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Analysis of hybrid RD-Galerkin schemes for

Navier-Stokes simulations

Résumé : We present an extension of multidimensional upwind residual distri-
bution schemes to viscous flows. Following [Ricchiuto et al. J.Comp.Appl.Math.,
2007], we consider the consistent coupling of a residual distribution (RD) dis-
cretization of the advection operator with a Galerkin approximation for the
second order derivatives. Consistency is intended in the sense of uniform accu-
racy with respect to variations of the mesh size or, equivalently, for the advection
diffusion equation, of the Peclet number. Starting from the scalar formulation
given in [Ricchiuto et al. J.Comp.Appl.Math., 2007], we perform an accuracy
and stability analysis to justify and extend the approach to the time-dependent
case. The theoretical predictions are cofirmed by numerical grid convergence
studies. The schemes are formally extended to the system of laminar Navier-
Stokes equations, and compared to more classical finite volume discretizations
on the solution of standard test problems.
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1 Introduction

In this work we focus on the development of second order discretizations for the
simulation of compressible laminar flows. To analyze different approaches, we
will study the simple model given by the advection-diffusion equation

ut + ~λ · ∇u = ∇ · (ν∇u) (1)

in d spatial dimensions. We will focus to the case of d = 2.
In particular, let us start by considering the approximation of solutions to the

steady limit of (1). Suppose we are given a triangulation of the two-dimensional
spatial domain, and denote by E the generic element of the mesh. In this paper,
we will consider methods that can be put in the form

un+1
i = un

i − αi

∑

E| i∈E

ϕE
i , (2)

where, (at least) for ν = 0

∑

j∈E

ϕE
j =

∫

E

λ · ∇un
h dx = ϕE (3)

with un
h the piecewise linear continuous interpolation of the values of the un-

known in the nodes of the grid at iteration n, denoted by un
i , and with αi > 0
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4 Dobeš, Ricchiuto, Abgrall and Deconinck

a relaxation parameter. With ϕE
i we denote the contribution to the equation

for node i coming from the element E. In particular, for pure advection, these
local residuals can be seen as fractions of the element residual ϕE , defined by
(3). In this case the schemes reduce to the well known Residual Distribution
(RD) of Fluctuation Splitting (FS) schemes [10]

When diffusion is present, the approach often used in practice is to add to
an upwind distribution of the residual (3) a Galerkin approximation of the dif-
fusion operator [16, 10]. Several applications of this hybrid discretization are
shown in [15].

As remarked in [9], and later in [12], this approach is not satisfactory because
it ultimately leads to a loss of accuracy. In particular, even though on coarse
meshes second order might be obtained in practice, the accuracy reduces to
first order as on refines the grid. The objective of this paper, is to study the
approach proposed in [11, 12], where the residual discretizations of the viscous
problem is written as the perturbation of the Galerkin discretization

ϕE
i = ϕa,G

i + ϕd,G
i + ξ(ϕa,RD

i − ϕa,G
i ), (4)

where ϕa,RD

i stands for the contribution from the residual discretization of ad-

vective terms, ϕa,G
i stands for the Galerkin discretization of advective terms

and ϕd,G
i stands for the Galerkin discretization of the diffusive terms. The local

switch ξ ∈ [0, 1] depends on the cell Peclet (or cell Reynolds) number as

ξ(PeE) =

{
0 for PeE → 0

1 for PeE → ∞ (5)

with e.g.

PeE =
‖λ‖h

ν
(6)

where h the characteristic size of element E. In the following text, we drop all
the superscripts E, whenever the reference to the local element is clear from the
context.

Provided that second order RD discretization is used, this formulation gives
stable and second order accurate solution for limiting cases Pe → 0 and Pe →
∞. In the first case, the discretization boils to the central scheme, which is
positive (under certain conditions) for the diffusion problem. In the later case
Pe → ∞ it gives the standard second order RD scheme.

