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Résumé : Une coloration propre d’un graphe G est 2-frugale (resp. linéaire) si le graphe induit
par les sommets de toute paire de classes de couleurs est de degré maximum 2 (resp. est une forêt
de chemins). Un graphe G est 2-frugalement (linéairement) L-colorable si pour une assignation de
listes L : V (G) 7→ 2N donnée, il existe une coloration 2-frugale (resp. linéaire) c de G telle que
c(v) ∈ L(v) pour tout sommet v de G. Si G est 2-frugalement (resp. linéairement) L-colorable pour
toute assignation L de listes telles que |L(v)| ≥ k pour tout sommet v de G, ce graphe est alors
dit 2-frugalement (resp. linéairement) choisissable. Dans cet article, nous améliorons des bornes
connues sur la choisissabilité 2-frugale et la choisissabilité linéaire des graphes de petit degré moyen
maximum.

Mots-clés : degré moyen maximum, coloration des sommets, coloration par liste, frugalité, col-
oration linéaire
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Linear and 2-frugal choosability of graphs of small maximum

average degree

Abstract: A proper vertex colouring of a graph G is 2-frugal (resp. linear) if the graph induced by
the vertices of any two colour classes is of maximum degree 2 (resp. is a forest of paths). A graph G

is 2-frugally (resp. linearly) L-colourable if for a given list assignment L : V (G) 7→ 2N, there exists
a 2-frugal (resp. linear) colouring c of G such that c(v) ∈ L(v) for all v ∈ V (G). If G is 2-frugally
(resp. linearly) L-list colourable for any list assignment such that |L(v)| ≥ k for all v ∈ V (G), then
G is 2-frugally (resp. linearly) k-choosable. In this paper, we improve some bounds on the 2-frugal
choosability and linear choosability of graphs with small maximum average degree.

Key-words: maximum average degree, vertex-colouring, list colouring, frugality, linear coloring
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Linear and 2-frugal choosability of graphs of small
maximum average degree

Nathann Cohen∗, Frédéric Havet

A proper vertex colouring of a graph G is 2-frugal (resp. linear) if the graph induced by the
vertices of any two colour classes is of maximum degree 2 (resp. is a forest of paths). A graph G

is 2-frugally (resp. linearly) L-colourable if for a given list assignment L : V (G) 7→ 2N, there exists
a 2-frugal (resp. linear) colouring c of G such that c(v) ∈ L(v) for all v ∈ V (G). If G is 2-frugally
(resp. linearly) L-list colourable for any list assignment such that |L(v)| ≥ k for all v ∈ V (G), then
G is 2-frugally (resp. linearly) k-choosable. In this paper, we improve some bounds on the 2-frugal
choosability and linear choosability of graphs with small maximum average degree.

1 Introduction

The notion of acyclic colouring was introduced by Grünbaum [2] in 1973 : a vertex colouring
is acyclic if it is proper (no two adjacent vertices have the same colour), and if there is no bicolou-
red cycle (the subgraph induced by the union of any two colours classes is a forest). A colouring
such that for every vertex v ∈ V (G), no colour appears more than p times in the neighborhood
of v, is said to be p-frugal, a notion introduced by Hind, Molloy and Reed in [3]. The p-frugal

chromatic number of a graph G, denoted by Φp(G), is the minimum number of colours in a p-
frugal colouring of G and is clearly larger than ⌈∆

p
⌉+ 1. Hind, Molloy, and Reed [3] proved that

Φp(G) ≤ max(p∆(G), e3

p
∆(G)1+1/p). In addition, they show that this upper bound is tight up to

within a constant factor by showing graphs G such that Φp(G) ≥ 1
2p

∆(G)1+1/p.
Yuster [4] mixed the notions of 2-frugality and acyclicity, thus introducing the concept of linear

colouring. A linear colouring of a graph is an acyclic and 2-frugal colouring. It can also be seen
as a colouring such that the subgraph induced by the union of any two colour classes is a forest of
paths (an acyclic graph with maximum degree at most two). The linear chromatic number of a graph
G, denoted by Λ[5 (G), is the minimum number of colours in a linear colouring of G. As a linear
colouring is 2-frugal, Λ(G)≥ Φ2(G)≥ ⌈∆

2 ⌉+1. Yuster proved in [4] that Λ(G) = O(∆(G)3/2) in the
general case, and he constructed graphs for which Λ(G) = Ω(∆(G)3/2).

These concepts may be generalized to list colouring. Given a list assignment L : V (G) 7→ 2N, an
L-colouring of G is a colouring c such that c(v) ∈ L(v) for each vertex v. A graph G is p-frugally

(resp. linearly) L-colourable if there is an L-colouring of G which is p-frugal (resp. linear). If G is

RR n° 7213



4 N. Cohen & F. Havet

p-frugally (resp. linearly) L-colourable for any assignment L verifying ∀v ∈ V (G), |L(v)| ≥ k, then
G is said to be p-frugally k-choosable (resp. linearly k-choosable). The smallest integer k such that
the graph G is p-frugally k-choosable is the p-frugal choosability or p-frugal list chromatic number

of G and is denoted by Φl
p(G). The linear choosability or linear list chromatic number denoted

Λl(G) is defined analogously. The average degree of G is Ad(G) = 1
|V (G)| ∑v∈V (G) d(v) = 2|E(G)|

|V (G)| .

The maximum average degree of G is Mad(G) = max{Ad(H) | H is a subgraph of G}.
In [1], Esperet et al. proved some upper bounds on the linear choosability of graphs with small

maximum average degree.

Theorem 1 (Esperet et al. [1]). Let G be a graph with maximum degree at most ∆ :

1. If ∆ ≥ 3 and Mad(G) < 16
7 , then Λl(G) =

⌈

∆
2

⌉

+1.

2. If Mad(G) < 5
2 , then Λl(G) ≤

⌈

∆
2

⌉

+2.

3. If Mad(G) < 8
3 , then Λl(G) ≤

⌈

∆
2

⌉

+3.

