
HAL Id: inria-00459616
https://hal.inria.fr/inria-00459616

Submitted on 24 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generating Synchronization Engines between Running
Systems and Their Model-Based Views

Hui Song, yingfei Xiong, Franck Chauvel, Gang Huang, Zhenjiang Hu, Mei
Hong

To cite this version:
Hui Song, yingfei Xiong, Franck Chauvel, Gang Huang, Zhenjiang Hu, et al.. Generating Synchroniza-
tion Engines between Running Systems and Their Model-Based Views. ACM/IEEE 12th International
Conference on Model Driven Engineering Languages and Systems (MoDELS’09), Oct 2009, Denver,
United States. �inria-00459616�

https://hal.inria.fr/inria-00459616
https://hal.archives-ouvertes.fr

Generating Synchronization Engines between
Running Systems and Their Model-Based Views

Hui Song1, Yingfei Xiong1,2, Franck Chauvel1, Gang Huang1?, Zhenjiang Hu3,
and Hong Mei1

1 Key Laboratory of High Confidence Software Technologies (Ministry of Education)
Peking University, Beijing, China

{songhui06,franck.chauvel,huanggang,meih}@sei.pku.edu.cn
2 Department of Mathematical Informatics, University of Tokyo, Tokyo, Japan

xiong@ipl.t.u-tokyo.ac.jp
3 GRACE Center, National Institute of Informatics, Tokyo, Japan

hu@nii.ac.jp

Abstract. The key point to leverage model-based techniques on runtime
system management is to ensure the correct synchronization between the
running system and its model-based view. In this paper, we present a
generative approach, and the supporting tool, to make systematic the
development of synchronization engines between running systems and
models. We require developers to specify “what kinds of elements to
manage” as a MOF meta-model and “how to manipulate those elements
using the system’s management API” as a so-called access model. From
these two specifications, our SM@RT tool automatically generates the
synchronization engine to reflect the running system as a MOF-compliant
model. We have applied this approach on several practical systems, in-
cluding the JOnAS JEE server.

1 Introduction

The increasing need of continuously available systems (IT systems, e-business,
or critical systems) requires to perform management activities such as configu-
ration, evolution or corrective maintenance at runtime.

Management activities (automated or not) are build on a loop [1]: monitoring
the running system, analyzing the collected data, planning the needed reconfig-
urations, and executing those reconfigurations. For monitoring and executing,
existing platforms such as JEE [2], Fractal[3], and Android [4] provide adequate
facilities through devoted APIs, such as the JMX API [5] for JEE systems. For
analysis and planning, researchers proposed many generic approaches, utilizing
model-based techniques like architecture styles [6, 7], model checking [1], model-
based self-repair [8], or model-based artificial intelligence [9], etc.

The key-point to leverage model-based analysis and planning at runtime is
to obtain a model-based view of a running system and to ensure the proper
synchronization between the system and its model-based view.

? corresponding author

However, despite their importance, such synchronization engines are still
hand-crafted in a tedious and error-prone manner. Existing approaches [7, 10, 8,
11] include hand-written synchronization engines. To do so, developers have to
care about how to maintain a model, how to manipulate the system through the
management API, and how to propagate the changes between model and sys-
tem to ensure their consistency. All these functionalities have to be considered
simultaneously.

The contribution of this paper is to make systematic the development of
such synchronization engines between models and running systems. Our ap-
proach reflects a simple model-driven process: For a specific system, we require
the developers to specify what elements can be managed, and how to manip-
ulate them through the management API. From these two specifications, our
approach automatically generates a synchronization engine that maintains a dy-
namic MOF-compliant model for the running system. This enables the standard
model-based techniques (like OCL and QVT) to be used for runtime manage-
ment. We implement this approach as a tool named SM@RT 4, and apply it on
several practical systems.

The rest of this paper is organized as follows. Section 2 illustrates the diffi-
culty for developing a synchronization engine by hand whereas Section 3 presents
an overview of our generation process. Section 4 and Section 5 explain how de-
velopers specify the system and how to generate the synchronization engine.
Section 6 describes and discusses our case studies. Finally, Section 7 presents
some related approaches and Section 8 concludes the paper.