2 Numerical schemes for steady problems

2.1 Scalar equation. Solution I

First, we focus on the LDA scheme, with the nodal contribution given as

ϕa,LDA

i = βLDA
i ϕE , βLDA

i =
k+

i
∑

j∈E k+
j

(7)

with element residual
ϕa,E =

∑

j∈E

kjuj. (8)

INRIA



Hybrid RD-Galerkin schemes for NS simulations 5

Here kj is the upwind parameter defined as

kj =
~λ · ~nj

d
, (9)

where ~nj is the normal perpendicular to the face opposite of node j scaled by
its surface and d is the number of spatial dimensions. Distribution coefficient
for the method (4) can be written as

β∗
i = [1 − ξ(Pe)]βGal + ξ(Pe)βRD

i =
1 − ξ(Pe)

d + 1
+ ξ(Pe)βRD

i . (10)

The Galerkin scheme for advection problem (for linear advection equation) is
obtained by simply taking distribution coefficient β = 1/3. Galerkin scheme for
the diffusion problem is given by

ϕd,G
i = ν

∑

j∈E

~ni · ~nj

d2µ(E)
uj . (11)

First question is, how to define the cell Peclet number for a number of
spatial dimensions bigger than one, d > 1, how to approximate velocity and
how to choose characteristic size of the element. The approach in [11] takes

Pe =
‖λ‖L2hdD

ν
, h2D = 2

√

µ(E)

π
, h3D =

3

√

3
µ(E)

4π
, (12)

what is chosen such that h recovers the circle or ball diameter in higher dimen-
sion. Anther approach is to define the Peclet number on a basis of the ratio of
the cell residuals, namely advection and diffusion residual

Pe =

∫

E
λ · ∇u dx

∫

E
ν∆uxx

≈ µ(E)‖λ‖ δu
h

µ(E)ν δu
h2

≈ ‖λ‖h
ν

, (13)

where δu stands for the value proportional to the variation of the solution u
over the element. The problem is, that the diffusive element residual

ϕd,E =
∑

i∈E

ϕd
i (14)

is always zero for linear elements. Hence some norm of the nodal contributions
has to be chosen. The advantage of this approach is, that it is not necessary to
determine velocity and the characteristic size element. However, the choice of
the norm of the residual is also not unique. Among the possible choices one can
select e.g.

Pe =

∑

i∈E |ϕa
i |

∑

i∈E |ϕd
i |

, Pe =

√∑

i∈E(ϕa
i )2

∑

i∈E(ϕd
i )

2
. (15)

We will use the first option in this work.
The blending coefficient has to be chosen such that

ξ(0) = 0, ξ(∞) = 1. (16)

RR n° 7220



6 Dobeš, Ricchiuto, Abgrall and Deconinck

Actually, any scheme written as (4) is second order accurate for h → 0 if it
respects ξ → 0 for Pe → 0.1 One choice is

ξ(Pe) = max(1,Pe). (17)

This is a simple choice and it respects our first requirement, i.e. RD method
is obtained for Pe → ∞ and Galerkin method for Pe → 0. However, e.g. for
1D problem and Pe ≈ 1 we get the upwind discretization of advection term
with central discretization of the diffusion term, and this discretization has the
truncation error of first order.

To have better idea, how the blending coefficient should look like, we will
examine advection–diffusion equation in 1D with Euler forward time integration
procedure

un+1
i − un

i

∆t
= −ξ

un
i − un

i−1

∆x
− (1 − ξ)

un
i+1 − un

i−1

2∆x
+ ν

un
i+1 − 2un

i + un
i−1

∆x2
(18)

with a > 0 and we will find a lower bound on ξ(Pe) for scheme positivity. We
gather terms into the form of

un+1
i = c0u

n
i + c+1u

n
i+1 + c−1u

n
i−1. (19)

For the positivity of the scheme, positivity of the coefficients is required c0 ≥ 0,
c1 ≥ 0, c−1 ≥ 0. The first condition gives us a time step restriction

∆t ≤ 1

ξ a
∆x

+ ν
∆x2

(20)

and the last condition is always satisfied. The second condition gives us restric-
tion for the blending coefficient

ξ ≥ 1 − 1

Pe
, (21)

what is a lower bound for the positivity of the scheme. Since the central scheme
has lower error than the upwind scheme, it is desirable to have ξ as small as
possible. We can take

ξ(Pe) = max(0, 1 − 1

Pe
). (22)

In this case, the scheme reduces to the second order, positive Galerkin method
for Pe ≤ 1.

In the case of two spatial dimensions, the Galerkin scheme for the diffusive
part of the equation is positive if the triangulation is Delaunay. The positivity
criterion for the Galerkin scheme for both advection and diffusion discretization
can be found only for very special arrangements of the mesh.