In this article, we show in Theorem. 2 that the above upper bounds on the maximum average
degree may be assumed arbitrarily close to 3 when ∆ is large enough. When ∆ is small, we also
improve some of the existing bounds (see Theorem. 3). Since a linear colouring is 2-frugal, the
results are also valid for 2-frugal choosability. However, since being 2-frugal is less restrictive than
being linear, we improve some of them in this case (see Theorem. 4). All these results, added to
those proved by Esperet et al. [1] which have not been improved, are summarized in the following
table :

Mad(G) ∆ Λl(G)

< 16
7 ≈ 2.2857 ≥ 3 ≤ ⌈∆

2 ⌉+1 Esperet et al. [1]

< 39
16 = 2.4375 ≥ 5 ≤ ⌈∆

2 ⌉+1 Theorem 3-1

< 48
19 ≈ 2.5263 ≥ 7 ≤ ⌈∆

2 ⌉+1 Theorem 3-2

< 3− 3
∆+1 ≥ 8 ≤

⌈

∆
2

⌉

+1 Theorem 2-1

< 5
2 ≤ ⌈∆

2 ⌉+2 Esperet et al. [1]

< 60
23 ≈ 2.6086 ≥ 5 ≤ ⌈∆

2 ⌉+2 Theorem 3-3

< 3− 9
4∆+3 ≥ 7 ≤

⌈

∆
2

⌉

+2 Theorem 2-2

< 14
5 = 2.8 ≤ ⌈∆

2 ⌉+3 Theorem 3-4

< 3 ≥ 12 ≤
⌈

∆
2

⌉

+3 Theorem 2-3

< 3 ≤ ⌈∆
2 ⌉+4 Theorem 3-5

Mad(G) Φl
2(G) ∆

< 5
2 ≤ ⌈∆

2 ⌉+1 ≥ 7 Theorem 4-1

< 3 ≤ ⌈∆
2 ⌉+3 Theorem 4-2

INRIA



Linear and 2-frugal choosability of graphs of small maximum average degree 5

The girth g(G) of a graph G is the length of its smallest cycle or +∞ if G has no cycle. Euler’s
formula implies that a planar graph G has bounded maximum average degree in terms of its girth :

Mad(G) < 2+
4

g(G)−2
. (1)

This immediately gives to any result on graphs with bounded maximum average degree have an
equivalent formulation for planar graphs with large girth. These are summarized in the following
table together with those coming from the papers of Esperet et al. [1] and Raspaud and Wang [5, 6]
which are not improved here.

girth Λl(G) ∆

≥ 16 ≤ ⌈∆
2 ⌉+1 ≥ 3 Esperet et al. [1]

≥ 7 ≤ ⌈∆
2 ⌉+1 ≥ 13 Raspaud and Wang [5]

≥ 8 ≤ ⌈∆
2 ⌉+1

≥ 10 ≤ ⌈∆
2 ⌉+2 Esperet et al

≥ 9 ≤ ⌈∆
2 ⌉+2 ≥ 5

≥ 7 ≤ ⌈∆
2 ⌉+3

≥ 6 ≤ ⌈∆
2 ⌉+4

≥ 5 ≤ ⌈∆
2 ⌉+6 Raspaud and Wang [6]

≤ ⌈ 9
∆

10⌉+5 ≥ 85 Raspaud and Wang [6]

girth Φl
2(G) ∆

≥ 6 ≤ ⌈∆
2 ⌉+3

The proofs of our results are based on the same general idea. We study graphs which we call
k-frugal-minimal (resp. k-linear-minimal) – i.e. graphs that are not k-frugally colourable (resp. k-
linear-colourable), while any of their proper subgraphs is. We first show in Section 2 that some
configurations (i.e. subgraphs) may not appear in such a graph. We then use in Section 3 the dischar-
ging method to show that a graph containing none of these forbidden configurations must have larger
average degree than assumed, giving a contradiction .

2 Forbidden configurations

Before establishing some lemmas, let us give some definitions. Let k a non-negative integer. A
k-vertex (resp. (≥ k)-vertex, (≤ k)-vertex) is a vertex of degree exactly k (resp. at least k, at most k).
A k-neighbour of v is a k-vertex adjacent to v. (≥ k) and (≤ k)-neighbours are defined similarly.
A k-thread in a graph G is an induced path of G with k+1 edges, and so k internal vertices of degree
2.

RR n° 7213



6 N. Cohen & F. Havet

Note that a k-frugal-minimal or k-linear-minimal graph is connected and in particular has no
0-vertex. We will sometimes use this easy fact without referring explicitly to it.

2.1 Linear colouring

Lemma 1. Let H be a k-linear-minimal or k-frugal-minimal graph.

1. If k ≥
⌈

∆(H)
2

⌉

+1, then H has no 1-vertex.

2. For every 2-vertex v with N(v) = {a,b} and deg(a) ≤ deg(b), we have deg(b) ≥ 2(k−deg(a))+1.

3. If k ≥ 3, then H contains no 3-thread.

4. If k ≥ 4, then no 3-vertex is incident to a 2-thread.

5. Assume k ≥ 4. If a 3-vertex has three 2-neighbours, then the second neighbour of each of those is a

(≥ 4)-vertex.

6. If k ≥ 4, then no 4-vertex is adjacent to four 2-threads.

7. If k ≥ 5, then no 4-vertex is incident to a 2-thread.

8. If k ≥ 5, then no 5-vertex is incident to five 2-threads.

9. If k ≥ 5, then a 2-vertex has at most one 3-neighbour.

10. If k ≥ 5, then a 4-vertex is not adjacent to two 2-vertices having each a 3-neighbour.

11. If k ≥
⌈

∆(H)
2

⌉

+2, then two 2-vertices are not adjacent.

12. If k ≥
⌈

∆(H)
2

⌉

+3, then every 3-vertex has no 2-neighbour.

13. If k ≥
⌈

∆(H)
2

⌉

+3, then every 4-vertex has at most three 2-neighbours.

14. If k ≥ ⌈∆(H)
2 ⌉+4, then every 4-vertex has at most four 2-neighbours.

15. If k ≥ max
(

6,⌈∆(H)
2 ⌉+4

)

, then every 5-vertex has at most two 2-neighbours.

Démonstration. In the following, we only prove the assertions for linear colouring : 2-frugal colou-

ring being less restrictive, all the proofs translate naturally. Suppose that one of the assertions of
Lemma 1 does not hold. Let H be a k-linear-minimal graph for which it fails and L a k-list assignment
such that H is not linearly L-colourable.

1. H contains a 1-vertex u. Let v be the neighbour of u. Let c be a linear L-colouring of H −u.
We now extend c to u. The colour c(v) is forbidden. Moreover to preserve the 2-frugality at v, the

colours appearing twice in the neighbourhood of v are also forbidden. There are at most ⌊∆(H)−1
2 ⌋

such colours. Hence, at most ⌈∆(H)
2 ⌉ colours in total are forbidden at u. Thus u can be coloured

with a non-forbidden colour in its list L(u), and the colouring obtained is a linear L-colouring of
H, which is a contradiction.

