G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes II: Non-critical sizes of the holes for a volume distribution and a surface distribution of holes, Archive for Rational Mechanics and Analysis, vol.4, issue.3, pp.261-298, 1991.
DOI : 10.1007/BF00375066

M. Astorino, S. Shadden, and J. Gerbeau, A robust and efficient valve model. submitted, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00717213

M. Astorino, F. Chouly, and M. A. Fernández, Robin Based Semi-Implicit Coupling in Fluid-Structure Interaction: Stability Analysis and Numerics, SIAM Journal on Scientific Computing, vol.31, issue.6, pp.314041-4065, 2009.
DOI : 10.1137/090749694

URL : https://hal.archives-ouvertes.fr/inria-00361284

S. Badia and R. Codina, Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition, Numerische Mathematik, vol.3, issue.4, pp.533-557, 2007.
DOI : 10.1007/s00211-007-0099-5

R. Becker, P. Hansbo, and R. Stenberg, A finite element method for domain decomposition with non-matching grids, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.2, pp.209-225, 2003.
DOI : 10.1051/m2an:2003023

URL : https://hal.archives-ouvertes.fr/inria-00073065

S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 2002.

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, vol.22, issue.104, pp.745-762, 1968.
DOI : 10.1090/S0025-5718-1968-0242392-2

P. G. Ciarlet, The finite element method for elliptic problems, #25001)], p.520174, 1958.

M. A. Fernández, J. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.794-821, 2007.
DOI : 10.1002/nme.1792

M. A. Fernández, J. Gerbeau, and V. Martin, Numerical simulation of blood flows through a porous interface, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.6, pp.961-990, 2008.
DOI : 10.1051/m2an:2008031

K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, Journal of Computational Physics, vol.30, issue.1, pp.76-95, 1979.
DOI : 10.1016/0021-9991(79)90088-3

J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-476011, 2006.
DOI : 10.1016/j.cma.2005.10.010

P. Hansbo, Nitsche's method for interface problems in computa-tional mechanics, GAMM-Mitteilungen, vol.15, issue.2, pp.183-206, 2005.
DOI : 10.1002/gamm.201490018

M. Juntunen and R. Stenberg, Nitsche???s method for general boundary conditions, Mathematics of Computation, vol.78, issue.267, pp.1353-1374, 2009.
DOI : 10.1090/S0025-5718-08-02183-2

]. J. Nitsche, ??ber ein Variationsprinzip zur L??sung von Dirichlet-Problemen bei Verwendung von Teilr??umen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.12, issue.1, pp.9-15, 1971.
DOI : 10.1007/BF02995904

A. Quaini and A. Quarteroni, A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD, Mathematical Models and Methods in Applied Sciences, vol.17, issue.06, pp.957-983, 2007.
DOI : 10.1142/S0218202507002170

R. Temam, Sur l'approximation de la solution des equations de Navier- Stokes par la méthode des pas fractionaires I. Archive for Rational Mechanics and Analysis, pp.135-153, 1969.

V. Thomée, Galerkin finite element methods for parabolic problems, of Springer Series in Computational Mathematics, 2006.
DOI : 10.1007/978-3-662-03359-3

L. Timmermans, F. Minev, . Van-de, and . Vosse, AN APPROXIMATE PROJECTION SCHEME FOR INCOMPRESSIBLE FLOW USING SPECTRAL ELEMENTS, International Journal for Numerical Methods in Fluids, vol.17, issue.7, pp.673-688, 1996.
DOI : 10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O

.. Stability, 15 3.6.1 Non-stabilized projection step, p.17

I. Unité-de-recherche and . Lorraine, Technopôle de Nancy-Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-lès-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche, 2004.

I. De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399