2.2 Scalar equation. Solution II

The other approach is to use fully residual scheme, where the viscous part is
included into the residual. The scheme looks like

ϕi = βi(ϕ
a + ϕd

i ), (23)

1As long as ξ(Pe) behaves as a linear function for Pe → 0.

INRIA



Hybrid RD-Galerkin schemes for NS simulations 7

where βi is the distribution coefficient, ϕa is the advection residual and ϕd
i is

the diffusion residual.
We can compute gradient in nodes, denoted by (∇u)h, e.g. by the least

square reconstruction from neighboring nodes. The diffusion residual is to be
approximated as

ϕd
i ≈

∫

E

∇[µ (∇u)h] dx. (24)

We will evaluate this scheme in one dimension. Nodal gradients (derivatives)
are given by the central discretization

(
∂u

∂x

)h

i

≈ ui+1 − ui−1

2∆x
. (25)

The fully discrete scheme is

un+1
i − un

i

∆t
+ a

un
i − un

i−1

∆x
=

ν

∆x

[
un

i+1 − un
i−1

2∆x
− un

i − un
i−2

2∆x

]

. (26)

It can be written as

un+1
i =

ν∆t

∆x2
un

i+1 +

(

1 − ∆ta

∆x
− ν∆t

∆x2

)

un
i +

(
∆ta

∆x
− ν∆t

∆x2

)

un
i−1 +

ν∆t

∆x2
un

i−2.

(27)
First and last term on the RHS are always positive, the second term is positive
under a time step constrain eq. (20). The third term is positive if Pe > 1. As
a conclusion, this scheme is positive for Pe > 1 under a time-step restriction.

In order to resolve problem with positivity, it can be blended with Galerkin
scheme for Pe → 0, as in the previous approach. For this scheme we present
only the theoretical result, we didn’t include any numerical experiments.

2.3 Viscous compressible fluid flow

We present rather straight-forward extension of the method to the system of
equations. We use the linearized Galerkin method, which reduces to the central
discretization, with distribution matrix

βi =
1

d + 1
I. (28)

The Peclet number we define with the accordance with the definition for the
scalar problem (15) as

Pe =

∑

i∈E ‖ϕa
i ‖L2

∑

i∈E ‖ϕd
i ‖L2

. (29)

We can easily modify the distribution coefficients analogously to the eq. (10).
In the case, there the distribution matrices are not explicitly defined, and only
nodal contribution ϕi are known (and the element residual ϕE as its sum), the
following modification can be applied:

ϕ∗
i = ξ(Pe)ϕi +

1 − ξ(Pe)

d + 1
ϕE . (30)

The discretization of viscous terms is a strait-forward extension of (11), for more
discussion see e.g. [16].

RR n° 7220



8 Dobeš, Ricchiuto, Abgrall and Deconinck

2.4 Finite volume scheme

We have used a cell centered finite volume scheme for the comparison. The
variables are stored in centers of mesh elements. The method uses linear least
square reconstruction, with Barth’s limiter [1] as a option. The numerical flux
is approximated by the Roe’s Riemann solver [13] in the case of Navier-Stokes
equations, or simple upwind flux in the case of scalar equations. The discretiza-
tion of viscous fluxes is done on dual grid. Solution from elements centers are
interpolated to vertices of the mesh. Derivatives are then approximated on
auxiliary volumes connecting centroids of the cell with mesh vertices.

3 Numerical experiments for steady problems

3.1 Steady scalar advection-diffusion equation

First, we repeat test case from [9, 11]. We solve the equation (1) on spatial

domain [0, 1]2, with ~λ = (λx, λy) = (0, 1), ν = 0.01. The problem has exact
solution

u = − cos(2πη) exp(
ζ(1 −

√
1 + 16π2ν2)

2ν
), (31)

with η = λyx − λxy and ζ = λxx + λyy.
We use a sequence of unstructured meshes with h = 1/10, 1/20, 1/40,

1/80, 1/150, 1/300. This corresponds to the cell Peclet numbers of range
Pe = [0.33, 10]. Results are shown in Fig. 1. One can see that the original
scheme deviates from the second order slope for Pe / 3, where both modifica-
tions continue in the second order convergence. The newer modification (22)
gives the lower error, as expected.