2 Let v be a 2-vertex of H with N(v) = {a,b} and deg(a) ≤ deg(b), such that deg(b) < 2(k−
deg(a))+1. Let c be a linear L-colouring of H − v.

INRIA



Linear and 2-frugal choosability of graphs of small maximum average degree 7

– If c(a) = c(b), let us assign to v a colour c(v) ∈ L(v) different from the ones of the other
neighbours of a (i.e. there are at most deg(a)− 1 of them), c(a), and every colour which is

repeated at least twice in the neighbourhood of b (i.e. there at most
⌊

deg(b)−1
2

⌋

< k−deg(a) of

them). Doing so, we obtain a k-linear L-colouring of H, a contradiction.
– If c(a) 6= c(b), let us assign to v a colour c(v) ∈ L(v) different from c(a), c(b), and every colour

which is repeated at least twice in the neighbourhood of a or in the neighbourhood of b. The

number of forbidden colours is at most 2 +
⌊

deg(a)−1
2

⌋

+
⌊

deg(b)−1
2

⌋

< 2 + deg(a)− 2 + k −

deg(a) = k because deg(a) ≥ 2 and so deg(a) ≥ 2 +
⌊

deg(a)−1
2

⌋

. Hence such an assignment is

possible, and yields a k-linear L-colouring of H, a contradiction.
3. It follows directly from 2 which implies that if a 2-vertex has a 2-neighbour then its other

neighbour has degree at least 3.
4. There is a configuration as depicted in Figure 1. with possibly x = u1, or x = u and w = u1.

✉ ✉ ✉ ✉

✉

✉

❅
❅

�
�

��
❅❅

u v w x

u1

u2
FIG. 1 – Configuration of Case 4

By the minimality of H, there exists a linear L-colouring c of H − v. We now extend it to v :
– If c(u1) = c(u2), we colour v with c(v) ∈ L(v)\{c(u),c(w),c(u1)}. There can be no bicoloured

cycle, as c(v) is different from both c(u1) and c(u2), and the 2-frugality at u is preserved.
– If c(u1) 6= c(v2), we colour v with c(v) ∈ L(v)\{c(u),c(w),c(x)}. There can be no bicoloured

cycle, as c(v) is different from c(x), and c is 2-frugal.
5. There is a configuration as depicted in Figure 2. Possibly ti = ui and wi = ui for i = 1,2, or

some vertices in {w1,w2, t1, t2} are identified.

✉ ✉ ✉

✉

✉

✉

✉

✉

✉

�
�

��

❅
❅

❅❅

❅
❅

�
�

w v u

w1

w2

u1

u2
t2

t1

FIG. 2 – Configuration of Case 5

By the minimality of H there exists a linear L-colouring c of H −{u,v}. We now extend it to u

and v :
– If c(u1)= c(u2), we colour v with c(v)∈L(v)\{c(w),c(w1),c(u1)} and u with c(u)∈L(v)\{c(v),c(u1),c(t1)}.
– If c(u1) 6= c(u2), we colour u with c(u)∈L(u)\{c(u1),c(u2),c(w)} and v with c(v)∈L(v)\{c(u),c(w),c(w1)}.

6. There is a configuration as depicted in Figure 3. Possibly t3 = u = u3 and u1 = t2 and t1 = u2.
In this case, a linear colouring of H −{u1,u2} can be extended into a linear colouring of H by
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8 N. Cohen & F. Havet

assigning to u1 a colour distinct from those of u and w1 and to u2 a colour distinct from those of
u, u1 and v1. This is a contradiction.
So we may assume that it is not the case. Then possibly some vertices of {t3,u3,v3,w3} may be
identified.

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

✉

�
�

�
�

❅
❅

❅
❅x

t1w1

u1v1

t2w2

u2v2

t3w3

u3v3

FIG. 3 – Configuration of Case 6

By the minimality of H there exists a linear L-colouring c of H−{t1,u1,v1,w1,x}. We now extend
it to t1, u1, v1, w1 and x :
– We colour t1 with c(t1) ∈ L(t1)\{c(t2),c(t3)}.
– We colour u1 with c(u1) ∈ L(u1)\{c(u2),c(u3),c(t1)}.
– We colour x with c(x) ∈ L(x)\{c(t1),c(u1),c(w2)}.
– We colour w1 with c(w1) ∈ L(w1)\{c(t2),c(x)}.
– We colour v1 with c(v1) ∈ L(v1)\{c(v2),c(x),c(w1)}.
There can be no bicoloured cycle through t1 (resp. u1) as its colour is different from c(t3) (resp.
c(u3)), and none going through w2 as its colour is different from c(x).

7. There is a configuration as depicted in Figure 4. Possibly w3 is one of {t,u,v} or w3 = x and
w2 = t. In the later case, we get a contradiction as in Case 6, so we may assume that it does not
occur.

✉

✉

✉ ✉ ✉✉

✉

��
❅❅

��❅❅

❅❅��

❅❅
��x w1 w2 w3

v

t

u

FIG. 4 – Configuration of Case 7

By the minimality of H there exists a linear L-colouring c of H −w1. We extend it to w1 :
– If c(w2) = c(x), then we colour w1 with c(w1) ∈ L(w1)\{c(x),c(w3),c(v),c(t)}. There can be

no bicoloured cycle as c(w1) 6= c(w3), and the 2-frugality at x is preserved.
– If c(w2) 6= c(x), then we colour w1 with c(w1) ∈ L(w1)\{c(x),c(w2),c(v),c(t)}. There can be

no bicoloured cycle as c(w2) 6= c(x), and the 2-frugality at x is preserved.
8. There is a configuration as depicted in Figure 5. Possibly, some of the vertices in {s3, t3,u3,v3,w3}

are the same or identified with x (by pairs). In the later case, without loss of generality, s3 = x = t3,

INRIA



Linear and 2-frugal choosability of graphs of small maximum average degree 9

s1 = t2 and t1 = s2. Then, by minimality of H, there is a linear colouring c if H −{s1,s2}. It can
be extended by colouring s1 with a colour c(s1) distinct from c(x) and the possible colour appea-
ring twice on {u1,v1,w1}, and colouring s2 with a colour c(s2) distinct from c(x), c(s1) and the
possible colour appearing twice on {u1,v1,w1}. Hence we may assume that this case does not
appear.

