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Abstract: The Cloud phenomenon brings along the cost-saving bene�t of dynamic scaling. Knowledge
in advance is necessary as the virtual resources that Cloud computing uses have a setup time that is not
negligible. We propose a new approach to the problem of workload prediction based on identifying similar
past occurrences to the current short-term workload history.

We present in detail the auto-scaling algorithm that uses the above approach as well as experimental
results by using real-world data and an overall evaluation of this approach, its potential and usefulness.

Key-words: Cloud Computing, auto-scaling, pattern matching



Pr�ediction des r�eservations de ressources de Cloud Computing �a
la demande par la m�ethode de reconnaissance de motifs

R�esum�e : Le Cloud Computing permet de b�en�e�cier de l’extensibilit�e dynamique. Une connaissance
anticip�ee des �ev�enements est n�ecessaire a�n de prendre en compte le temps non n�egligeable de mise en place
des ressources virtuelles fournies par les plates-formes de Cloud Computing. Nous proposons une nouvelle
approche �a ce probl�eme de pr�ediction de charge bas�ee sur la corr�elation d’�ev�enements pass�es similaires �a
l’historique �a court terme de la charge observ�ee.

Nous pr�esentons en d�etail un algorithme de gestion automatique de l’extensibilit�e qui utilise cette nouvelle
approche. Nous proposons �egalement des exp�erimentations utilisant les traces de plates-formes r�eelles ainsi
qu’une �evaluation de cette approche.

Mots-cl�es : Cloud Computing, extensibilit�e automatique, reconnaissance de motifs
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1 Introduction

The evolution of IT software services in the direction of Cloud Computing took a step forward in the e�cient
use of hardware resources through the use of virtualization. In a traditional hosting services the user receives
a static amount of hardware resources that he or she makes use of. In contrast to this, the Cloud approach is
to o�er on-demand virtualized resources to its users. Because virtual resources can be added or removed at
any time during the lifetime of the application hosted on a Cloud, the possibility of dynamic scaling arises.
Even more, dynamic scaling can be easily automated either at Cloud provider level or ar Cloud client level
through the use of the Cloud provider’s APIs.

To take full advantage of the bene�ts of dynamic scaling, a Cloud client (user or middleware) needs to
be able to make accurate decisions on when to scale up and down.

To achieve good performance, the Cloud client needs to be able to make accurate scaling decisions. These
scaling decisions are inuenced by several aspects as for example virtual resource setup time or migration of
existing processes to free resources, but resource usage has the biggest impact on the decision.

The idea of self-similarity in web tra�c is not new [?]. Based on this a new auto-scaling strategy can be
elaborated. By identifying usage patterns that have occurred in the past and have a high similarity to the
present usage pattern, a decision can be made as to the necessity and/or direction of scaling for the present
situation.

This paper presents a new approach to the resource usage prediction problem based on identifying past
patterns that are similar to the present use of the system. We present an algorithm for identifying the
patterns by using an approximate matching approach.

In Figure 1 we have a generic Cloud system usage model to have a top-level view on the role of the
prediction model. As part of a Cloud client’s resource management module, the prediction module uses the
Client’s usage history to try and make an intelligent guess on short-term usage demands. This alone does
not constitute the Client’s scaling decision as there are a number of other relevant factors that should be
taken into consideration like the migration of currently running tasks from virtual resources that need to be
terminated. In the current work we are focusing only on resource usage prediction. The impact that other
factors have on the scaling decisions of a Cloud Client is an interesting topic of research, yet it is beyond the
scope of the current work.

Figure 1: The role of the prediction component in a generic model of a Cloud system usage scenario.

The rest of this paper is organized as follows. The next section present an overview of existing approach
given in the literature. Then, Section 3 presents our algorithm and its key design principles. Finally, before
a conclusion and a description of future work, Section 4 presents our experimental results using actual grid
traces.

2 Related Work

There are currently two main approaches for facilitating the auto-scaling decisions of Cloud client as a result
of resource usage. The �rst approach treats the past server usage as a predictable sequence and constructs a
mathematical model around it. As a result, the next value of the request sequence is obtained by evaluating
the obtained model at the next time point. In other words, a prediction model is built by considering past
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4 Eddy Caron, Fr�ed�eric Desprez and Adrian Muresan

resource usage. The second approach is a reactive one, based on the current server load and auto-scaling
rules that are set up by a human operator (usually a cloud client). This approach has been often referred to
as the \Elasticity rules" approach or the \SLA" approach.

In [?] a description and comparison of three di�erent auto-scaling algorithms is given: auto-regression of
order 1 (AR1), Linear Regression, and the Rightscale algorithm. The auto-regression of order 1 algorithm
is from the �rst category of auto-scaling algorithms. Its approach consists in using a �nite history window
and identifying appropriate parameters so that a recurring sequence can be obtained and therefore used to
calculate the next values. The obtained parameters are adapted as the window slides along the time axis.
The linear regression algorithm is also from the �rst category and calculates a polynomial approximation of
the history of requests. The predicted value is then obtained by evaluating the polynomial at a higher point
along the time axis. The Rightscale algorithm is from the second category, being a version of threshold-based
auto-scaling. Its approach is to use a democratic voting system that is based on the current server load.
Each virtual machine owned by the cloud client has a vote based on its current load level and two thresholds:
low threshold that corresponds to a \scale down" vote (with a default value of 30% system usage) and a
high threshold that corresponds to a \scale up" vote (with a default value of 85% system usage). The votes
are collected by a central machine and the majority decides the scaling decision for the whole platform. The
three algorithms have been put side-by-side and compared by a metric proposed in the same article. Their
performance is considerably high.