INRIA
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Figure 1: 2D advection-diffusion equation, test eq. (31). a) Original distribution
coefficients, i.e. LDA scheme for inviscid terms and Galerkin scheme for viscous
terms. b) modification of the distribution coefficients given by eqns. (12), (17)
(older modification) c) modification of the distribution coefficients given by eqns.
(13), (22) (newer modification). d) comparison of different modifications in L2

norm.
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10 Dobeš, Ricchiuto, Abgrall and Deconinck

3.2 Incompressible laminar boundary layer – Blasius’s so-

lution

The classical Blasius similarity solution provides data for the comparison. The
text by White [18] or Schlichting [14] discusses this solution.

Parameters and mesh size were taken from the web page http://www.grc.nasa.gov/WWW/wind/valid/fpl
The grid points are evenly spaced along the plate. The normal grid points are
placed at constant η coordinates, where

η =
y

√
u∞

2νx

, (32)

with the grid evenly spaced until η = 4 and then spaced by a factor of 1.1 until
the outer boundary at η = 50 is reached. For x < 0.3 the y coordinate is the
same as x = 0.3. Final grid resolution is 52 × 35 elements. There are 13 nodes
in the x direction prior to leading edge of the flat plate. Fig. 2 shows how the
grid looks like.

We compute a flow over the flat plate with a free stream Mach number
Ma = 0.3 and the Reynolds number based on the length of the flat plate is
approx. 2 · 105. We have set the following free stream conditions: ρ∞ = 1.4,
u∞ = 0.3, p∞ = 1, ν = 1.5 · 10−6. The self-similar solution gives

cf =

∂u
∂y

∣
∣
w√

Rex

, Rex =
uex

ν
,

∂u

∂y

∣
∣
∣
∣
w

= 0.664067. (33)

Technically important is a value of cf coefficient

cf =
τw

1

2
ρeu2

e

, τw = ν
∂u

∂y

∣
∣
∣
∣
y=0

. (34)

The Fig. 3 shows the distribution of the cell Peclet number together with
the blending coefficient away from the plate. Figs. 4 to 7 shows the solution in
terms of isolines of the Mach number. One can notice that all the solutions are
very similar. Distribution of the friction coefficient along the plate is shown in
Fig. 8 and the cut of the u velocity in Fig. 9.

0 0.5 1
0

0.1

0.2

Figure 2: Mesh for laminar incompressible flow over a flat plate

INRIA
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Figure 3: Cell Peclet number at x = 0.8, together with the blending coefficient
ξ and the distribution of the velocity.
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Figure 4: Isolines of Mach number. LDA scheme with the blending coefficient
given by (29), (22).
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0.005
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0.015

Figure 5: Isolines of Mach number. LDA scheme with ξ ≡ 1.
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0.005
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0.015

Figure 6: Isolines of Mach number. N-modified scheme with the blending coef-
ficient given by (29), (22)
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Figure 7: Isolines of Mach number. Bx scheme (see [7]) with the blending
coefficient given by (29), (22)
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Figure 8: Distribution of the friction coefficient along the plate. RD schemes.

INRIA



Hybrid RD-Galerkin schemes for NS simulations 13
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Figure 9: Cut at x = 0.8. Distribution of the velocity u. Full line corresponds
to the Blasius solution.

3.3 Steady flow past NACA0012: Ma = 2, Re = 106, α =

10◦

This test case is taken from [2]. The computational mesh is shown in Figs. 10
and 11, solution with the LDA scheme in Fig. 12. The friction along the airfoil
is plotted in Fig. 13. There is virtually no difference in the friction coefficient
in the modified version of the RD scheme.

RR n° 7220



14 Dobeš, Ricchiuto, Abgrall and Deconinck

Figure 10: NACA 0012 Ma = 2 Re = 106, α = 10◦. Computational mesh.

Figure 11: NACA 0012 Ma = 2 Re = 106, α = 10◦. Computational mesh –
zoom.

