properties are expressed in Ac-
tion-based Computation Tree Logic (ACTL). Because a common prerequisite of
model checking is that software model should be a formal one, this would be a barrier
to its acceptance in practices. Some studies adopt another approach – after modeling
software using popular modeling languages, translating the models into a formal one
[8, 6]. Ebnenasir and Cheng [7] define a computation model and use UML state dia-
grams to specify fault, generic fault tolerant patterns, and fault-tolerant systems. The
UML state diagram models are translated into Promela programs automatically. Thus
the model is checked to verify its safety and liveness. The major difference between

84 J. Li et al.

their work and ours is that we concentrate on the specificity of fault-tolerant mecha-
nisms but they focus on the generality of them. They define detector pattern and cor-
rector pattern to covers all error detection mechanism and all recovery mechanisms.
But a specific mechanism (Micro-reboot, checkpoint and restart, etc.) cannot be dis-
tinguished from others in such a generic definition.

We use UML2.0 diagram to model FTSs, and use Spin to verify both fault-tolerant
properties and application-specific constraints because both are widely used and well
studied. Other specification languages and model checkers can also be chosen to im-
plement our approach, but it should be noted that the translation between FTS models
and verification models is specific to the choice. For example, if we use a traditional
ADL to specify FTSs’ behaviors and a model checker’s formal language to specify
properties, the translation is not necessary. This alternative is not preferred because it
not only requires application developers to learn a formal language, but also requires
a manual modification of the verification model if the FTS is changed.

The scalability of model checkers is a major limit of the technique, because the
explored states are restricted by the computational resources. But it is not a serious
problem in our study. The verifications of fault-tolerant properties and application-
specific constraints are carried out at SA level, and the number of states in FTSs is
considerably small (state, Failed, Ftype, comp, etc.). Moreover, although the state
may be large when taking application into consideration, the verification process is
oriented to a scenario (for example, Create-a-New-Order scenario in the case study),
in which the number of components is restricted.

We talk little about other general requirements (such as safeness and correctness of
an FTSA). The reason is not in that these requirements are minor, but in that we focus
on the selection of FTSs in the paper and these requirements do nothing helpful to the
selection. In fact, we take them as prerequisites for all valid FTSs. This means these
requirements must be met at first. Moreover, we touch the fringe of the interaction
among FT and other software qualities like performance. Performance works as an
application-specific constraint for the selection of FT styles. We believe similar solu-
tion is also helpful to make a trade-off between fault-tolerant styles and performance
optimization patterns [14].

It is also abstractive to use more than one FTSs for a component in an application,
thus the component is capable of tolerate many kinds of faults. But FT is an expensive
measure that will impact other system qualities, such as performance. Multiple fault-
tolerant mechanisms for a component will definitely impose heavy penalty to the
application. Moreover, intervenes among multiple FTSs will also make the configura-
tion of FTSA much more complex and error-prone.

8 Conclusion and Future Work

The proliferation of the development using third-party components brings new chal-
lenges to high availability or reliability because these components are often treated as
black boxes. We present two levels of abstraction for the problem: fault-tolerant
mechanisms that can improve third-party components’ availability or reliability are
abstracted as a Fault-Tolerant Styles; and fault assumptions, fault-tolerant capabilities,
and application-specific constraints are abstracted as properties. The virtual of the

 Selecting FTSs for Third-Party Components with Model Checking Support 85

model checking based approach proposed in the paper is making the selection of FTS
for a specific application more confidently. The approach is more meaningful when
components’ failure characteristics and execution environment change continually.

The work presented in the paper does not cover the problem of how to merge
«FTFaci» components into an applications’ architecture, which also affects the cor-
rectness of an FTSA. We assume the merge is performed by FT experts in the paper
but we are working on an automatic model merging to do the task, similar to existing
work [19, 22]. We are also going to finish the development of a GUI tool to integrate
FTS modeling tool, translating tool, and Spin model checker.

Acknowledgments. This work is sponsored by the National Key Basic Research and
Development Program of China (973) under Grant No. 2009CB320703; the Science
Fund for Creative Research Groups of China under Grant No. 60821003; the National
Natural Science Foundation of China under Grant No. 60873060; the High-Tech
Research and Development Program of China under Grant No. 2009AA01Z16; and
the EU Seventh Framework Programme under Grant No. 231167..