✉

✉

✉

✉��❅❅

✉

✉

✉

✉��
❅❅

✉

✉

✉

✉��
❅❅

✉

✉

✉

✉��
❅❅

✉

✉

✉

✉��
❅❅

x

w1

w2

w3

s1
s2

s3

v1
v2

v3

u1

u2

u3

t1

t2

t3

FIG. 5 – Configuration of Case 8

By the minimality of H there exists a linear L-colouring c of H −{x,s1, t1,u1,v1,w1}. We extend
it to x, s1, t1, u1, v1, and w1 :
– We colour s1 with c(s1) ∈ L(s1)\{c(s2),c(s3)}.
– We colour t1 with c(t1) ∈ L(t1)\{c(t2),c(t3),c(s1)}.
– We colour u1 with c(u1) ∈ L(u1)\{c(u2),c(u3),c(s1),c(t1)}.
– We colour v1 with c(v1) ∈ L(v1)\{c(v2),c(u1),c(t1),c(s1)}.
– We colour x with c(x) ∈ L(x)\{c(s1),c(t1),c(u1),c(v1)}.
– We colour w1 with c(w1) ∈ L(w)\{c(w2),c(x),c(v1)}.
The 2-frugality at x is preserved as 4 different colours are assigned to the vertices s1, t1, u1 and v1.
Furthermore, there can be no bicoloured cycles going through s1 and s3, t1 and t3, u1 and u3 or w1

and v1. Thus the obtained L-colouring is linear, a contradiction.
9. There is a configuration as depicted in Figure 6. Possibly, some of the vertices of {v1,v2,w1,w2}

are identified or v1 = v and w1 = w.
By the minimality of H, there exists a linear L-colouring c of H −u. We extend it to u :
– If c(v) = c(w), we colour u with c(u)∈ L(u)\{c(v),c(v1),c(v2),c(w1)} to prevent the formation

of a bicoloured cycle and preserve the 2-frugality at v and w.
– If c(v) 6= c(w), we colour u with c(u) ∈ L(u)\{c(v),c(v1),c(w1),c(w)} to preserve the 2-

frugality at v and w. There can be no bicoloured cycles because c(v) 6= c(w).

RR n° 7213



10 N. Cohen & F. Havet

✉ ✉

✉

✉

✉

✉

✉

�
��

❅
❅❅

❅
❅❅

�
��

u vw

v1

v2

w1

w2

FIG. 6 – Configuration of Case 9

Hence H is linearly L-colourable, a contradiction.
10. There is a configuration as depicted in Figure 7. Possibly some vertices of {v′′1 ,v

′′′
1 ,v′′2 ,v

′′′
2 ,v3,v4}

are the same, or, for i ∈ {1,2}, v′′i = u and v′i = vi+2.

✉✉

✉

✉

✉

✉✉

✉

✉

✉

✉
�

�

❅
❅

❅
❅

�
�

u v1

v3

v2
v′2

v4

v′1

v′′1

v′′′1

v′′2

v′′′2

FIG. 7 – Configuration of Case 10

By the minimality of H there exists a linear L-colouring c of H −{v1,v2}. We extend it to v1 and
v2 :
– If c(v′1) = c(u), we colour v1 with c(v1) ∈ L(v1)\{c(u),c(v′′1),c(v

′′′
1 ),c(v4)}. There can be no

bicoloured cycle through v1 as it is different from both v′′1 and v′′′1 , and the 2-frugality at v′1 is
preserved.

– If c(v′1) 6= c(u), we colour v1 with c(v1) ∈ L(v1)\{c(u),c(v′1),c(v
′′
1),c(v4)}. There can be no

bicoloured cycle through v1 as c(v′1) 6= c(u), and the 2-frugality at v′1 is preserved.
We colour v2 with symmetrical rules, replacing v4 by v3.
As c(v4) 6= c(v1) and c(v3) 6= c(v2), the 2-frugality of c is preserved.

11. It follows from 2. Indeed if a 2-vertex would have a 2-neighbour then its second neighbour
has degree at least ∆(H)+1, a contradiction.

12. There is a configuration as depicted in Figure 8 with possibly v′1 = v2.

✉✉ ✉

✉

✉

u v3

v1

v2

v′1

FIG. 8 – Configuration of Case 12

By the minimality of H, there exists a linear L-colouring c of H − v1.

INRIA
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– If c(u) = c(v′1), we colour v1 with c(v1)∈ L(v1) that is different from c(u), the colours appearing
twice in the neighbourhood of v′1 (in order to preserve the 2-frugality at this vertex) and different
from c(v2) and c(v3) to prevent the apparition of bicoloured cycles.

– If c(u) 6= c(v′1), we colour v1 with c(v1) ∈ L(v1) that is different from c(u) and c(v′1), the
colours appearing twice in the neighbourhood of v′1 (in order to preserve 2-frugality at this
vertex) and different from c(v2) to preserve the 2-frugality at u. There can be no bicoloured
cycles as c(u) 6= c(v′1).

In both cases, H is linearly L-colourable, a contradiction.
13. There is a configuration as depicted in Figure 9 with possibly some of the vertices in

{v′1,v
′
2,v

′
3,v

′
4} being identified.

✉✉

✉

✉

✉

✉

✉ ✉

✉

u v1

v2

v3

v4

v′4

v′1

v′2

v′3

FIG. 9 – Configuration of Case 13

By the minimality of H there exists a linear L-colouring c of H −{u,v1,v2,v3,v4}. We extend it
to u, v1, v2, v3 and v4 :
– We colour u with c(u) ∈ L(u)\{c(v′1),c(v

′
2),c(v

′
3),c(v

′
4)} to prevent the apparition of bicolou-

red cycles.
– We colour v1 with c(v1) ∈ L(v1) different from c(u), c(v′1) and the colours appearing twice in

the neighbourhood of v′1.
– We colour v2 with c(v2) ∈ L(v2) different from c(u), c(v′2) and the colours appearing twice in

the neighbourhood of v′2.
– We colour v3 with c(v3) ∈ L(v3) different from c(u), c(v′3), c(v2) and the colours appearing

twice in the neighbourhood of v′3.
– We colour v4 with c(v4) ∈ L(v4) different from c(u), c(v′4), c(v1) and the colours appearing

twice in the neighbourhood of v′4.
There can be no bicoloured cycle with this colouring of H and c is 2-frugal because 3 vertices
among {v1,v2,v3,v4} cannot share the same colour. Then H is linearly L-colourable, a contradic-
tion.
14. There is a configuration as depicted in Figure 10 with possibly some of the vertices in
{v′1,v

′
2,v

′
3,v4} being identified.