INRIA
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Figure 12: NACA 0012 Ma = 2 Re = 106, α = 10◦. Isolines of Mach number.

x/c

C
f

0 0.2 0.4 0.6 0.8 1

New limiting
Old approach

Figure 13: NACA 0012 Ma = 2 Re = 106, α = 10◦. (Scaled) friction. Compar-
ison of the LDA scheme with ξ ≡ 1 (denoted by old approach) and the blending
coefficient given by (29), (22) (denoted as the new limiting).
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16 Dobeš, Ricchiuto, Abgrall and Deconinck

4 Numerical schemes for time dependent prob-

lems

4.1 Scalar equation. Solution I

Now, we will investigate time-dependent problem

ut + ~λ · ∇u = ν∆u. (35)

The dual-time (or space-time) nodal contribution is will be taken again as

ϕi = ϕa,G
i + ϕd,G

i + ξ(ϕa,RD

i − ϕa,G
i ), (36)

where ϕa
i include both contributions from the advection terms and time deriva-

tive

ϕa ≈
∫

E

(ut + ~λ · ∇u) d~x. (37)

The nodal contribution from the Galerkin scheme including the mass matrix is

ϕa,G
i =

µ(E)

d + 1

∑

j∈E

(
1 + δij

d + 2

∂uj

∂t

)

+
1

d + 1
ϕE , (38)

while for the LDA of Ferrante and Deconinck [8] it is

ϕa,LDA

i =
µ(E)

d + 1

(

k+
i N +

2

d + 2
I − 1

d + 1
I

)
∂ui

∂t
+

+
µ(E)

d + 1

∑

j∈E
j 6=i

[(

k+
j N +

1

d + 2
I − 1

d + 1
I

)
∂uj

∂t

]

+ k+
i NϕE . (39)

Let us examine the Galerkin scheme first. In 1D, the semi-discrete equation
is

1

6

∂ui+1

∂t
+

4

6

∂ui

∂t
+

1

6

∂ui−1

∂t
+ a

ui+1 − ui−1

2∆x
= ν

ui+1 + 2ui − ui−1

∆x2
. (40)

The fully discrete version using the Crank-Nicholson time integration method
is then

1

6

un+1
i+1 − un

i+1

∆t
+

4

6

un+1
i − un

i

∆t
+

1

6

un+1
i−1 − un

i−1

∆t
+

1

2

[

a
ui+1 − ui−1

2∆x
− ν

ui+1 + 2ui − ui−1

∆x2

]n+1

+

1

2

[

a
ui+1 − ui−1

2∆x
− ν

ui+1 + 2ui − ui−1

∆x2

]n

= 0. (41)

The fully discrete version of the LDA scheme with the Crank-Nicholson time
integration and central discretization of the viscous terms is

(
5

12∆t
− 1

2

a

∆x
− 1

2

ν

∆x2

)

un+1
i−1 +

(
2

3∆t
+

1

2

a

∆x
+

ν

∆x2

)

un+1
i +

(

− 1

12∆t
− 1

2

ν

∆x2

)

un+1
i+1 +

(

− 5

12∆t
− 1

2

a

∆x
− 1

2

ν

∆x2

)

un
i−1+

(

− 2

3∆t
+

1

2

a

∆x
+

ν

∆x2

)

un
i +

(
1

12∆t
− 1

2

ν

∆x2

)

un
i+1

= 0. (42)
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Now, we take a blend between the LDA and the Galerkin scheme with the
blending coefficient ξ, giving

[

ξ

(
5

12∆t
− 1

2

a

∆x

)

+ (1 − ξ)

(
1

6∆t
− 1

4

a

∆x

)

− 1

2

ν

∆x2

]

un+1
i−1 +

[
2

3∆t
+

ξ

2

a

∆x
+

ν

∆x2

]

un+1
i +

[

ξ

(

− 1

12∆t

)

+ (1 − ξ)

(
1

6∆t
+

1

4

a

∆x

)

− 1

2

ν

∆x2

]

un+1
i+1 +

[

ξ

(

− 5

12∆t
− 1

2

a

∆x

)

+ (1 − ξ)

(

− 1

6∆t
− 1

4

a

∆x

)

− 1

2

ν

∆x2

]

un
i−1+

[

− 2

3∆t
+

ξ

2

a

∆x
+

ν

∆x2

]

un
i +

[

ξ

(
1

12∆t

)

+ (1 − ξ)

(

− 1

6∆t
+

1

4

a

∆x

)

− 1

2

ν

∆x2

]

un
i+1 = 0. (43)

For x = 0 it is the Galerkin scheme, while for ξ = 1 it is the LDA scheme with
mass matrix and the central viscous discretization.