References

1. Workshop on Architecting Dependable Systems, http://www.cs.kent.ac.uk/
wads/

2. Anderson, T., Lee, P.A.: Fault Tolerance: Principles and Practice. Prentice-Hall, Engle-
wood Cliffs (1981)

3. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans. on Dependable and Secure Comput-
ing 1(1), 11–33 (2004)

4. Bernardeschi, C., Fantechi, A., Gnesi, S.: Model checking fault tolerant systems. Software
Testing Verification and Reliability 12, 251–275 (2002)

5. Bose, P.: Automated Translation of UML Models of Architectures for Verification and
Simulation Using SPIN. In: Proceedings of the 14th IEEE Int’l Conference on Automated
Software Engineering, pp. 102–109. IEEE Computer Society Press, Los Alamitos (1999)

6. Brito, P.H.S., Lemos, R., Rubira, C.M.F.: Verification of Exception Control Flows and
Handlers Based on Architectural Scenarios. In: Proceeding of the 11th IEEE High Assur-
ance Systems Engineering Symposium (HASE), pp.177–186 (2008)

7. Candea, G., et al.: JAGR: an autonomous self-recovering application server. In: Proc. of
the 5th Int’l Workshop on Active Middleware Services, Seattle, USA, pp. 168–177 (2003)

8. Ebnenasir, A., Cheng, B.H.C.: Pattern-Based Modeling and Analysis of Failsafe Fault-
Tolerance. In: 10th IEEE International Symposium on High Assurance System Engineer-
ing (HASE), Dallas, Texas, USA, November 14–16 (2007)

9. ECperf webpage, http://java.sun.com/developer/earlyAccess/j2ee/
ecperf/download.html

10. Garlan, D., Chung, S., Schmerl, B.: Increasing system dependability through architecture
based self-repair. In: Proc. Architecting dependable systems. Springer, Heidelberg (2003)

11. de Guerra, P.A.C., Rubira, C.F., Romanovsky, A., de Lemos, R.: A fault-tolerant software
architecture for COTS-based software systems. In: Proc. of ESEC/FSE-11, Helsinki,
Finland, pp. 375–378 (2003)

12. Holzmann, G.J.: The Model Checker SPIN. IEEE Trans. on Software Engineering 23(5)
(1997)

86 J. Li et al.

13. Issarny, V., Banatre, J.: Architecture-Based Exception Handling. In: Proc. of the 34th An-
nual Hawaii International Conference on System Sciences, vol. 9, p. 9058 (2001)

14. Lan, L., Huang, G., Wang, W., Mei, H.: A Middleware-based Approach to Model Refac-
toring at Runtime. In: Proceedings of the 14th Asia-Pacific Software Engineering Confer-
ence (APSEC 2007) (2007)

15. de Lemos, R., Guerra, P., Rubira, C.: A fault-tolerant architectural approach for depend-
able systems. IEEE Software 23(2), 80–87 (2006)

16. Mei, H., Huang, G.: PKUAS: An Architecture-based Reflective Component Operating
Platform. In: IEEE Int’l Workshop on Future Trends of Distributed Computing Sys. (2004)

17. Mei, H., Huang, G., Liu, T., Li, J.: Coordinated Recovery of Middleware Services: A
Framework and Experiments. Int. J. Software Informatics 1(1), 101–128 (2007)

18. Muccini, H., Romanovsky, A.: Architecting Fault Tolerant Systems. Technical report,
University of Newcastle upon Tyne, CS-TR-1051 (2007)

19. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and Merging
of Statecharts Specifications. In: Proc. 29th Int’l Conference on Software Engineering, pp.
54–64 (2007)

20. Object Management Group, UML(TM) Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms, http://www.omg.org/docs/ptc/
04-09-01.pdf

21. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT
Software Engineering Notes 17(4), 40–52 (1992)

22. Pottinger, R.A., Bernstein, P.A.: Merging models based on given correspondences. In:
Proc. 29th int’l Conference on Very Large Data Bases, pp. 862–873 (2003)

23. Romanovsky, A.: A Looming Fault Tolerance Software Crisis? ACM SIGSOFT Software
Engineering Notes 32(2) (2007)

24. Salatge, N., Fabre, J.C.: Fault Tolerance Connectors for Unreliable Web Services. In: Proc.
of 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN 2007), Edinburgh, UK, pp. 51–60 (2007)

25. Seo, C., et al.: Exploring the Role of Software Architecture in Dynamic and Fault Tolerant
Pervasive Systems. In: Proc. of SEPCASE 2007, Minneapolis, MN, USA (2007)

26. Sözer, H., Tekinerdogan, B.: Introducing Recovery Style for Modeling and Analyzing Sys-
tem Recovery. In: Proc. of 7th IEEE/IFIP Working Conference on Software Architecture,
Vancouver, Canada, pp. 167–176 (2008)

27. Yuan, L., Dong, J.S., Sun, J., Basit, H.A.: Generic Fault Tolerant Software Architecture
Reasoning and Customization. IEEE Trans. on Reliability. 55(3), 421–435 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