A more complex form of SLA-based dynamic provisioning can be described by using elasticity rules that
dictate what part of the cloud client needs to scale, in which direction and by how much. In [?], we �nd
such an example with threshold-based rules. This is done by means of an extension to the OVF (Open
Virtualization Format), an interoperable, platform and vendor neutral, open format that is used to describe
VAs (Virtual Applications). VAs are precon�gured software stacks consisting of one or several Virtual
Machines with the purpose of o�ering self-contained services. The OVF documnent is actually an XML
document containing the description of the OVF package. The elasticity rules come as an extension of this
document. They have three components: an associated name, a trigger condition based on the de�ned key
performance indicators and an associated action that represents the concretization of the rule in the form
of instantiating new components of the VA or removing existing component instances. Like the Rightscale
algorithm, this approach is also a reactive one. Scalability rules have the bene�ts of combining the high
performance of threshold-based algorithms such as Rightscale with tune-ability and therefore have been
widely used in practice in commercial clouds.

In [?] a Decentralized Online Clustering model is described and proposed for automatic workload provi-
sioning for enterprise grids and clouds and addresses their distributed nature. In this approach a workload
prediction algorithm is used and integrated into the system to model the application dynamics. More specif-
ically, a quadratic response surface model is used.

The ideas of workload prediction and workload modeling are by no means new, in fact they have been
active areas or research in the �eld of Grid computing. In [?] we �nd a �ne-detailed study on the topic of
Grid performance evaluation by using synthetic workloads obtained from the modeling of grid workloads.
The work describes performance metrics useful for evaluating grid environments. These are composed of
traditional performance metrics that are time, resource or system related and grid-speci�c related to workload
completion or failure metrics. The article continues by describing the speci�cs of grid workload modeling.
These include user group modeling that underline the importance of taking into consideration statistics for
all gobs on one hand and statistics for each user in particular on the other hand, based on his (or her)
past actions. The article also describes submission patterns that arise in Grid environments and enumerate
some of the current approaches of modeling them that include combining Poisson distributions for daily
patterns or by using a polynomial function of degree eight. The authors argue that these pattern modeling
approaches may not hold as they are indi�erent to workload inter-dependency. The authors continue by
presenting the GrenchMark [?] synthetic grid workload generation, execution and analysis framework.
They also present extension sugestions to the framework that would make the framework be a better tool
for workload generation and analysis.

In [?] we �nd an integration e�ort of a grid application development toolkit named Ibis [?], a grid co-
scheduler name Koala [?] and the GrenchMark synthetic grid workload generator with the porpose of
providing an end-to-end workload generation and testing framework. The authors argue about the bene�ts
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that experimental testing of grid systems has over an analytical or simulated test model. The authors also
argue in favor of using synthetic grid workloads over real grid workloads or benchmarking approaches. Next
the authors describe their integration proposal of building applications with the Ibis toolkit, generating
and submitting synthetic workloads with GrenchMark, and then scheduling them with Koala so that
the results cal be analysed with GrenchMark again. As result of experimentation they concluded that
workloads generated in GrenchMark can cover a wide range of run characteristics.

A non-linear model for grid workload prediction can be found in [?]. The authors propose a prediction
model as a series of �nite known functional components, usually taken from the sigmoig function class, with
unknown coe�cients. The coe�cients are determined by using using the least square approximation method
on a training set. The training set can be split into a training partition and an evaluation partition. This
way an early stop strategy can be applied to avoid data over�tting. Their model has been tested on a 3D
image rendering set of tasks based on the Blue Moon Rendering Tool. The error of their prediction is less
than 14% with an average of 7.5%.

In [?] we �nd a real-time resource provisioning system for massive multiplayer online games based on a
predictive usage model. The application is dynamically provisioned on a Grid environment. The authors
propose a predictive model based on neural networks as this approach has more predictive power than simpler
approches like exponential smoothing, yet is faster in terms of runtime than more complex approaches like
autoregressive models, integrated models or moving average models. The neural network is prepared with
two o�ine phases that include gathering of training samples and using them to train the neural network.
As results of experimentation, the neural network approach has proven to have a greater accuracy when
compared to the other tested prediction methods: average, moving average, last value and exponential
smoothing. The obtained prediction error during the experiments has a maximum value of 33% and a
minimum value of 4.94%.

3 String Matching based Scaling Algorithm

3.1 Idea Description

A Cloud client is provisioned depending on its use. The usage of a Cloud client can sometimes have a
repetitive behavior. This can be caused by the similarities between tasks that the Cloud client is running or
the repetitive nature of human behavior. Given the self-similar nature of web tra�c it follows that current
usage patterns of online services have a probability of having already occured in the past in a very similar
form. Therefore we can infer what the system usage will be for a Cloud client by examining its past usage
and extracting similar usages.

