On Cluster Resource Allocation for Multiple Parallel Task Graphs

Abstract : Many scientific applications can be structured as Parallel Task Graphs (PTGs), that is, graphs of data-parallel tasks. Adding data-parallelism to a task-parallel application provides opportunities for higher performance and scalability, but poses additional scheduling challenges. In this paper, we study the off-line scheduling of multiple PTGs on a single, homogeneous cluster. The objective is to optimize performance without compromising fairness among the PTGs. We consider the range of previously proposed scheduling algorithms applicable to this problem, both from the applied and the theoretical literature, and we propose minor improvements when possible. Our main contribution is an extensive evaluation of these algorithms in simulation, using both synthetic and real-world application configurations, using two different metrics for performance and one metric for fairness. We identify a handful of algorithms that provide good trade-offs when considering all these metrics. The best algorithm overall is one that structures the schedule as a sequence of phases of increasing duration based on a makespan guarantee produced by an approximation algorithm.
Type de document :
Rapport
[Research Report] RR-7224, INRIA. 2010, pp.31
Liste complète des métadonnées

https://hal.inria.fr/inria-00461692
Contributeur : Frédéric Desprez <>
Soumis le : vendredi 5 mars 2010 - 14:15:56
Dernière modification le : mardi 24 avril 2018 - 13:52:39
Document(s) archivé(s) le : jeudi 18 octobre 2012 - 16:36:02

Fichier

RR-7224.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00461692, version 1

Citation

Henri Casanova, Frédéric Desprez, Frédéric Suter. On Cluster Resource Allocation for Multiple Parallel Task Graphs. [Research Report] RR-7224, INRIA. 2010, pp.31. 〈inria-00461692〉

Partager

Métriques

Consultations de la notice

348

Téléchargements de fichiers

163