After following procedure in [17], we get modified equation

ut + aux = νuxx +

(
1

2
ξν∆x − 1

12
a3∆t2

)

uxxx+

(

−ξ
1

24
a∆x3 +

1

4
a2ν∆t2 − 1

12
ν∆x2 + ξ2 1

4
ν∆x2

)

uxxxx. (44)

We will focus on the first term. We take a time-step as

∆t =
σ

a
∆x

+ ν
∆x2

, 0 < σ ≤ 1, σ ≈ 1 (45)

and we get

1

2
ξν∆x − 1

12
a3∆t2 =

1

2
ν∆x







ξ − 1

6

σ2Pe3

1 + Pe2

︸ ︷︷ ︸

α







=
1

2
ν∆x (ξ − α) . (46)

Following behavior can be observed:� Galerkin scheme (ξ ≡ 0): α is of O(Pe3) ≈ O(∆x3), it means that RHS
term (46) is O(∆x4). In this case for ∆x → 0, in equation (44) term uxxxx

is dominating, the scheme is second order accurate.� LDA scheme (ξ ≡ 1): for ∆x → 0 the equation (46) behaves as ν∆x/2,
the scheme is first order accurate.� Case ∆x ' ν/a (i.e. Pe ' 1): We will check when α ≈ ξ, i.e. when
uxxx truncation error of Galerkin scheme will be the same order as the
truncation error of the LDA inviscid + Galerkin viscous scheme. After
solving the nonlinear equation, we get Pe ≈ 7.66. For this particular
value of the Peclet number the uxxx the two terms substract and the
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18 Dobeš, Ricchiuto, Abgrall and Deconinck

truncation error is zero, it might not true in more spatial dimensions. For
Pe ' 7.66 the truncation error coming from the central discretization is of
the same order as the truncation error coming from the mismatch of the
central discretization of the viscous terms and the upwind discretization
of the advection term. On another words, for Pe > 7.66 the idea of error
reduction with blending of Galerkin and upwind schemes for advection
terms does not make much sense anymore, it is good enough to use the
upwind scheme for the advection terms and Galerkin scheme for diffusion
terms.

Let us check, what is the condition on ξ for the positivity of the scheme (43).
The stability analysis of the LDA scheme gives us a time step restriction

∆t ≤ 1
a

2∆x
+ ν

∆x2

, (47)

or equivalently

γ =
a∆t

∆x
≤ 1

1

2
+ 1

Pe

. (48)

After some algebra, one can conclude that the bound on ξ (if the maximal
time-step γ = 1 is used) is

ξ ≥ max

(

0,
Pe − 1

Pe + 1

)

. (49)

This restriction is actually more relaxed than the one given by the (22). In the
following computations, we will still use the value given by (22).

4.2 Viscous compressible fluid flow

We apply the same extension as before.

5 Numerical experiments time dependent prob-

lems

5.1 Scalar rotational advection–diffusion problem

We consider an advection-diffusion equation (1) with ~λ = (λx, λy) = (−y, x), i.e.
case of rotation-diffusion, with rotation around origin (0, 0) by angular velocity
ω = 1. The solution of a pure diffusion problem rotated with angular velocity
ω is the solution of the problem. We first look at the problem

ut = ν∆u (50)

in cylindrical coordinates. The problem reads

ut = ν

(

urr +
1

r
ur +

1

r2
uθθ

)

. (51)

We will look only to radial-symmetric solution, hence last term drops. We will
search for the solution using Fourier method, i.e. the solution is in form

u(t, r) = T (t)R(r). (52)
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This gives us
T ′

T
= ν

(
R′′

R
+

1

r

R′

R

)

= c1 (53)

The solution of the equation T ′/T = c1 is simply T (t) = c2 exp(c1t). The second
equation can be written as

r2R′′ + rR′ − r2R
c1

ν
= 0 (54)

with well known solution in form

R(r) = c3J0(

√

−c1

ν
r) + c4Y0(

√

−c1

ν
r), (55)

where J0 and Y0 are the Bessel functions of the first and the second kind. Since
Y0 is singular at the r = 0, we will not consider this part of the solution. The
problem has the solution

u(r, t) = c0 exp(c1t) J0(

√

−c1

ν
r). (56)