The pattern strategy has two inputs: a set of past Cloud client usage traces and the present usage pattern
that consists of the last usage measures of the Cloud client. Cloud clients working in the same application
domain have a higher similarity in resource usages. Due to this similarity it follows that the most relevant
historic resource usage data that can be used comes from Cloud clients working in the same application
domain. Therefore it would make sense to isolate historical data based on application domains before usage.

The present usage pattern of the Cloud client is used to identify a number of patterns in the historical
set that are close to the present pattern itself. Identi�ed patterns should not be dependent on their scale,
just on the relation between the elements of the identi�ed pattern and the pattern we are looking for. The
resulting closest patterns will be interpolated by using a weighted interpolation (the found pattern that is
closest to the present pattern will have a greater weight) and will have as result an approximation of the
values that will follow after the present pattern. In essence, the usage of the Cloud client is predicted by
�nding similar usage patterns in the past or in other usage traces.

The problem of �nding a pattern inside an array of data that is very similar to a given pattern is close
to the problem of string matching. The approximate string matching problem has been widely studied
especially in its relation to bioinformatics problems, yet it is considerably di�erent from the problem we are
addressing.

One de�nition for the approsimate string matching problem is the following: given a text string T =
t0t1...tn and a pattern P = p0p1...pm �nd a substring of consecutive characters from T call it Ti;j that has
the smallest edit (or Levenshtein) distance as possible [?].
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1 A B A B A B C
A B A B C

2 A B A B A B C
A B A B C

3 A B A B A B C
A B A B C

Table 1: KMP exampleP = A B A B C
� = 0 1

Table 2: Calculating the auxiliary array
The edit distance is de�ned as the number of simple string operations: insert, delete, replace and some-

times exchange, that needs to be performed on the identi�ed text substring to have equality to the pattern.
The operations can have the same or di�erent weights, depending on problem needs. The identi�ed match
can have any length because of the possible insert and delete operations.

In the problem that we are addressing, the edit distance cannot be applied as we are not comparing
string character values, but oating point values. We are interested in identifying sub-arrays of the same
over very close length and and whose oating point absolute value di�erence is as close as possible to zero.
An insertion into or deletion from the identi�ed sub-array would have a great impact on the oating-point
di�erence.

We shall now describe the problem of string matching and its relation to the problem that the current
paper addresses, as well as our proposal for the approximate variant that is relevant to our problem.

3.2 The String Matching Problem

The string matching problem consists in �nding the position of a string (called pattern) inside a larger
string. There are several approaches solutions to this well known problem. We have chosen the Knuth-
Morris-Pratt (abbreviated KMP) as its performance are good as described in [?]. The KMP algorithm
consists of a preprocessing step with a running time of �(m) where m is the length of the matching pattern
and a matching step with running time of �(n) n where is the length of the string to match against. The
algorithm is also embarrassingly parallel as it is data independent. Therefore the input data can easily be
divided into independent blocks on which the algorithm can run in parallel.

The e�ciency of the KMP algorithm is due to its approach in saving unnecessary comparisons in case
of a mismatch between the pattern and the string to match against. It is able to do this by �rst identifying
repetitive pre�xes of the input pattern in the preprocessing step.

Consider the following example: input pattern P = \ABABC" and matching string T =\ABABABC".
There are three possible positions for P to be found in T, by using a sliding window approach, until one of
the matches succeeds.

In the example given in Table 1, when step 1 fails, the pattern slides to the next possible position in the
matching string and a new comparison is made in step 2. After step 2 fails, the pattern slides once again
and reaches step 3 which makes a full match.

In Table 1, step 2 can be skipped altogether if we consider the relation that the pattern has with itself, i.e.
its repetitive pre�x. Once the �rst 4 characters of P have been matched against the 4 consecutive characters
in T (the following 4 characters starting from position 0) we deduce that there is no need to restart the
whole matching from position 1 in T because, from analyzing P we know that the match will fail as the 4
characters of T starting from 0 are the same as the �rst 4 characters of P starting from 0.

To assist the matching process, an auxiliary array is constructed over P (called �) that contains at
position i, the ending position of the largest pre�x of P that is a su�x of P[0..i]. For the P in our example,
we have the results given in Table 2.

The entries in � that have a value of " " represent entries that are not pre�xes of P. For example the
second \A" in P is both a pre�x and also a su�x of P[0..2] = \ABA". The largest pre�x that is also a su�x
for P[0..2] is \A" and has the ending position at P[0]. This means that once we have matched P[0..2] =
\ABA" in T and P[3] does not match in T, we can continue matching in T from the same index of T, and
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we can start in P knowing that we have already matched the �rst character in P, as it is a pre�x of length
1 of P[0..2]. Therefore we resume matching with the P index of �[2] +1 = 0 +1 = 1. Now, resuming our
matching example, in step 1 we have matched P[0..3] to T[0..3]. We have P[4] != T[4], but we know that
P[0..3] = \ABAB" has \AB" as the largest pre�x that is also a su�x. So we can resume by matching T[4]
to P[�[3]] = P[1], skipping P[0].

The preprocessing step The goal of the preprocessing step is to compute the � array. At each index i, �
stores the end position of the longest pre�x of P[0..i], that is also a su�x of P[0..i]. The algorithm for
this has a runtime of �(m) where m is the length of P (Algorithm 1).