RR n° 7213



12 N. Cohen & F. Havet

✉✉

✉

✉

✉

✉ ✉

✉

u v1

v2

v3

v4

v′1

v′2

v′3

FIG. 10 – Configuration of Case 14

By the minimality of H there exists a linear L-colouring c of H −{u,v1,v2,v3}. We extend it to u,
v1, v2 and v3 :
– We colour u with c(u) ∈ L(u) such that c(u) is different c(v4), c(v′1), c(v′2), c(v′3) (to avoid any

bicoloured cycle) and the colours appearing twice in the neighbourhood of v4.
– We colour v1 with c(v1) ∈ L(v1) different from c(u), c(v′1), c(v4), and the colours appearing

twice in the neighbourhood of v′1.
– We colour v3 with c(v3) ∈ L(v3) different from c(u), c(v′3), c(v4), and the colours appearing

twice in the neighbourhood of v′3.
– We colour v2 with c(v2) ∈ L(v2) different from c(u), c(v′2), c(v3), c(v1), and the colours appea-

ring twice in the neighbourhood of v′2.
There is no bicoloured cycle containing u because c(u) is different from c(v′1), c(v′2) and c(v′3).
Moreover, the 2-frugality at U is assured, as 3 vertices among {v1,v2,v3,v4} cannot share the
same colour. Hence H is linearly L-colourable, a contradiction.

15. There is a configuration as depicted in Figure 11 with possibly some of the vertices in
{v′1,v

′
2,v

′
3,v

′
4,v

′
5} being identified.

✉

✉

✉��❅❅

✉

✉

✉��
❅❅

✉

✉

✉��
❅❅

✉

✉

✉��
❅❅

✉

✉

✉��
❅❅

u

v4

v′4

v5
v′5v3

v′3

v1

v′1

v2

v′2

FIG. 11 – Configuration of Case 15

By the minimality of H there exists a linear L-colouring c of H −{u,v1,v2,v3,v4,v5}. We extend
it to u, v1, v2, v3, v4 and v5 :

INRIA



Linear and 2-frugal choosability of graphs of small maximum average degree 13

– We colour v1 with c(v1) ∈ L(v1) different from c(v′1), and the colours appearing twice in the
neighbourhood of v′1.

– We colour v2 with c(v2) ∈ L(v2) different from c(v′2), c(v1), and the colours appearing twice in
the neighbourhood of v′2.

– We colour v3 with c(v3) ∈ L(v3) different from c(v′3), c(v1), c(v2), and the colours appearing
twice in the neighbourhood of v′3.

– We colour v5 with c(v5) ∈ L(v5) different from c(v′5), c(v1), c(v2), c(v3) and the colours appea-
ring twice in the neighbourhood of v′5.

– We colour u with c(u) ∈ L(u) different from c(v1), c(v2), c(v3), c(v5), and c(v′4).
– We colour v4 with c(v4) ∈ L(v4) different from c(v′4), c(u), and the colours appearing twice in

the neighbourhood of v′4.
There is no bicoloured cycle using v′4 because c(v′4) 6= c(u). Moreover there is no bicoloured
cycle using both vi and v j, for i < j and i, j ∈ {1,2,3,5} as c(v1), c(v2), c(v3) and c(v5) are all
distionct. For the same reason, the 2-frugality at u is assured. Thus H is linearly L-colourable, a
contradiction.

2.2 2-frugal colouring

Lemma 2. Let H be a k-frugal-minimal graph.

(i) If k ≥ 4, then no 4-vertex is incident to two 2-threads.

(ii) If k ≥ ⌈∆
2 ⌉+3, then a 4-vertex has at most one 2-neighbour.

(iii) If k ≥ max
(

6,⌈∆
2 ⌉+3

)

, then a 5-vertex has at most four 2-neighbour.

Démonstration. Suppose that one of the assertions of Lemma 2 does not hold. Let H be a k-frugal-
minimal graph for which it fails and L a k-list assignment such that H is not 2-frugally L-colourable.

(i) There is a configuration as depicted in Figure 12.

✉✉

✉

✉

✉

✉ ✉

✉

✉

u v1

v2

v3

v4

v′1 v′′1

v′2

v′′2

FIG. 12 – Configuration of Case (ii)

By the minimality of H there exists a 2-frugal L-colouring c of H −{v1,v2}. We extend it to v1

and v2 :
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14 N. Cohen & F. Havet

– We colour v1 with c(v1) ∈ L(v1) different from c(u),c(v4),c(v
′
1).

– We colour v2 with c(v2) ∈ L(v2) different from c(u),c(v3),c(v
′
2).

c is 2-frugal, given that c(v1) 6= c(v4) and c(v2) 6= c(v3). Hence, H is 2-frugally L-colourable, a
contradiction.
(ii) There is a configuration as depicted in Figure 13 with possibly some of the vertices in
{v′1,v

′
2,v3,v4} being identified.

✉✉

✉

✉

✉

✉

✉

u v1

v2

v3

v4

v′1

v′2

FIG. 13 – Configuration of Case (iii)

By the minimality of H there exists a 2-frugal L-colouring c of H −{v1,v2}. We extend it to v1

and v2 :
– We colour v1 with c(v1) ∈ L(v1) different from c(u), c(v4), c(v′1) and the colours appearing

twice in the neighbourhood of v′1.
– We colour v2 with c(v2) ∈ L(v2) different from c(u), c(v3), c(v′2) and the colours appearing

twice in the neighbourhood of v′2.
c is 2-frugal, given that c(v1) 6= c(v4) and c(v2) 6= c(v3). Hence, H is 2-frugally L-colourable, a
contradiction.
(iii) There is a configuration as depicted in Figure 14 with possibly some vertices in {v′1,v

′
2,v

′
3,v

′
4,v

′
5}

being identified.

✉

✉

✉��❅❅

✉

✉

✉��
❅❅

✉

✉

✉��
❅❅

✉

✉

✉��
❅❅

✉

✉

✉��
❅❅

u

v4

v′4

v5
v′5v3

v′3

v1

v′1

v2

v′2

v4

v5v3

v1v2

✉✉

✉✉

✉

FIG. 14 – Configuration of Case (iv) and its auxiliary graph
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By the minimality of H there exists a 2-frugal L-colouring c of H−{u,v1,v2,v3,v4,v5}. We extend
it to u, v1, v2, v3, v4 and v5 :
– We colour v1 with c(v1) ∈ L(v1) different from c(v′1), and the colours appearing twice in the

neighbourhood of v′1.
– We colour v2 with c(v2) ∈ L(v2) different from c(v′2), c(v1) and the colours appearing twice in

the neighbourhood of v′2.
– We colour v3 with c(v3) ∈ L(v3) different from c(v′3), c(v1), c(v2) and the colours appearing

twice in the neighbourhood of v′3.
– We colour v4 with c(v4) ∈ L(v4) different from c(v′4), c(v1),c(v2) and the colours appearing

twice in the neighbourhood of v′4.
– We colour v5 with c(v5) ∈ L(v5) different from c(v′5), c(v2),c(v3) and the colours appearing

twice in the neighbourhood of v′5.
– We colour u with c(u) ∈ L(u) different from c(v1), c(v2), c(v3), c(v4) and c(v5).
The colouring is 2-frugal at u because no three vertices of {v1,v2,v3,v4,v5} can share the same
colour as there is no stable set of size 3 in the auxiliary graph depicted on the right of Figure 14.
Thus H is 2-frugally L-colourable, a contradiction.