Now, we will turn out attention to the solution of the problem (1)

ut + (−y, x) · ∇u = ν∆u. (57)

The solution is given by the equation (56) with rotated frame of reference. Now,
we have to choose the parameters. First, maximal value of the solution after
one rotation at the time t = 2π is chosen 0.2, starting with u0 = 1. Hence,

exp(2πc1) = 0.2 (58)

giving c1 = ln(0.2)/2/π. From the condition u0|max = 1 the c0 = 1. Now,
the viscosity has to be chosen. We set ν = 0.005. The implementation is easy,
because the Bessel function is part of the standard C library in the same manner
as e.g. sin() and it is called double j0(double x).

Finally, the solution is given by

u = exp(c1t) J0(r

√

−c1

µ
) (59)

with

c1 =
ln 0.2

2π
(60)

α = −t (61)

x̃ = x cos α − y sin α + 0.5 (62)

ỹ = x sin α + y cosα (63)

r =
√

x̃2 + ỹ2. (64)

Initial conditions are plotted in Fig. 14.
The problem was solved with the LDA scheme with original approach, i.e.

LDA+Galerkin viscous terms, the Galerkin discretization for all the terms and
finally, with above described hybrid approach.
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Figure 14: Unsteady rotation-diffusion problem – initial conditions.

Scheme L1 order L2 order L∞ order

LDA inviscid + Galerkin viscous 1.03 1.00 1.00
Galerkin all (unstable for large Pe) 1.96 1.96 1.77

LDA+Galerkin hybrid scheme 2.21 2.23 1.93

Table 1: Comparison of orders of accuracy for 2D unsteady advection-diffusion
problem

Nolim. L
1

Nolim. L
2

Nolim. L
∞

Gal. L
1

Gal. L
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∞

Newl. L
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1
0
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2
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−4
−1.75−1.5 −1.25 −0.75−0.5

Figure 15: Unsteady rotation-diffusion problem – LDA scheme with mass ma-
trix, convergence study. Nolim.: original version LDA scheme with Galerkin
treatment of viscous terms. Gal.: Galerkin central scheme both for advection
and diffusion. Newl.: the novel approach, hybrid blending both formulations.
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5.2 Flow past suddenly accelerated wall – Rayleigh prob-

lem

We solve the problem on domain Ω = [0, 1] × [0, 1]. Top-free stream, bottom
wall, sides periodic boundary condition. Free stream parameters: (ρ, u, v, p)∞ =
(1.4, 1, 0, 100). Kinematic viscosity is chosen ν = 0.1. We solve the problem for
time interval t ∈ [0, 0.1]. The solution is

u = u∞erf(
y

2
√

νt
). (65)

The same test case (on finer mesh) was already used in [6, 3, 5, 4].
We use a very coarse mesh with spacing h = 1/10 (217 nodes and 392

elements only). Two periods of the solution for the viscous hybrid scheme
together with the mesh is plotted in Fig. 16. Unfortunately, there is no visual
advantage of the hybrid scheme. Notice much worse performance of the FV
scheme with comparison to the RD schemes.

x

y

-1 0 1 2
0

0.2

0.4

0.6

0.8

1

Figure 16: Rayleigh problem. Solution using the LDA scheme with the mass
matrix and with viscous hybrid method. Solution at time t = 0.1. Two periods
plotted together with the computational mesh.
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Figure 17: Rayleigh problem. Cut in the y direction for the LDA scheme with
hybrid method and with standard method. The finite volume scheme with linear
reconstruction is included.

5.3 Vortex shedding past a circular cylinder

Mach number Ma = 0.1, Reynolds number Re = 100. The laminar vortex
shedding starts from Re ≈ 70, for Re ≤ 70 the solution is steady. 48 elements
is placed around the cylinder. Computations by LDA scheme with and without
the new approach was started from already periodic state, precomputed earlier.

The solution is plotted in Fig. 18. There are minor differences between the
numerical schemes, even that the cell Reynolds number near the wall is of order
2.