Algorithm 1 Calculate-pre�x(P)

1: m  length(P)
2: �[0]  -1
3: k  -1
4: for q  1 to m - 1 do
5: while k > -1 and P[k+1] 6= P[q] do
6: k  �[k]
7: end while
8: if P[k+1] = P[q] then
9: k  k+1

10: end if
11: �[q]  k
12: end for
13: return �

The matching step The matching algorithm (Algorithm 2) has a runtime of �(n), where n is the length
of T, the string to match against. It is very similar to a naive matching algorithm, but improved to
skip redundant comparisons.

Algorithm 2 KMP(T, P)

1: n  length(T)
2: m  length(P)
3: �  Calculate-pre�x(P)
4: q  -1
5: for i  0 to n - 1 do
6: while q > -1 and P[q+1] 6= P[i] do
7: q  �[q]
8: end while
9: if P[q+1] = T[i] then

10: q  q+1
11: if q = m-1 then
12: write \Found at position" i-m
13: q  �[q]
14: end if
15: end if
16: end for

3.3 Algorithm Description

The KMP Algorithm (2) is a good solution to the string matching problem. Despite the great similarities,
our own pattern matching problem has some particularities of this own:
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1. an approximate matching is needed since the odds of �nding an identical pattern to the one we are
looking for are considerably low;

2. matches which are too dissimilar either on small intervals or as a whole need to be discarded;

3. when comparing the pattern to the matching data, scale also needs to be taken into consideration.
To be more exact, the scale of the pattern and the scale of the possible match should not a�ect the
comparison, therefore it needs to be scale-independent.

4. the resulting matches are interpolated having di�erent weights on the �nal result, based on their
similarity to the identi�ed pattern.

In order to do an approximate matching, the original KMP algorithm needs to be changed in the content
of both functions, therefore they need to be modi�ed accordingly.

Two types of approximation errors are used for the matching:

1. an instant error which dictates the amount by which the current match is allowed to di�er from the
pattern by comparing in smallest possible units;

2. a cumulative error that characterizes the amount by which the current match is allowed to di�er from
the pattern as a whole. This is basically a sum of the instant errors of the whole matching.

Figure 2 illustrates graphically the di�erence between the two types of acceptable errors (instant and
cumulative) when comparing two patterns.

Figure 2: Di�erence between the two types of acceptable errors.

3.3.1 Scale-Independent Comparison

The distance between the pattern we are trying to match and a candidate pattern should be computed in
a scale-independent manner by �rst normalizing the two pattern values to a common scale. To decrease
oating point approximation errors, one can choose a distance computation that does not use divisions and
therefore calculating only on integer values.

As an example, consider the pattern and the candidate from Figure 3. The pattern is an array containing
values: 20 , 38 , 21 and the candidate match contains values: 42 , 81 , 39 . In this form, we cannot compare
the two patterns. A �rst idea would be to normalize both arrays to a oating point [0..1] interval and then
compare. Working with oating point numbers can be avoided by working with big integer numbers. To
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Forecasting for Cloud computing on-demand resources based on pattern matching 9

reach a common scale we simply multiply each array by the scale of the other. For the scale of each array
we can simply consider the �rst element. As a result, the pattern array is multiplied by the scale of the
candidate (this is 42) and the candidate is multiplied by the scale of the pattern (which is 20). The result
is depicted in Figure 4. In this new situation, comparing two components of each array is done simply by
subtraction. The instant error is used here to assure that there are no two components that di�er two much
(in percentage) from the two arrays.

Once the comparison is done, the identi�ed candidate is stored along with its total distance from the
pattern. This facilitates the signi�cance of the result, as the candidate that is closest to the pattern has a
higher weight in �nal result. The pseudocode for computing the instant error is illustrated Algorithm 3.1 in
the Distance function.

Algorithm 3.1 Distance(PatternElement, PatternScale, DataElement, DataScale)

return
PatternElement � DataScale
- DataElement � PatternScale

The cumulative error is obtained by summing up the instant errors from all the elements of the pattern
and candidate. This is illustrated in the CumulativeDistance function.

Algorithm 3 CumulativeDistance(P, T, DataO�set)

1: patternScale  P[0]
2: dataScale  T[DataO�set]
3: length  length(P)
4: distance  0
5: for index  0 to length do
6: distance  distance + j dataScale � P[index] - patternScale � T[index + DataO�set] j
7: end for
8: return distance

3.3.2 KMP Modi�cation

The pre�x calculation function is changed as described in Algorithm 4. The scales of the two components
compared are represented by the �rst value of each component. This is arguable, but in practice we have
achieved good results with this approach. In the function, scaleK represents the scale of the pre�x and
scaleQ represents the scale of the post�x of the pattern. The Distance function returns an appreciation
of the distance between two di�erent pattern instances, each having a di�erent scale which is passed as
parameter. The comparisons on lines 9 and 14 assure that the current instant distance does not di�er by
more then the acceptable error (in percentage) from the actual pattern that we are matching. The scaleQ
term, representing the scale of the data, from the comparison is needed for bringing the current term of the
pattern to the same scale as the data.

