Projection schemes for fluid flows through a porous interface

Alfonso Caiazzo 1, * Miguel Angel Fernández 1, * Jean-Frédéric Gerbeau 1, * Vincent Martin 2, *
* Auteur correspondant
1 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
Abstract : This paper presents a numerical method to simulate an incompressible fluid through an immersed porous interface. The interface is modeled by a surface measure term in the Navier-Stokes equations and it is characterized by a resistance parameter. This approach can be used for example to model valves or to simulate blood flood through an immersed stent. Starting from a monolithic formulation proposed recently, a fractional step algorithm is derived. The difficult point is that this formulation is singular when the resistance vanishes, which can be a serious issue in some applications. We show that an appropriate Nitsche's treatment of the interface condition fixes this problem and ensures uniform energy stability in time, for any non-negative value of the resistance. The theoretical stability and convergence results are illustrated with numerical experiments
Type de document :
Article dans une revue
SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2011, 33 (2), pp.541-564. 〈10.1137/100788124〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00462103
Contributeur : Miguel Angel Fernández <>
Soumis le : lundi 8 mars 2010 - 17:30:07
Dernière modification le : jeudi 11 janvier 2018 - 06:20:06
Document(s) archivé(s) le : vendredi 18 juin 2010 - 20:06:14

Fichier

RR-7225.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alfonso Caiazzo, Miguel Angel Fernández, Jean-Frédéric Gerbeau, Vincent Martin. Projection schemes for fluid flows through a porous interface. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2011, 33 (2), pp.541-564. 〈10.1137/100788124〉. 〈inria-00462103〉

Partager

Métriques

Consultations de la notice

345

Téléchargements de fichiers

180