5.4 Transonic vortex pairing

This test case involves a transonic vortex pairing in a mixing layer [19]. The
problem consists of a shear layer defined by two free streams with velocity
profiles u = tanh(2y)/2, v = 0. To these velocity profiles we superimpose the
velocity perturbations

v′ =

2∑

k=1

ak cos(2πkx/Lx + φk) exp(−y2/b) (66)

with parameters a1 = 0.01, a2 = 0.05, φ1 = φ2 = π/2, b = 10. The u′

perturbation is computed from condition ∇(u′, v′) = 0. The problem has been
solved inside a rectangular area Lx × Ly with Lx = 30 and Ly = 100. The
top and bottom boundaries are treated as inviscid walls, and periodic boundary
conditions are set on the left and right boundaries. The kinematic viscosity
in the free streams is set to ν∞ = 10−3, corresponding to a Reynolds number
Re = 1000. Sutherland’s law for viscosity has been used in the computations.
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Figure 18: Top to bottom: Isolines of entropy, LDA scheme, standard approach.
Isolines of entropy, LDA scheme, presented approach. Isolines of Peclet number.
Lift dependence on time.
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The speed of sound (and hence the density) in the initial solution is determined
from the assumption of constant stagnation enthalpy

a2 = a2
1 +

γ − 1

2
(u2

1 − u) (67)

and Ma∞ = 0.8. Constant initial static pressure p = 1 is assumed across the
whole flow-field. The grid used consists of an isotropic triangulation stretched
in the y-direction using the mapping

y =
Ly

2

sinh(byη)

sinh(by)
, (68)

where η ∈ (−1, 1) and by = 3.4. The mesh contains 201×201 nodes. The
computation has been run with the B scheme.

The solution at time t = 160 is shown in Fig. 19, where we plot 30 levels of
isolines of the temperature. Comparing with the fourth order results of [19], our
method shows all features of flow-field. There is very little difference between
the numerical methods. The map of the cell Peclet number is also included.
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Figure 19: Transonic vortex pairing, mesh 201×201. Solution at t = 160. Bx
scheme (see [7]). Left to right: Isolines of temperature – standard scheme, new
approach. Isolines of Peclet number.
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6 Conclusions

We have extended the approach of [12] for unsteady problems and system of
Navier-Stokes equations. We have shown on numerically for scalar problem that
the second order of accuracy is obtained, while with the previous attempt of [16,
10] gives only first order accurate schemes. However, we have also theoretically
shown, that for problems of cell Peclet number larger than approx. 7.5, the
previous approach is qualitativelly similar to the new hybrid approach. In this
case, the hybrid approach does not bring any advantage and it is enough to use
the standard scheme of [16, 10].
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[6] Jǐŕı Dobeš, Mario Ricchiuto, and Herman Deconinck. Implicit space-time
residual distribution method for unsteady laminar viscous flow. Computers
and Fluids, 34:593–615, 2005. ISSN 0045-7930.
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2003.

[16] Edwin T. A. van der Weide. Compressible Flow Simulation on Unstructured
Grids Using Multi-dimensional Upwind Schemes. PhD thesis, Technische
Universiteit Delft, Von Karman Institute for Fluid Dynamics, 1998.

[17] R. Warming and Hyett. The modified equation approach to the stability
and accuracy analysis of finite-difference methods. Journal of Copmuta-
tional Physics, (14):159–179, 1974.

[18] Frank M. White. Viscous Fluid Flow. McGraw-Hill Sci-
ence/Engineering/Math, 1991.

[19] H. C. Yee, N. D. Sandham, and M. J. Djomehri. Low-dissipative high-
order shock-capturing methods using characteriscic-based filters. Journal
of Computational Physics, 150:199–238, 1999.

RR n° 7220



Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex (France)

Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399


	Introduction
	Numerical schemes for steady problems
	Scalar equation. Solution I
	Scalar equation. Solution II
	Viscous compressible fluid flow
	Finite volume scheme

	Numerical experiments for steady problems
	Steady scalar advection-diffusion equation
	Incompressible laminar boundary layer -- Blasius's solution
	Steady flow past NACA0012: Ma=2, Re=106, =10

	Numerical schemes for time dependent problems
	Scalar equation. Solution I
	Viscous compressible fluid flow

	Numerical experiments time dependent problems
	Scalar rotational advection--diffusion problem
	Flow past suddenly accelerated wall -- Rayleigh problem
	Vortex shedding past a circular cylinder
	Transonic vortex pairing

	Conclusions