The matching algorithm is changed as described in Algorithm 5. The main di�erence when compared to
the original KMP algorithm is the use of the instant and cumulative distances as a means of �ltering out
potential matches that are too di�erent either on small time intervals or as a whole.

On lines 10 and 16 we ensure that the instant distance between the identi�ed candidate and the pattern
is no more than what the acceptable error permits. In order to ensure a correct comparison, the pattern term
needs to be scaled to the same size as the data, hence the scaleT term is used in the comparison. Filtering
by cumulative distance is done in lines 20 to 24. The CumulativeDistance function returns a sum of instant
distances for every instant of the two compared arrays. The running time of this function is �(m) where m is
the length of the arrays, which in our case is always equal to the length of P. Line 22 of the algorithm assures
that the cumulative distance of the candidate does not di�er more than is accepted by the cumulative error
from the pattern itself. The pattern itself is represented by the patternSum term in the comparison. This is
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Figure 3: Scale-independent comparison - initial

a sum of all the terms in the pattern and should be calculated only once, at the beginning of the algorithm.
The pattern sum needs to be brought to the same scale as the candidate sequence and therefore the scaleT
term is used. Filtering by an acceptable cumulative error that is smaller or equal to the acceptable instant
error is useless. This conclusion is trivial when taking into consideration that the cumulative error is a sum
of all the instant errors.
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Figure 4: Scale-independent comparison - common scale

The use of the cumulative error changes the running time of the matching algorithm to �(n�m) in the
worst case, where n is the length of the string to match against and m is the length of the input pattern.
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12 Eddy Caron, Fr�ed�eric Desprez and Adrian Muresan

Algorithm 4 Calculate-pre�x-approx(P, ACCEPT INST ERR)

1: m  length(P)
2: �[0]  -1
3: k  -1
4: scaleK = P[0]
5: scaleQ = P[1]
6: for q  1 to m - 1 do
7: dist  Distance(P[k+1], scaleK, P[q], scaleQ)
8: maxDistance  ACCEPT INST ERR � scaleQ � P[k+1]
9: while k > -1 and dist > maxDistance do

10: k  �[k]
11: dist  Distance(P[k+1], scaleK, P[q], scaleQ)
12: scaleQ = P[q - (k+1)]
13: end while
14: if dist � ACCEPT INST ERR � scaleQ � P[k+1] then
15: k  k+1
16: end if
17: �[q]  k
18: end for
19: return �

3.3.3 Interpolating the Values Found

Once approximate matches have been found, the problem of obtaining a relevant result from those matches
is raised. Each match should have a contribution to the �nal result that is proportional to its relative
distance to the pattern with respect to the other identi�ed patterns. This corresponds to a weighted sum
of the identi�ed matches, where weights are calculated by considering the distance of the current match to
the pattern and to the rest of the matches. Once the weights are calculated, the interpolation is performed
between the following L elements after each approximate match. The result is a predicted sequence of length
L.

3.3.4 Algorithm parameters

The algorithm accepts a number of parameters used for �ne-tuning in accordance to each use-case. These
parameters are:

� The maximum number of matches (called closest neighbors) to take into consideration (denoted K).

� The length of the predicted sequence (denoted L).

� The acceptable instant error representing the amount by which the identi�ed sequence is allowed to
di�er on the smallest possible interval lengths from the pattern we are looking for.

� The acceptable cumulative error which represents the amount by which the identi�ed sequence is
allowed to di�er as a whole from the pattern we are looking for.

� The input set of data representing the database of past requests.

� The input pattern representing a sequence with the last period of requests received.

The �rst parameter is not independent of the others. It is actually inuenced considerably by the
acceptable errors. The correlation is strong and can be expressed very easy: the larger the acceptable error,
the more matches the algorithm identi�es, but the more irrelevant they will be.

Calculating the acceptable errors
The value of the acceptable errors can be calculated based on the maximum number of neighbors that

we wish to �nd. The approach for this is to use a binary search to zone in on the appropriate values for
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Algorithm 5 KMP-approx(T, P, ACCEPT INST ERR, ACCEPT CUMUL ERR)

1: n  length(T)
2: m  length(P)
3: �  Calculate-pre�x(P)
4: q  -1
5: scaleP = P[0]
6: scaleT = T[0]
7: for i  0 to n - 1 do
8: dist  Distance(P[q+1], scaleP, T[i], scaleT)
9: maxDist  ACCEPT INST ERR � scaleT � P[q+1]

10: while q > -1 and dist > maxDist do
11: dist  Distance(P[q+1], scaleP, T[i], scaleT)
12: q  �[q]
13: scaleT = T[i - (q+1)]
14: maxDist  ACCEPT INST ERR � scaleT � P[q+1]
15: end while
16: if dist � maxDist then
17: q  q+1
18: end if
19: if q = m-1 then
20: dist  CumulativeDistance(P, T, i - m + 1)
21: maxDist  ACCEPT CUMUL ERR � patternSum � scaleT
22: if dist � maxDist then
23: StoreSolution(dist / scaleT, i - m + 1)
24: end if
25: q  �[q]
26: scaleP = P[q+1]
27: scaleT = T[i - (q+1)]
28: end if
29: end for

the acceptable errors. By using the binary search approach, we have obtained values that have proven to be
good in practice. We have used a lower bound of 20% of K for a minimum of identi�ed neighbors and 90%
of K as the upper bound for maximum number of identi�ed neighbors.