2 Motivating Example

This section illustrates the complexity of developing a synchronization engine
(SE) between a running systems and its model view.

We choose the JOnAS [12] JEE application server as a running example. A
JOnAS server contains a lot of manageable elements such as EJBs, data sources
(proxies to databases), etc. Each data source maintains a pool of connections
to the underlying database. If the number of cached connections tends to reach
the capacity of the connection pool, the database access may be delayed and the
pool capacity must be enlarged. In the same manner, if the number of cached
connections is always zero, the data source can be removed to release resources.

JOnAS provides an interface (the JMX [5] management API) for teh monitor
and execution of manageable elements. But complex analysis and planning must
still be performed by hand or by using external tools. Model-driven techniques
and tools can help such analysis and control tasks. Take the above management
scenario as an example, the administrators could use a model visualization tool
(like GMF [13]) to help better understand the system, or use OCL constraints
to automatically verify the server reconfiguration.

Like other model-based technologies, GMF and OCL can be only applied
on MOF-compliant models (as shown in Figure 1), which are constituted by

4
“SM@RT” for Supporting Models at Run-Time: http://code.google.com/p/smatrt

standard model elements. But the JMX API represents the running system as a
specific kind of Java objects, the Managed Beans (MBeans). The integration of
model-based techniques thus requires an SE which reflects the running system
into a MOF-compliant model, and ensures a bidirectional consistency between
the system and the model. For instance, in our JEE scenario, the SE must build
a model element for each data sources on the JEE AS. When the management
agent deletes a model element, the SE must detect this change, identify which
data source this removed element stands for, and finally invoke the JMX API to
remove this data source.

:JOnAS

hsql : JDBCSource
current = 45
capacity = 50

mysql : JDBCSource
current = 0
capacity = 50

jps: EntityBean

dataSource
jdbc
DataSource Synchronization

Engine JOnAS Server

HSQL

MySQL

Java Pet Store
Application

MOF-Compliant Model Running System

StorageBusiness Logics

Monitor

Monitor

Modify

Modify

Fig. 1. A common structure of the synchronization engines

However, such an SE employs a complex mechanism and its development is
therefore time consuming and error-prone. For the above scenario, the SE has
to perform many functionalities: reading and writing models, monitoring and
executing system changes, maintaining the mapping between model elements and
system elements, handling conflicts between changes, and planning the proper
subsequent changes to keep the model and system consistent. In addition, SEs
share many commonalities, and developing the SE from scratch is a waste of
time and labor. Actually, except for monitoring and executing system changes,
all the other functionalities are independent to any specific systems, and thus it
is possible to achieve common solutions for them.

3 Approach Overview

We provide a generative approach to assist the development of synchronization
engines. As shown in Figure 2, the inputs of our approach include a system meta-
model specifying what kinds of elements can be managed and an Access Model
specifying how to use the API to monitor and modify those manageable elements.
Our SM@RT tool generates a SE which reflects automatically the running system
into a MOF-compliant model that conforms to the system meta-model.

Our approach is applicable under the following conditions. First, we require
the target system to provide a management API: our tool does not instrument
non-manageable systems, nor extends inadequate APIs. Second, we reflect a

Scope of the article

SM@RT
GENERATOR

Ru
nn

in
g

Sy
st

em
(J

EE
, F

ra
ct

al
,

An
dr

oi
d)

M
an

ag
em

en
t A

PI

M
O

F-
ba

se
d

M
od

el
(o

f t
he

 R
un

ni
ng

Sy

st
em

)

Synchronization
Engine

System Meta-model
(What to manage?)

generate

Access Model
(How to manage it?)

conforms to

Existing Model-based
Techniques

(Analysis,
Tranforfmation, etc)

Integration With

Fig. 2. Generation of Synchronization Engine: Approach Overview

Table 1. Concept mapping

concepts of system structure concepts of MOF Model

Element type Class
Local state Attribute

Composition Aggregation
Connection Association

direct model for the system (that means the model is homogeneous with the
system structure: each model element stands for one system element). If an
abstract model is needed, a model transformation could be used to transform
this direct model into the needed forms, which is beyond the scope of this paper.