3 Main results

3.1 Linear colouring – asymptotic result

In this subsection, we prove the following theorem :

Theorem 2. Let G be a graph of maximum degree at most ∆.

1. If Mad(G) < 3− 3
∆+1 and ∆ ≥ 8, then Λl(G) ≤

⌈

∆
2

⌉

+1.

2. If Mad(G) < 3− 9
4∆+3 and ∆ ≥ 7, then Λl(G) ≤

⌈

∆
2

⌉

+2.

3. If Mad(G) < 3 and ∆ ≥ 12 then Λl(G) ≤
⌈

∆
2

⌉

+3.

Démonstration. The proof of the three statements are similar.
We assume the existence of a counter-example G with maximum degree at most ∆ such that

Mad(G) < 3−ε (we first consider ε as a variable). G then contains a subgraph H which is (
⌈

∆
2

⌉

+q)-
linear-minimal with q = 1, 2 and 3 depending one the statement. We give to each vertex v of H an
initial charge w(v) equal to its degree degH(v) in H. The average charge is then equal to the average
degree of H which is at most Mad(G).

We then use the following discharging rule :
– Every d-vertex, d ≥ 3, gives αd = d−(3−ε)

d
to its 2-neighbours.

We shall prove that after the discharging phase every vertex v has final charge w∗(v) at least 3−ε

for some ε ≥ 0 to be determined. This implies that

Ad(H) =
∑v∈V (H) w(v)

|V (H)|
=

∑v∈V (H) w∗(v)

|V (H)|
≥ 3− ε

RR n° 7213



16 N. Cohen & F. Havet

which contradicts Mad(G) < 3− ε.
By Lemma 1-1, there is no (≤ 1)-vertex. For any d ≥ 3, every d-vertex send at least d times αd ,

so its final charge is at least d −d ·αd = 3− ε.
Let us now examine the final charge of 2-vertices. We set d′

q = 2(
⌈

∆
2

⌉

+ q−d)+ 1. By Lemma
1-2, every 2-vertex having a d-neighbour has also a (≥ d′

q)-neighbour. Observe that d′
q > ∆ if d ≤ q,

thus no 2-vertex has a (≤ q)-neighbour.
If q ≥ 2, then a 2-vertex v has no 2-neighbour. Hence by Lemma 1-2, it has a d1-neighbour and a

d2-neighbour, with 2 < d = d1 ≤ d′
q ≤ d2. Since α3 ≤ α4 ≤ ·· · ≤ α∆, the final charge of v is at least

w∗(v) = 2+αd1 +αd2 ≥ 2+αd +αd′q
.

If q = 1 a 2-vertex has either no 2-neighbour and as above its final charge is at least 2+αd +αd′q

or it has a 2-neighbour and, by Lemma 1-2, its other neighbour is a ∆-vertex, so it final charge is at
least 2+α∆.

Hence, to prove Theorem 2, it is sufficient to show that 2+αd +αd′q
≥ 3− ε, for all d ≤ d′

q and
also 2+α∆ ≥ 3− ε when q = 1.

2+αd +αd′q
≥ 3− ε is equivalent to P(d) ≥ 0 with P(d) = (1+ ε)dd′

q +(ε−3)(d +d′
q). Since

d′
q = 2(

⌈

∆
2

⌉

+q−d)+1, P(d) is a polynomial of degree 2 in d of the form −2(1− ε)d2 +A ·d +B

for some constant A and B (note that the coefficient of d2 is negative). Hence to verify that P(d) ≥ 0
for all possible values of d it suffices to prove it for the smallest and largest d such that d ≤ d′

q,

namely max(3,q+1) and ∆+2q+2
3 (it actually is ∆+2q+2

3 if ∆ is odd and ∆+2q+1
3 if ∆ is even).

If q ≥ 2, we obtain the following two conditions :

ε ≥
3(q+1)− (q−2)∆

q+1+(q+2)∆

ε ≥
16−2q−∆

8+2q+∆

For q = 3 and ∆ ≥ 12 the right hand sides of these two inequalities are negative. So they are
satisfied for ε = 0, which proves Theorem 2-3. For q = 2 and ∆ ≥ 7 then 9

3+4∆
≥ 12−∆

12+∆
and so the

above inequalities are satisfied for ε = 9
3+4∆

. This proves Theorem 2-2.

If q = 1, we have the three following conditions, the first two given by P(d) and the third one by
2+α∆ ≥ 3− ε.

ε ≥
9

4∆−5

ε ≥
14−∆

10+∆

ε ≥
3

∆+1

But 3
∆+1 ≥ 9

4∆−5 and 3
∆+1 ≥ 14−∆

10+∆
when ∆ ≥ 8. So the above inequalities are satisfied for ε = 3

∆+1 .
This proves Theorem 2-1.

INRIA
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3.2 Graphs of small maximum degree

In this subsection we prove the following theorem.

Theorem 3. Let G be a graph with maximum degree at most ∆ :

1. If ∆ ≥ 5 and Mad(G) < 39
16 , then Λl(G) ≤ ⌈∆

2 ⌉+1.

2. If ∆ ≥ 7 and Mad(G) < 48
19 , then Λl(G) ≤ ⌈∆

2 ⌉+1.

3. If ∆ ≥ 5 and Mad(G) < 60
23 , then Λl(G) ≤ ⌈∆

2 ⌉+2.

4. If Mad(G) < 14
5 , then Λl(G) ≤ ⌈∆

2 ⌉+3.

5. If Mad(G) < 3. Then Λl(G) ≤ ⌈∆
2 ⌉+4.

Démonstration. The proofs of all statements are similar : we assume the existence of a counter-
example G such that Mad(G) < M (we first consider M as a variable), from which we deduce the
existence of a subgraph H which is k-linear-minimal. We then use the discharging method to reach
a contradiction.