Calculating the appropriate pattern length
The length of the pattern that represents the last traces of server usage has a great impact on the results

of the algorithm. Finding the appropriate length is a problem in its own as we have a trade-o� between
patterns of big lengths that yield a small number of similar candidates, that might be to small in order to
be usable, and patterns of small lengths, that �nd more candidates but they tend to be more irrelevant to
our current situation. We have chosen two approaches to this problem. The �rst approach is to �nd the
most lengths of the most frequent repetitive patterns and use the same length as input to the prediction
algorithm.

We have the following constructive approach to identifying the length of the most frequent repetitive
patterns:

1. �nd all similar patterns of length 2 in the historic data

2. take all similar patterns of length 2 and try to match the next element too. This yields all similar
patterns of length 3.

...

3. take all patterns of length n and try to match the next element too. This yields all similar patterns of
length n+ 1.

RR n° 7217
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LCG Nordugrid SHARCNET
Avg 8970 91893 33516
Min 0 0 0

5%Min 69 11 73
10%Min 79 24 152
Median 255 3861 12165

Max 586702 1452763 7449415
Tested 200 10000 10000

2500
5000
10000
50000
100000

Table 3: Job length statistics on di�erent grid traces. Values represent time in seconds based on the running
time of the recorded jobs.

The result is that the number of identi�ed similar patterns decreases as the length of the patterns
increases:

count[n+ 1] � count[n] � ::: � count[3] � count[2]

The conclusion is that the most frequent patterns are of the ones with length 2. In practice, using a pattern
length of 2 would have the following consequences:

� Good for predicting very short in advance (i.e. 1)

� Loses meaning when trying to predict longer sequences

� The idea of trend is lost as the steps are very small while the trend is a longer sequence.

We need to have a better way for choosing the pattern length, that would give more relevant results and
avoid pollution as much as possible.

The length of the pattern should be inuenced by the time it takes to service a request on the server.
We then have the following possibilities:

� Median / average

� Representative of most of the requests

� Minimum

� A large pattern cannot match against a smaller pattern that is half di�erent

� A small pattern can match against a large pattern that’s half di�erent

� The minimum is very probably close to 0 (grid testing experiments)

� A close minimum can be selected (ex. 5% - 10% from the bottom)

By using real-world grid traces from the workload archive of TUDelft University [?]. We have used the
running time in seconds of each job and obtained the results given in table 3. We have tested traces from
several research grids [?, ?, ?] to get a real-world appreciation of possible values for the pattern length, by
taking di�erent metrics.

We can also consider plots of sorted job lengths in seconds.
The conclusions given by Figures 5, 6, and 7 along with the previous table are that, for all practical

purposes, a pattern length that is a minimum or even median of the time it takes to service a request,
is unusable when dealing with servers that have a similar usage to the research grids described above. In
practice we have used the average of the request service time and have obtained good results.
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Figure 5: Job running times on the LCG platform in seconds, sorted.

Figure 6: Job running times on the NorduGrid platform in seconds, sorted.

4 Experimental Results

In all our experiments we have used a time unit of 100 seconds and we have discretized the grid traces by
this time unit. The plots of the grid traces and the predicted traces represent the total number of CPUs used
by di�erent jobs running in parallel in the time unit of 100 seconds. We have focused only on CPU usage as
the information of memory usage was not available. Nevertheless, should the information of memory usage
be available our approach can also be applied for its prediction.
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Figure 7: Job running times on the SHARCNET platform in seconds, sorted.

4.1 Data Sources

We have tested our auto-scaling approach with traces from three di�erent research grids, each having its
own usage particularities, with main di�erences in the frequency and amplitudes of changes in their overall
usages.

LCG - Large Hadron Collider Computing Grid 1

Here we �nd traces from several nodes from the computing grid associated to the Large Hadron Collider.
Its behavior is mildly oscillatory and a plot of the total number of CPUs used in time slices of 100 seconds,
discretized across time intervals of 100 seconds can be found in Figure 8.

NorduGrid 2

Here we �nd higher amplitudes for oscillations as the grid is more heterogeneous than the previous. A
plot of the total number of CPUs used in time slices of 100 seconds, discretized across time intervals of 100
seconds can be found in Figure 9.

SHARCNET 3

SHARCNET has been described as a \cluster of clusters". Its volatility is very high and its amplitudes
can reach surprising peaks. A plot of the total number of CPUs used in time slices of 100 seconds, discretized
across time intervals of 100 seconds can be found in Figure 10.

4.2 Experiment setup

All the experiments use the server traces of the same form of input data as described above with time
units of 100 seconds, and resource usage value consisting of the total number of CPUs used across the 100
seconds. A pattern length of 100 time units has been used for all the experiments (this is 100 � 100 seconds
- approximately 2.7 hours of server time) and predictions are made for one time unit, this is 100 seconds,
which is a little over 1 minute 30 seconds.

The results are displayed under the form of a set of standard metrics that include minimum, maximum,
median, and average percentage and value di�erence between the prediction and the actual value.