4 Modeling Management APIs

In order to generate an SE for a specific system, we need to know what can be
managed in this system, and how to managed it. In this section, we present how
to specify these two kinds of information as models.

4.1 Modeling “what can be managed”

According to Sicard et al. [8], a manageable running system is constituted of
managed elements (like the JEE server and data sources). Managed elements
have local states (like the pool sizes of data sources). They could be composed
by other managed elements (a root JEE server contains several EJBs), and they
could have connections between each other (an EJB requires data from a data
source). These concepts can be described using the concepts of eMOF meta-
models, as shown in Table 1

Following the above guidance, developers can specify the types of man-
aged elements as a eMOF meta-model, and we refer to it as a ”system meta-

Fig. 3. The system meta-model of the JEE example

model”. For example, Figure 3 is an excerpt of the system meta-model we de-
fined for JOnAS. The three classes specify the three types of managed elements.
JDBCDataSource has two attributes representing the currently opened connec-
tions and the maximal pool sizes. JOnASServer have aggregations with the other
classes. EntityBean have association with JDBCDataSource. Note that we only
showed the necessary part for explaining our sample scenario, and the actual
meta-model contains many other classes and properties, as shown in Section 6

4.2 Modeling “how to manage the systems”

The manageable elements can be manipulated through the management API.
For example, we can use getAttribute method of JMX to fetch the current
opened connections of a data source. For a system, we require developers to
specify how to invoke its management API to manipulate each type of elements,
and we name this as an “access model”. More formally, the access model is a
partial function:

access : MetaElement×Manipulation −→ Code

where MetaElement is the set of all the elements in the system meta-model
(classes, attributes, etc.), Manipulation is the set of all types of manipulations,
which are summarized in Table 2, and Code is a piece of Java code.

Figure 4.2 shows two sample items in the access model for JOnAS. The first
item defines the common code for getting the values of int-typed attributes. We
obtain an instance of an MEJB remote element (Line 4), and the logic is defined
as an Auxiliary operation. Then we invoke the getAttribute method. The
first parameter is the reference to the current management element. The second
parameter is the property name. The second sample is used to add a new data
source into a server, or “loading a data source according to a specific name”
in the JEE language. We first find the model element added by management
agents, and get the data source name (Line 11) from this element. Finally we
use this name to invoke the loadDataSource operation (Lines 12-15).

When defining how to manipulate the systems, developers may need the
following kinds of information: They need system information like “what is the
current system element” (Line 5); They need system type information, like the
property name, (Line 5). They also need the information inputted by the external

Table 2. All kinds of manipulations. For each kind of operation, we list its name,
the types of meta elements it could be applied, the parameters it requires for execution,
and a brief description. In the table, Property standards for attribute, aggregation and
association. The “1” or “*” marks following them means single-valued or malti-valued
properties, respectively. The Auxiliarys are common operations defined by users, and
can be used during the definition of code, as shown in the example.

name meta element parameter description

Get Property (1) - get the value of the property

Set Property (1) newValue set the property as newValue

List Property (*) - get a list of values of this property

Add Property (*) toAdd add toAdd into the value list of this property

Remove Property (*) toRemove remove toRemove from the list of this property

Lookfor Class condition find an element according to condition

Identify Class other check if this element equals to other

Auxiliary Package - user-defined auxiliary operations

management agent, like the appointed name for the to-be-created data source
(Line 11), and such information is preserved in the corresponding model element.
We defined three kinds of specification variables, the system, meta and model

variables, to stand for the above three kinds of information, in order to keep
developers from the details about the generation and the SE.

5 Generating the Synchronization Engine

This section presents the SEs we generated to maintain the causal links between
model and system. We first explain how the generated SEs work, and then
introduce how we generate the engines.