We give to each vertex v of H an initial charge w(v) equal to its degree degH(v) in H. The
average charge is then equal to the average degree of H which is at most Mad(G). Then, we define
discharging rules by which vertices will exchange some of their charge, keeping the average constant.
We then want to prove with the help of the lemmas of the previous section that each vertex v has a
final charge w∗(v) at least M and so strictly greater than the average charge, which is a contradiction.

Of course, we want to find rules such that M is as large as possible in each case : for this reason,
the following proofs actually define the constraints of a Linear Programme in which M is the ob-
jective value, and whose variables are the charges exchanged by the vertices during the discharging
phase. At the end of each proof, we give an optimal solution of the given Linear Programme which
proves the results.

1. Let G be a graph with maximum degree ∆ ≥ 5 such that Mad(G) < M. Set k1 =
⌈

∆
2

⌉

+ 1.
Suppose by way of contradiction that Λl(G) > k1. Then G has a subgraph H which is k1-linear-
minimal.

Let us assign to every vertex of H an initial charge w(v) = degH(v). Then ∑v∈V (H) w(v) =

∑v∈V (H) d(v) = Ad(H) · |V (H)|. We now apply the following discharging rules.

Rule 1. A 2-vertex having two 3-neighbours receives α3 from each of them.
Rule 2. A 2-vertex having only one 3-neighbour receives α′

3 from it.
Rule 3. A 2-vertex having a 2-neighbour and a (≥ 4)-neighbour receives α4 from it.
Rule 4. A 2-vertex having a (≥ 3)-neighbour and a (≥ 4)-neighbour receives α′

4 from its
(≥ 4)-neighbour.

At the end we want that the final charge of every vertex is at least M. This implies

Ad(H) =
∑v∈V (H) w(v)

|V (H)|
=

∑v∈V (H) w∗(v)

|V (H)|
≥ M

which contradicts Mad(G) < M.
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18 N. Cohen & F. Havet

We now define constraints on M and the αi and α′
i guaranteeing the the final charge w∗(v) of

every vertex v of H is at least M.
As there are no (≤ 1)-vertices by Lemma 1-1, let us examine the final charge w∗(v) of a (≥ 2)-

vertex v.
– If v is a 2-vertex then by Lemma 1-3 and 1-4 it has either two 3-neighbours, or one 3-neighbour

and one (≥ 4)-neighbour, or one 2-neighbour and one (≥ 4)-neighbour. In the first case w∗(v) =
2 + 2α3, on the second w∗(v) ≤ 2 + α′

3 + α′
4 and in the last one w∗(v) = 2 + α4. So the required

constraints are
M ≤ 2+2α3 and M ≤ 2+α′

3 +α′
4 and M ≤ 2+α4.

– If v is a 3-vertex adjacent to three 2-neighbours, none of them can be adjacent to another 3-
vertex by Lemma 1-5, and so will give at most 3α′

3. If it is adjacent to two 2-neighbours then it
gives at most max{2α3,2α′

3}. Hence, we obtain the constraints

M ≤ 3−3α′
3 and M ≤ 3−2α3.

– If v is a 4-vertex, by Lemma 1-6 it can not be adjacent to four 2-threads. Then it gives at
most 3α4 +α′

4. (Here we assume implicitly that α′
4 ≤ α4 which is intuitively true but a priori not

proved. However this inequality is satisfied by the solution giving the optimal value of M and so
our assumption is a posteriori correct). Thus we obtain the constraint M ≤ 4−3α4 −α′

4.
– If v is a k-vertex with k ≥ 5, it will give at most give kα4 yielding the constraints M ≤ k−kα4.
The optimal value M = 39

16 is obtained for α3 = 7
32 , α′

3 = 3
16 , α4 = 7

16 and α′
4 = 1

4 .

2. Let G be a graph with maximum degree ∆ ≥ 7 such that Mad(G) < M. Set k1 =
⌈

∆
2

⌉

+ 1.
Suppose by way of contradiction that Λl(G) > k1. Then G has a subgraph H which is k1-linear-
minimal.

Let us assign to every vertex of H an initial charge w(v) = degH(v) and apply the following
discharging rules.

Rule 1. A 3-vertex sends α3 to each of its 2-neighbours.
Rule 2. A (≥ 4)-vertex sends α4 to its 2-neighbours which are in a 2-thread and α′

4 to its other
2-neighbours.

Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at
least M, a contradiction. Again there are no (≤ 1)-vertices by Lemma 1-1.

– Suppose that v is a 2-vertex. Then by Lemma 1-3 it has at most one 2-neighbour. If v has one
2-neighbour then, by Lemma 1-4, it has a (≥ 4)-neighbour from which it receives α4. We obtain
the constraint M ≤ 2+α4. If v has no 2-neighbour then, by Lemma 1-9, it has a (≥ 4)-neighbour
from which it receives α′

4. Its other neighbour is a (≥ 3)-neighbour from which it receives α3.
Hence we get M ≤ 2+α′

4 +α3.
– If v is a 3-vertex it sends at most α3 to each neighbour. This yields the constraints M ≤ 3−3α3.
– If v is a 4-vertex then by Lemma 1-7, it is incident to no 2-thread, yielding M ≤ 4−4α′

4.
– If v is a 5-vertex then by Lemma 1-8, it is incident to at most four 2-threads, yielding M ≤

5− 4α4 −α′
4 (again we implicitly assume α4 ≥ α′

4 which is satisfied by the solution giving the
optimal value).

INRIA



Linear and 2-frugal choosability of graphs of small maximum average degree 19

– If v is a k-vertex with k ≥ 6, it sends at most α4 to each neighbour. Thus M ≤ k− kα4.
The optimal value M = 48

19 is obtained for α3 = 3
19 , α4 = 10

19 and α′
4 = 7

19 .

3. Let G be a graph with maximum degree ∆ ≥ 5 such that Mad(G) < M. Set k2 =
⌈

∆
2

⌉

+ 2.
Suppose by way of contradiction that Λl(G) > k2. Then G has a subgraph H which is k2-linear-
minimal.

We assign to every vertex of H an initial charge w(v) = degH(v) and apply the following dischar-
ging rules.

Rule 1. A 3-vertex sends α3 to each of its 2-neighbours
Rule 2. A (≥ 4)-vertex sends α4 to each of its 2-neighbours having no (≤ 3)-neighbour.
Rule 3. A (≥ 4)-vertex sends α′

4 to each of its 2-neighbours having a 3-neighbour.
Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at

least M, which is a contradiction.
– If v is a 2-vertex then it has no 2-neighbour by Lemma 1-11. If it has a 3-neighbour its other

neighbour is a (≥ 4)-neighbour according to Lemma 1-9. yielding M ≤ 2 + α3 + α′
4. If v has no

3-neighbour, then we get M ≤ 2+2α4.
– If v is a 3-vertex it sends at most 3α3, yielding M ≤ 3−3α3.
– If v is a 4-vertex then by Lemma 1-10, it has at most one 2-neighbour that has a 3-neighbour,

yielding M ≤ 4−α′
4 −3α4 (with the assumption α′

4 ≥ α4).
– If v is a k-vertex with k ≥ 5, it sends at most kα′

4, yielding M ≤ k− kα′
4.