1http://lcg.web.cern.ch/LCG/
2http://www.nordugrid.org
3http://www.sharcnet.ca
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Figure 8: LCG - plot of the total number of CPUs used per time slice of 100 seconds versus time, discretized
in slices of 100 seconds.

Figure 9: NorduGrid - plot of the total number of CPUs used per time slice of 100 seconds versus time,
discretized in slices of 100 seconds.

A second set of metrics has also been used that allows the comparison to other existing auto-scaling
algorithms. This metric was proposed and used by UCSB to compare the performance of three existing
auto-scaling algorithms [?]: auto-regression of order 1, linear regression and the Rightscale democratic
voting algorithm.
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Figure 10: SHARCNET - plot of the total number of CPUs used per time slice of 100 seconds versus time,
discretized in slices of 100 seconds.

We have also measured the average running time necessary for calculating one prediction. This has an
impact on the practical usefulness of the prediction since it needs to be subtracted from the prediction time
- which is 100 seconds - to calculate the e�ective prediction time.

We have used two versions of the metric proposed by the UCSB team:

� An instant score where we considered resource cost as being charged per fraction of an hour, although
this is not the case in current cloud providers

� A second score where we take the maximum prediction over the course of an hour and use that as
static provisioning for the whole hour

4.3 Results

Predicting LCG with LCG as historic data We have done a self-prediction test by using LCG as
historic data with the purpose of predicting LCG itself. When �ltering out potential pattern candidates,
exact matches have been ignored, since the pattern itself is a piece of the historic data. The results of this
experiment can be found in Table 4. Figure 11 shows a zoom-in of the actual value of resource usage in the
LCG platform and the predicted resource usage.

Predicting NorduGrid with LCG as historic data
We have experimented with using traces from a di�erent grid which is close to the one we are trying to

predict. In the current test case, we have tried to predict NorduGrid workloads by using LCG as historic
data. The experiment’s results can be seen in Table 5. A zoom into the plots of the actual resource usage
and the predicted usage is shown in Figure 12.

Predicting LCG with NorduGrid as historic data
We have experimented with the symmetric of the previous experiment in trying to predict LCG workloads

by using NorduGrid as historic data. The results are shown in Table 6. A zoom into the plot of the actual
resource usage of the platform and the predicted resource usage is shown in Figure 13.

Predicting SHARCNET with NorduGrid as historic data We have also experimented the behavior
of the algorithm when using historic data that does not have a high similarity to the workload that is being

INRIA



Forecasting for Cloud computing on-demand resources based on pattern matching 19

Metric Value
Minimum percentage di�erence (%) 0.0

Minimum value di�erence 0.0
Maximum percentage di�erence (%) 53.4

Maximum value di�erence 220.97
Median percentage di�erence (%) 1.0

Median value di�erence 8.9
Average percentage di�erence (%) 1.749

Average value di�erence 15.33

UCSB metric (maximum per 1 hour) 5.44
UCSB metric (instantaneous) -11.08

Average runtime for one instance (milliseconds) 41.734

Table 4: Results of predicting LCG with LCG as historic data. The top values represent the actual and the
percentage di�erence between actual and predicted CPU usage for the platform, across time slices of 100
seconds. The middle two values represent the score of the prediction, according to the metric proposed by
UCSB.

Metric Value
Minimum percentage di�erence (%) 0.0

Minimum value di�erence 0.0
Maximum percentage di�erence (%) 1146.00

Maximum value di�erence 435.2
Median percentage di�erence (%) 1.74

Median value di�erence 0.26
Average percentage di�erence (%) 35.38

Average value di�erence 5.739

UCSB metric (maximum per 1 hour) 27.68
UCSB metric (instantaneous) 23.06

Average runtime for one instance (milliseconds) 162.949

Table 5: Results of predicting NorduGrid with LCG as historic data The top values represent the actual and
the percentage di�erence between actual and predicted CPU usage for the platform, across time slices of 100
seconds. The middle two values represent the score of the prediction, according to the metric proposed by
UCSB.

Metric Value
Minimum percentage di�erence (%) 0.0

Minimum value di�erence 0.0
Maximum percentage di�erence (%) 100.0

Maximum value di�erence 217.12
Median percentage di�erence (%) 1.2

Median value di�erence 13.98
Average percentage di�erence (%) 7.32

Average value di�erence 18.46

UCSB metric (maximum per 1 hour) 3.43
UCSB metric (instantaneous) -10.71

Average runtime for one instance (milliseconds) 514.956

Table 6: Results of predicting LCG with NorduGrid as historic data. The top values represent the actual
and the percentage di�erence between actual and predicted CPU usage for the platform, across time slices of
100 seconds. The middle two values represent the score of the prediction, according to the metric proposed
by UCSB.
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Figure 11: Zoom into the plot of CPUs used in time slices of 100 seconds versus time in units of 100 seconds
for the LCG platform’s actual resource usage (shown in red) and predicted resource usage (shown in green).