5.1 The synchronization engine

The first question for a synchronization mechanism is “when and where to syn-
chronize”. Since the model is the interaction point between the system and the
management agent (MA), the synchronization should be triggered before MA
read the model and after they write the model. In addition, for each reading
or writing, the MA only cares about parts of the model. And thus, we only
synchronize the involved part of model with the running system.

Figure 5 shows the structure of our SE, implementing the on-demand syn-
chronization approach we discussed before.

The model we provide is in an in-memory form conforming with Ecore [13].
Each model element is represented by a Java object in the type of EObject.
External management agents read or write this model by invoking the standard
get or set methods on these model elements.

The Model Listener listens to these model operations. For a reading op-
eration, the listener interrupts the operation, asks the planner to perform the

Fig. 4. Invoking JMX interface

1 // Sample 1, get the value for any kind of attributes

2 MetaElement=AnyClass :: AnyIntTypedSingleValuedAttribute ,
3 Manipulation=Get , Code=BEGIN
4 Management mgmt=$sys:: auxiliary.getMainEntry ();

5 Integer res=(Integer) mgmt.getAttribute($sys:: this ,
6 $meta :: prpt_name);

7 $sys:: result=rest.intValue ();

8 END
9 // Sample 2, add a new data source

10 MetaElement=JOnASServer :: jdbcDataSource , Manipulation=Add
11 Code: BEGIN
12 String dbName=$model :: newAdded.name;

13 Object [] para = {dbName ,Boolean.TRUE};

14 String [] sig = {"java.lang.String","java.lang.Boolean"};

15 Management mgmt=$model :: auxiliary.getMainEntry ();

16 $sys:: newAdded =(ObjectName)mgmt.invoke(dbserver ,

17 "loadDataSource", para , sig);

18 END

synchronization, and finally resumes the original operation with the refreshed
model. For a writing operation, it waits until the operation finished, and asks
the planner to synchronize this modified model with the system.

The Mapping pool maintains a one-to-one mapping between the model
elements and the system elements, as a reference for the synchronization. This
mapping is implemented as a hash map between model elements and the refer-
ences to the system elements, and is dynamically maintained as the model and
system evolves.

The Model and System proxies are used to read the current model and
system, and write the required changes (i.e. the synchronization result) back. The
model proxy is implemented by invoking the standard get or set methods on the
model elements, while the system proxy is implemented by the API invocations
specified in the access model.

The Exception Catcher implements a simple conflict handling strategy,
i.e. when a conflict causes failures during the model or system manipulation,
it catches the thrown exceptions and warns the management agent. Developers
could implement more sophisticated strategies by defining complex code in the
access model, but currently we do not provide special support on that.

Based on these auxiliary parts, the central Planner execute a set of syn-
chronization strategies:

SynchStrategy : ModOp×MOFElem→ (ModOp
⋃

SysOp
⋃

MapOp)∗

Each strategy defines that when a specific kind of model operations (get, set,
etc.) happened on a specific part of the model (model elements, single-valued

od
el

od
el

en

er

Mapping
pool

Exception
catcher

te
m

xy6

m
em

or
y

m
o

M
o

lis
te

od
el

ox

y Planner M
gm

t A
PI

nn
in

g
 S

ys
t

Sy
st

em
 p

ro
x

1

2

3

4
6

In
-m M
o

pr
o

R
uS

3

Fig. 5. Structure of the generated SE

ModOp : Get
MOFElem: Aggregation(upper-bond>1)
Parameter: mself : the current model element

pname: the name of the aggregation

sself ← ImagePool.getSys(mself)
schildren ← sList (sself , pname)
foreach schild ∈ schildren do

if ImagePool.getModel(schild) = Null then
mclass ← GetClass (mself .class,pname,self)
mchild ← mCreate (mclass, mself , child)
ImagePool.put(mchild, schild)

end
else

mchild ← ImagePool.getModel(schild)
end
mAdd (mself , pname, mchild)

end

Algorithm 1: Sync strategy for getting multi-valued aggregations

attributes, etc.), the engine will execute a sequence of operations. These opera-
tions manipulate the model, the system, and the mapping pool, in order to make
them consistent.

