Parameterless Outlier Detection in Data Streams

Alice Marascu 1 Florent Masseglia 1
1 AxIS - Usage-centered design, analysis and improvement of information systems
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Paris-Rocquencourt
Abstract : Outlyingness is a subjective concept relying on the isolation level of a (set of) record(s). Clustering-based outlier detection is a field that aims to cluster data and to detect outliers depending on their characteristics (small, tight and/or dense clusters might be considered as outliers). Existing methods require a parameter standing for the "level of outlyingness", such as the maximum size or a percentage of small clusters, in order to build the set of outliers. Unfortunately, manually setting this parameter in a streaming environment should not be possible, given the fast time response usually needed. In this paper we propose WOD, a method that separates outliers from clusters thanks to a natural and effective principle. The main advantages of WOD are its ability to automatically adjust to any clustering result and to be parameterless.
Type de document :
Communication dans un congrès
ACM symposium on Applied Computing, Mar 2009, Honolulu, United States. pp.1491-1495, 2009
Liste complète des métadonnées

https://hal.inria.fr/inria-00461827
Contributeur : Alice-Maria Marascu <>
Soumis le : vendredi 5 mars 2010 - 17:51:21
Dernière modification le : jeudi 11 janvier 2018 - 16:23:43

Identifiants

  • HAL Id : inria-00461827, version 1

Collections

Citation

Alice Marascu, Florent Masseglia. Parameterless Outlier Detection in Data Streams. ACM symposium on Applied Computing, Mar 2009, Honolulu, United States. pp.1491-1495, 2009. 〈inria-00461827〉

Partager

Métriques

Consultations de la notice

132