Analysis of hybrid RD-Galerkin schemes for Navier-Stokes simulations

Abstract : We present an extension of multidimensional upwind residual distribution schemes to viscous flows. Following (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we consider the consistent coupling of a residual distribution (RD) discretization of the advection operator with a Galerkin approximation for the second order derivatives. Consistency is intended in the sense of uniform accuracy with respect to variations of the mesh size or, equivalently, for the advection diffusion equation, of the Peclet number. Starting from the scalar formulation given in (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we perform an accuracy and stability analysis to justify and extend the approach to the time-dependent case. The theoretical predictions are cofirmed by numerical grid convergence studies. The schemes are formally extended to the system of laminar Navier-Stokes equations, and compared to more classical finite volume discretizations on the solution of standard test problems.
Type de document :
[Research Report] RR-7220, INRIA. 2010
Liste complète des métadonnées
Contributeur : Mario Ricchiuto <>
Soumis le : mercredi 3 mars 2010 - 11:46:50
Dernière modification le : jeudi 11 janvier 2018 - 06:22:35
Document(s) archivé(s) le : vendredi 18 juin 2010 - 22:14:21


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00461072, version 1



Jiří Dobeš, Mario Ricchiuto, Rémi Abgrall, Herman Deconinck. Analysis of hybrid RD-Galerkin schemes for Navier-Stokes simulations. [Research Report] RR-7220, INRIA. 2010. 〈inria-00461072〉



Consultations de la notice


Téléchargements de fichiers