Algorithm 1 illustrates one of the synchronization strategies5 we have defined
and hard-coded inside the planner. This strategy is corresponding to the “Get”
operations on the multi-valued aggregations in the model. The variable starting
with “m” are elements from the model while the ones starting with “s” are ele-
ments in the system. Similarly, the functions starting with “m” (like mCreate)
are standard model manipulations executed through the model proxy, while
the ones with “s” are the manipulations on systems executed throught the sys-

5 Strictly speaking, such strategies are not “algorithms”, because they do not have
inputs and outputs: They just tell the planner what to do on a model operation

Mgmt Agent Model Listener

get()

Planner

sync()

Image Pool System Proxy

lookup()

get_data()

set_data()

get_data()

set_data()

refresh()

end_sync

return_get

Model Proxy

get_data

Fig. 6. The collaboration inside an generation engine

tem proxy, which are exactly the ones defined in the access model (see Table 2).
When informed by the model listener that someone wants to get the children of
a model element mself , the planner first gets the corresponding system elements
sself , and then gets the children of this sself . For each of the obtained children
schildren, it creates a new model element as its image, and refresh the model
with these images as the original mself ’s children.

Figure 6 illustrates how the parts inside an SE work together. We do not show
the “Exception Catcher” here because it only appears when this sequence fails.
For the JOnAS sample, in the beginning, the model contains only one element
standing for the JOnAS server. The management agent invokes get method
on this root element to see its data sources. The model listener interrupts this
get operation, and informs the planner. Follow the synchronization strategy for
get operations on multi-valued aggregations, the planner performs the following
operations: It first checks the mapping pool to see that root stands for the
JOnAS server, and then invokes list on this server (See Table 2), which returns
a set of ObjectNames pointing to the current data sources. The planner then
invokes the create operation on the model proxy to create a new model element
for each of these data sources, and refreshes the mapping pool for these new
model elements. Finally, the original get operation continues, and returns a set
of newly created model elements.

5.2 The generation tool for the synchronization engines

Our SM@RT tool automatically generates the above SEs. The tool has two parts,
a common library and a code generation engine. The common library implements

mapping pool, the exception catcher, and the planner, with the synchronization
strategies hard-coded inside. The code generation engine is an extension of the
Eclipse Modeling Framework (EMF), and it generates the model listener, model
proxy, and system proxy specific to the target system. Specifically, it generates a
Java class for each of the MOF classes in the system meta-model, implementing
the EObject interface defined by Ecore. Then it overrides the model processing
methods in EObject, inserting the logic for listening operations and launching
the synchronization planner. Finally, it wraps the pieces of API invocation code
in the access model into a set of system manipulation methods, which constitutes
the system proxy.

6 Case Studies

We applied our SM@RT tool to generate SEs for several practical systems, and
performed several runtime management scenarios on these models, utilizing ex-
isting MOF-based model-driven techniques.

6.1 Reflecting JOnAS JEE systems

Our first case study is the full version of the running example we used before.
We reflect all the 21 kinds of JEE manageable elements (including applications,
EJBs, data sources, transaction services, etc.) as a MOF-compliant model, and
visual it to provide a graphical management tool for JOnAS administrators.

We first define the system meta-model and the access model for JOnAS as
explained in the previous sections. The resulting system meta-model contains 26
classes, 249 attributes, 21 aggregations and 9 associations. The resulting access
model defines 28 pieces of code like the sample in Figure 4.2.

From the system meta-model and the access model, the SM@RT tool au-
tomatically generates the SE for JOnAS as a Java library. We connected this
library with GMF to visualize the reflected model (just in the same way as
visualizing any common Ecore models), as shown in Figure 7.