The optimal value M = 60
23 is obtained for α3 = 3

23 , α4 = 7
23 and α′

4 = 11
23 .

4. Let G be a graph such that Mad(G) < M. Set k3 =
⌈

∆
2

⌉

+3. Suppose by way of contradiction
that Λl(G) > k3. Then ∆ ≥ 3, as every graph with maximum degree at most 2 is linearly 3-choosable.
Moreover G has a subgraph H which is k3-linear-minimal.

Let us assign to every vertex of H an initial charge w(v) = dH(v) and apply the following di-
scharging rule.

Rule 1. A (≥ 4)-vertex sends α4 to each of its 2-neighbours
Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at

least M, which is a contradiction.
– If v is a 2-vertex then it has no (≤ 3)-neighbour by Lemmas 1-11 and 1-12. This gives M ≤

2+2α4.
– If v is a 3-vertex then its charge does not change, yielding M ≤ 3.
– If v is a 4-vertex then by Lemma 1-13, it has at most three 2-neighbours. This yields M ≤

4−3α4.
– If v is a k-vertex with k ≥ 5, it sends at most α4 to each neighbour, yielding M ≤ k− kα4.
The optimal value M = 14

5 is obtained for α4 = 2
5 .

5. Let G be a graph such that Mad(G) < M. Set k4 =
⌈

∆
2

⌉

+4. Suppose by way of contradiction
that Λl(G) > k4. Then ∆ ≥ 3, as every graph with maximum degree at most 2 is linearly 3-choosable.
Moreover G has a subgraph H which is k4-linear-minimal.

RR n° 7213



20 N. Cohen & F. Havet

Let us assign to every vertex of H an initial charge w(v) = degH(v) and apply the following
discharging rule.

Rule 1. A (≥ 4)-vertex sends α4 to each of its 2-neighbours.
Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at

least M, which is a contradiction.
– If v is a 2-vertex then it has no (≤ 3)-neighbour by Lemmas 1-11 and 1-12. This gives M ≤

2+2α4.
– If v is a 3-vertex, its charge is unchanged. This gives M ≤ 3.
– If v is a 4-vertex then by Lemma 1-14, it has at most two 2-neighbours, yielding M ≤ 4−2α4.
– If v is a 5-vertex then by Lemma 1-15, it has at most four 2-neighbours. This gives M ≤

5−4α4.
– If v is a k-vertex with k ≥ 6, it sends at most kα4. Thus M ≤ k− kα4.
The optimal value M = 3 is obtained for α4 = 1

2 .

3.3 2-frugal colouring

In this subsection we prove the following theorem.

Theorem 4. Let G be a graph with maximum degree (at most) ∆

1. If ∆ ≥ 7 and Mad(G) < 5
2 , then Φl

2(G) ≤ ⌈∆
2 ⌉+1.

2. If Mad(G) < 3, then Φl
2(G) ≤ ⌈∆

2 ⌉+3.

Démonstration. 1. Let G be a graph with maximum degree ∆ ≥ 7 such that Mad(G) < M. Set
k1 =

⌈

∆
2

⌉

+ 1 ≥ 5. Suppose by way of contradiction that Φl
2(G) > k1. Then G has a subgraph H

which is k1-frugal-minimal.
Let us assign to every vertex of H an initial charge w(v)= dH(v). Then ∑v∈V (H) w(v)= ∑v∈V (H) d(v)=

Ad(H) · |V (H)|. Let us call a 2-vertex bad if it has a 2-neighbour, and good otherwise. We now apply
the following discharging rules.

Rule 1. 3-vertices give α3 to each of their 2-neighbours.
Rule 2. (≥ 4)-vertices give α

g
4 to each of their good 2-neighbours.

Rule 3. (≥ 4)-vertices give αb
4 to each of their bad 2-neighbours.

Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at
least M, which is a contradiction

– There are no 1-vertices by Lemma 1-1.
– If v is a 2-vertex then by Lemma 1-3 it does not have two 2-neighbours. In addition, by

Lemma 1-4, no bad vertex can have a 3-neighbour, and by Lemma 1-9 a 2-vertex has at most one
3-neighbour. This gives the constraints M ≤ 2+α3 +α

g
4 and M ≤ 2+αb

4.
– If v is a 3-vertex it sends at most α3 to each of its neighbours, yielding M ≤ 3−3α3.
– If v is a 4-vertex, then by Lemma 2-i it has at most one bad neighbour. Hence M ≤ 4−αb

4−3α
g
4

(with the assumption αb
4 ≤ α

g
4).

– If v is a k-vertex with k ≥ 5 it sends at most αb
4 to each of its neighbours (under the same

assumption), yielding M ≤ k−4αb
4.
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The optimal value M = 5
2 is obtained for α3 = 1

6 , α
g
4 = 1

3 and αb
4 = 1

2 .

2. Let G be a graph such that Mad(G) < M. Set k3 =
⌈

∆
2

⌉

+3. Suppose by way of contradiction
that Φl

2(G) > k3. Then G has a subgraph H which is k1-frugal-minimal.
We assign to every vertex of H an initial charge w(v) = degH(v) and apply the following dischar-

ging rule.
Rule 1. ≥ 4-vertices give α4 to each of their 2-neighbours.

Let us now define constraints to ensure that the final charge w∗(v) of every vertex v of H is at
least M, which is a contradiction.

– There are no 1-vertices by Lemma 1-1.
– If v is a 2-vertex, by Lemma 1-11 it does not have 2-neighbours, and by Lemma 1-12 it can

not have any 3-neighbour either. Hence M ≤ 2+2α4.
– If v is a 3-vertex, M ≤ w∗(v) = 3.
– If v is a 4-vertex, by Lemma 2-ii it has at most one 2-neighbour, yielding M ≤ 4−α4.
– If v is a 5-vertex, by Lemma 2-iii it has at most four 2-neighbours, giving M ≤ 5−4α4.
– If v is a k-vertex with k ≥ 6, then it sends at most α4 to each of its neighbours. This yields

M ≤ 6−6α4.
The optimal value M = 3 is obtained for α4 = 1

2 .
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