Metric Value
Minimum percentage di�erence (%) 0.0

Minimum value di�erence 0.0
Maximum percentage di�erence (%) 528.03

Maximum value di�erence 5.64E17
Median percentage di�erence (%) 0.9

Median value di�erence 11.26
Average percentage di�erence (%) 375.65

Average value di�erence 4.03

UCSB metric (maximum per 1 hour) -3.23
UCSB metric (instantaneous) -2.06

Average runtime for one instance (milliseconds) 528.418

Table 7: Results of predicting SHARCNET with NorduGrid as historic data The top values represent the
actual and the percentage di�erence between actual and predicted CPU usage for the platform, across time
slices of 100 seconds. The middle two values represent the score of the prediction, according to the metric
proposed by UCSB.
predicted. In our experiment, we have used NorduGrid traces as historic data when trying to predict
SHARCNET traces. The results of this experiment are available in Table 7.

An analysis of the results reveals that this is a feasible approach to auto-scaling. It is clear that the
algorithm yields better results when the set of historic data that is used has a similarity to the signal that is
being predicted. This similarity is inuenced by several parameters that constitute the domain of the server
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Figure 12: Zoom into the plot of CPUs used in time slices of 100 seconds versus time in units of 100 seconds
for the NorduGrid platform’s actual resource usage (shown in red) and predicted resource usage (shown in
green) by using LCG as historic data

Pattern
/ 100.0% 50.0% 25.0% 12.5%

data length
1000 -18.99 -36.37 -57.83 -97.37
500 -9.43 -19.97 -23.47 -43.06
100 5.44 3.32 4.05 4.05
50 9.41 9.6 8.48 8.21
25 10.67 11.11 12.62 11.79

Table 8: Score given by the UCSB metric (maximum per one hour) for predicting LCG with LCG as historic
data and by varying the length of the pattern used for prediction and the length of the set of historic data.
whose load is being predicted. It follows from the obtained results that data from the same domain can
easily be used to predict one-another.

The time necessary for computing one prediction instance has proven in practice to be low relative to
the prediction time.

Predicting LCG with LCG as historic data and varying pattern lengths and historic data
lengths Although we cannot show that the algorithm yields the best results, we can show that its results
improve as we increase the size of the historic data and as we �nd the best pattern length to take into
consideration when predicting. The tables below illustrate results when varying the pattern length and the
length of the historic data used for prediction. We have varied the historic data from 100% - the full set, to
50%, 25% and 12.5% of the set. The pattern length has also been varied from 1000 time units to 500, 100,
50 and 25.
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Figure 13: Zoom into the plot of CPUs used in time slices of 100 seconds versus time in units of 100 seconds
for the LCG platform’s actual resource usage (shown in red) and predicted resource usage (shown in green)
by using NorduGrid as historic data.

Pattern
/ 100.0% 50.0% 25.0% 12.5%

data length
1000 -38.96 -59.57 -79.25 -103.57
500 -31.36 -38.54 -45.88 -63.18
100 -11.08 -13.81 -16.49 -15.44
50 -4.54 -4.83 -7.22 -8.23
25 -0.14 -0.3 -0.05 -1.36

Table 9: Score given by the UCSB metric (instant) for predicting LCG with LCG as historic data and by
varying the length of the pattern used for prediction and the length of the set of historic data.

Table 9 contains the results of the experiment when calculating the metric proposed in [?] and using
instant values for the the number of virtual resources. Table 8 contains results of applying the previous
metric by using the maximum across each hour as reference point for virtual resources and cost. There is
a clear tendency for the prediction score to improve as the set of historic data increases in size. There is
another tendency for the prediction score to increase as the length of the predicted pattern decreases. This
is obvious if we take into consideration that a smaller pattern length corresponds to more identi�ed pattern
candidate, yet we do not recommend the usage of considerably small pattern lengths as this makes the result
be more and more independent of the server usage trend.

The reader will note that in our experiments we have considered only CPU usage as measure and predic-
tion target. In a Cloud environment, a virtual resource usually has more characteristics associated to it than
just CPU power. In particular, memory usage is one of the most notable characteristics. Our approach can
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also be used to have a prediction of the memory usage if the server traces also contain information about
past memory usage. With predictions for both memory and CPU usages, the scaling component of the
Cloud Client should be able to more accurately decide the characteristics of the virtual resources that are
to be instantiated or released. The topic of making a good scaling decision both in direction and in virtual
machine characteristics is an interesting topic of research, yet it is beyond the scope of the current work.

5 Conclusions and future work

One of the most important bene�ts of Cloud Computing is the ability for a Cloud Client to adapt the number
of resources used based on its actual use. This has great implications on cost saving as resources are not
paid for when they are not used. Dynamic scalability is achieved through virtualization. The downside of
virtualization is that it has a non-zero setup time that has to be taken into consideration for an e�cient use
of the platform. It follows that an accurate prediction method would greatly aid a Cloud Client in making
its auto-scaling decisions.

In this paper, a new resource usage prediction algorithm is presented. It uses a set of historic data to
identify similar usage patterns to a current window of records that occurred in the past. The algorithm
then predicts the system usage by interpolating what follows after the identi�ed patterns from the historical
data. Experiments have shown that the algorithm has good results when presented with relevant input data
and, more importantly, that its results can improve by increasing the historic data size. This makes the
evaluation of the algorithm be context dependent.

As future work directions we will be looking into ways that a relevant set of historic data can be composed
for a particular application domain.
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