In this snapshot, the rectangles stand for the JOnAS manageable elements
and the lines stand for the association between these elements. From this dia-
gram, we see that there are two applications running on the pku server, which
runs on one JVM, and contains several resources, including a data source named
HSQL1. We select the data source, and the property view on the right side shows
its attribute values. All the elements, associations and attributes depict the cur-
rent system state. That means if we select this model element again (that causes
GMF to refresh the attributes), some attribute values may change, and if we se-
lect the canvas (that causes GMF to refresh the root element), some elements
may disappear and new elements may appear. We can also directly use this di-
agram to change the system. For example, if we increase the JDBCMaxConnPool

from 100 to 200, the underlying pool will be enlarged consequently. If we create
a new model element in the type of J2EE Application, and set its fileName

attribute as the address of an EAR file, the synchronization engine deploys this

Fig. 7. A snapshot of the visualized model of JOnAS

EAR file into the system, and some new model elements will appear in the dia-
gram, standing for the modules and EJBs inside this newly-added application.

We use the following two experiments to demostrate the the generated SE
reflect a valid and useful runtime model for the JEE system.

The first experiment is about monitoring and altering attribute values of sys-
tem elements. We wrote an automated script to continuously request the SignOn
component. When executing this script, we noticed that the currentOpened

connections of HSQL1 was also growing, until it reaches 50, the value of the
jdbcMaxConn. That means the data source’s connection pool is full. Then we
change the jdbcMaxConn to 100, and the currentOpened began to grow im-
mediately. That means the database’s maximal pool size has been successfully
enlarged. After that we set Max Pool to 20000, but after synchronization, this
value becomes 9999 (the upper limit of connection pool supported by this version
of HSQL), and we receive a warning.

Our second experiment is about changing the structure of system elements.
We choose a typical scenario to add RSS (Really Simple Syndication) capability
into JPS at runtime to support subscription of pet information. We added a
StatelessSessionBean into the diagram, which organizes the pet information
as products (a product represents a pet breed [14]). We also add a WebModule

for formatting the data as an RSS seed. We implemented the EJB and the web
module, packaged them as Jar and War files, and set the paths of these file as
the fileName attributes of the new added model elements. Then we connected
them with the pku J2EE server, and connect these components together. After
that, we got the RSS seed using a browser with item information. That means
the components have been deployed into the server by our SE.

Table 3. Summary of experiments

target system API m-model access model generated contrast techs
(elements) (items) (LOC) (LOC) (LOC)

JOnAS JMX 305 28 310 18263 5294 GMF

Java classes BCEL 29 13 124 10518 3108 UML2

Eclipse GUI SWT 43 23 178 11290 - EMF

Android Android 29 9 67 8732 - OCL

6.2 Other case studies

Table 3 summarizes all the case studies we have undertaken. For each case, we
give the target system and its management API, the numbers of elements in the
system meta-model, the items in the access model and the total lines of code in
these items. After that, we list the sizes of the generated synchronization engines.
For the first two cases, we also list the size of the hand-written synchronization
engines for comparison. Finally, we list the model-driven techniques we applied
upon the generated SEs.

The second case is a reproduction of the Jar2UML tool6, which reflects the
class structure in a Jar file as a UML model. We utilized the UML meta-model
(defined by Eclipse UML27) as our system meta-model, and defined an access
model, wrapping the invocation to BCEL library8 for analyzing Java binary
code. We used Eclipse UML2 tools to visualize the reflected UML model as a
class diagram.

The third case is an illustrative example. We wrapped the management func-
tions of SWT (the GUI system of Eclipse), and used the tree-based model editor
to achieve dynamic configuration of an Eclipse window, like changing a button’s
caption or a label’s background color. A step-by-step presentation of this case
study can be found in a tutorial on our project web-site.

Our fourth case is to reflect the packages in an Android9 system as a model.
We wrote a simple extended OCL rule (we extend OCL to support value assign-
ment, as presented in our previous work [15]) stating that when there is no Wi-Fi
service, the Wi-Fi based packages should be stopped. We successfully deployed
the generated adapter into an HTC G2 mobile phone, along with the extended
OCL interpreter. The rule works well: When the phone is out of the Wi-Fi range,
the packages are stopped.

6.3 Discussion

Feasibility The case studies above illustrate the feasibility of our approach: it
generates SEs for a wide range of systems, and the generated SEs enable existing
model-driven techniques for runtime management.
6
http://ssel.vub.ac.be/ssel/research/mdd/jar2uml, a use case of MoDisco [11]

7
http://www.eclipse.org/uml2

8
Byte Code Engineering Library, http://jakarta.apache.org/bcel/

9
http://www.android.com

Generation Benefits Our generation approach improves the development effi-
ciency of SEs. Among the complex functionalities of SEs (see Section 2), we
only require developers to care about the monitoring and controlling of the sys-
tem. Specifically, we reduce 94.1% hand-written code for the JOnAS case (310
vs. 5294 LOC), and 98% for the Java case (62 vs. 3108 LOC).

Synchronization Performance The performance of the generated SE is accept-
able for human-based management. For the JOnAS case, we deploy the JOnAS
server and the synchronization engine on a personal computer with 3.0GHz CPU
and 2.0GB memory. We spend 3.17 seconds in average to show the diagram
shown in Figure 7, with 98 manageable elements in total, and we spend less
than one second to refresh an element or change an attribute. The performance
is similar to the default web-based management tool, the JOnAS Admin. For
the Android case, we spend 1.7 seconds to perform the OCL adaptation rule.

7 Related Work

Many researchers are interested on model-based runtime management. The rep-
resentative approaches include “runtime software architecture” [6, 16], “models
at runtime” [17], etc. Currently, these approaches focus on the problems and
ideas of model-based management, and implement their ideas on specific sys-
tems and models. By contrast, we focus on the reflection of models for different
systems, and provide automated support.

Some researchers also focus on reflecting different systems into standard mod-
els. Sicard et al. [8] employ “wrappers” to reflect systems states into Fractal
models. Researchers of MoDisco Project [11] focus on developing “discoverers”
to discover MOF-compliant models from systems. The “wrappers” and “discov-
erers” are similar to our SEs, but our work supports developers in constructing
SEs from a higher level, not by directly writing code in ordinary programming
language. Another major difference between our work and MoDisco is that our
SEs support writing the model changes back to the system.

Currently, many approaches employ many different mechanisms to maintain
the causal connections between models and running systems. First, some early
approaches require the target systems to be developed under some specific tech-
niques which has built-in RSA support. For example, Oreizy et al. [6] require
their target systems to developed under the Java-C2 class framework, and to use
Fractal architecture at runtime [18], the system classes must implement some in-
terfaces defined by Fractal. This requirement limits their applicability in practice.
Second, some approaches allow the target systems to be developed under indus-
trial standards, but enhance their runtime platforms (middlewares) with RSA
mechanisms. These approaches are also known as “reflective middleware”, and
covers many mainstream component models, like OpenORB [19] for CORBA,
and PKUAS [16] for JEE. The problem of these approaches is that their mid-
dlewares are still not widely adopted in practice. Third, some researchers try to
inject probes and effectors into existing systems to collect runtime data, organize
them as model, and perform model modifications [7]. But since most existing

systems are not designed for code-level evolution, injecting code into them, if
possible, is usually tedious and unsafe. Our approach is close to the third type
in that we also seek to provide a generic mechanism for existing systems, but we
choose a more safe way, utilizing the low-level management APIs provided by
the existing systems.

Our language for modeling management APIs shares the similar idea as the
approaches towards feature-based code composition [20]. They allow developers
to model code slices as features, and to compose or customize features at a high-
level. From the feature composition, their generator composes the code slices
behind the features into an initial version of the program.

Our synchronization mechanism is related to the approaches on model syn-
chronization [21, 22]. The difference is that these approaches use the same model
processing interface to manipulate the two participants of synchronization, but
we try to integrate ad hoc management APIs into the synchronization process.

8 Conclusion

To efficiently leverage the use of model-based techniques at runtime, it is nec-
essary to have a model-based view of the running system. In this paper, we
report our initial attempt towards the automated generation of synchronization
engines that reflect running systems into model-based views. We require devel-
oper to specify “what to manage on the system” as a MOF meta-model, and
specific “how to use the related API to do so” as an access model. From these
specifications, we automatically generate the synchronization engine that reflects
the system as a direct MOF compliant model. We have successfully applied our
approach on several practical systems, and enabled several typical model-based
techniques at runtime. As future work, we plan to give more support for devel-
opers to specify the running systems and their APIs. We also plan to perform
further analysis such as model checking to ensure a deeper correctness and com-
pleteness of the generated causal link.

ACKNOWLEDGMENT

This work is sponsored by the National Key Basic Research and Development
Program of China (973) under Grant No. 2009CB320703; the National Natural
Science Foundation of China under Grant No. 60821003, 60873060; the National
S&T Major Project under Grant No. 2009ZX01043-002-002; and the EU FP7
under Grant No. 231167.

References

1. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In:
Future of Software Engineering (FOSE) in International Conference on Software
Engineering. (2007) 259–268

2. Shannon, B.: Java Platform, Enterprise Edition 5, Specifications (April 2006)
3. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.: The Fractal

Component Model and its Support in Java. Software Practice and Experience
36(11-12) (2006) 1257–1284

4. DiMarzio, J.: Android: A Programmers Guide. McGraw-Hill Osborne Media (2008)
5. Hanson, J.: Pro JMX: Java Management Extensions. (2004)
6. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software

evolution. In: Proceedings of International Conference on Software Engineering
(ICSE). (1998) 177–186

7. Garlan, D., Cheng, S., Huang, A., Schmerl, B.R., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10)
(2004) 46–54

8. Sicard, S., Boyer, F., De Palma, N.: Using components for architecture-based
management: the self-repair case. In: Proceedings of International Conference on
Software Engineering (ICSE), New York, NY, USA, ACM (2008) 101–110

9. Chauvel, F., Barais, O., Borne, I., Jézéquel, J.M.: Composition of qualitative
adaptation policies. In: Automated Software Engineering Conference (ASE 2008).
(2008) 455–458 Short paper.

10. Batista, T., Joolia, A., Coulson, G.: Managing Dynamic Reconfiguration in
Component-Based Systems. In: Software Architecture: 2nd European Workshop,
EWSA 2005, Pisa, Italy, June 13-14, 2005: Proceedings, Springer (2005)

11. MoDisco Project http://www.eclipse.org/gmt/modisco/

12. OW2 Consortium: JOnAS Project. Java Open Application Server, http://jonas.
objectweb.org. (2008)

13. Budinsky, F., Brodsky, S., Merks, E.: Eclipse Modeling Framework. Pearson
Education, project address: http://www.eclipse.org/modeling/emf (2003)

14. Sun: Java PetStore, http://java.sun.com/developer/releases/petstore/.
(2002)

15. Song, H., Sun, Y., Zhou, L., Huang, G.: Towards instant automatic model refine-
ment based on OCL. In: APSEC. (2007) 167–174

16. Huang, G., Mei, H., Yang, F.: Runtime recovery and manipulation of software
architecture of component-based systems. Autom. Softw. Eng. 13(2) (2006) 257–
281

17. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Future of Software Engineering (FOSE) in ICSE ’07. (2007) 37–54

18. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J., Rhone-Alpes, I.:
An Open Component Model and Its Support in Java. In: CBSE. (2004) 7–22

19. Blair, G., Coulson, G., Blair, L., Duran-Limon, H., Grace, P., Moreira, R., Parla-
vantzas, N.: Reflection, self-awareness and self-healing in OpenORB. In: Pro-
ceedings of the first workshop on Self-healing systems, ACM New York, NY, USA
(2002) 9–14

20. Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages with round-
trip engineering. In: International Conference on Model Driven Engineering Lan-
guages and Systems, (MoDELS). (2006) 692–706

21. Giese, H., Wagner, R.: Incremental model synchronization with triple graph gram-
mars. In: International Conference on Model Driven Engineering Languages and
Systems (MoDELS). (2006) 543–557

22. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE. (2007) 164–173

