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objective case – at least if one is willing to accomplish it in a scientifically decent
and rigorous way. The COCO platform furnishes most of this tedious task for
the experimenter: (1) choice and implementation of a well-motivated single-
objective benchmark function testbed, (2) design of an experimental set-up, (3)
generation of data output for (4) post-processing and presentation of the re-
sults in graphs and tables. In this report, the experimental procedure for the
BBOB-2010 benchmarking workshop and data formats are thoroughly defined
and motivated, and the data presentation is touched on.
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Sud, 91405 Orsay cedex, France
§ SF is with the Research Center PPE, University of Applied Sciene Vorarlberg, Hochschul-

strasse 1, 6850 Dornbirn, Austria
¶ RR is with the TAO Team of INRIA Saclay–Île-de-France at the LRI, Université-Paris
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4 N. Hansen, A. Auger, S. Finck and R. Ros

1 Introduction

This document describes the experimental setup and the data presentation for
BBOB-2010. The definition of the benchmark functions and the technical docu-
mentation for the provided software are accessible at http://coco.gforge.

inria.fr/doku.php?id=bbob-2010.

1.1 Symbols, Constants, and Parameters

∆f : precision to reach, that is, a difference to the smallest possible function
value fopt.

fopt : optimal function value, defined for each benchmark function individually

ftarget = fopt + ∆f : target function value to reach. The final, smallest consid-
ered target function value is ftarget = fopt + 10−8, but also larger values
for ftarget are evaluated.

Ntrial = 15 is the number of trials for each single setup, i.e. each function and
dimensionality (see also Appendix C). A different function instance is used
in each trial. Performance is evaluated over all Ntrial trials.

D = 2; 3; 5; 10; 20; 40 search space dimensionalities used for all functions. Di-
mensionality 40 is optional and can be omitted.

2 Benchmarking Experiment

The real-parameter search algorithm under consideration is run on a testbed of
benchmark functions to be minimized (the implementation of the functions is
provided in C, Java, and MATLAB/Octave). On each function and for each
dimensionality Ntrial trials are carried out (see also Appendix C). Different
function instances are used (the instantiation numbers 1, . . . , 15). A MATLAB
example script for this procedure is given in Figure 1 (similar scripts are provided
in C and Java). The algorithm is run on all functions of the testbed under
consideration.

2.1 Input to the Algorithm and Initialization

An algorithm can use the following input.

1. the search space dimensionality D

2. the search domain; all functions are defined everywhere in RD and have
their global optimum in [−5, 5]D. Most functions have their global opti-
mum in [−4, 4]D which can be a reasonable setting for initial solutions.

3. indication of the testbed under consideration, i.e. different algorithms
and/or parameter settings might well be used for the noise-free and the
noisy testbed

4. the function value difference ∆f = 10−8 (final target precision), in order
to implement effective termination mechanisms (which should also prevent
early termination)

INRIA
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Figure 1: exampleexperiment.m: example for benchmarking MY OPTIMIZER

on the noise-free function testbed in MATLAB/Octave. An example for the
function MY OPTIMIZER is given in Appendix A. Similar code is available in
C and Java

% runs an entire experiment for benchmarking MY_OPTIMIZER

% on the noise-free testbed. fgeneric.m and benchmarks.m

% must be in the path of Matlab/Octave

% CAPITALIZATION indicates code adaptations to be made

addpath(’PUT_PATH_TO_BBOB/matlab’); % should point to fgeneric.m etc.

datapath = ’PUT_MY_BBOB_DATA_PATH’; % different folder for each experiment

opt.algName = ’PUT ALGORITHM NAME’;

opt.comments = ’PUT MORE DETAILED INFORMATION, PARAMETER SETTINGS ETC’;

maxfunevals = ’10 * dim’; % 10*dim is a short test-experiment taking a few minutes

% INCREMENT maxfunevals successively to larger value(s)

minfunevals = ’dim + 2’; % PUT MINIMAL SENSIBLE NUMBER OF EVALUATIONS for a restart

maxrestarts = 1e4; % SET to zero for an entirely deterministic algorithm

more off; % in octave pagination is on by default

t0 = clock;

rand(’state’, sum(100 * t0));

for dim = [2,3,5,10,20,40] % small dimensions first, for CPU reasons

for ifun = benchmarks(’FunctionIndices’) % or benchmarksnoisy(...)

for iinstance = [1:15] % first 15 function instances

fgeneric(’initialize’, ifun, iinstance, datapath, opt);

% independent restarts until maxfunevals or ftarget is reached

for restarts = 0:maxrestarts

MY_OPTIMIZER(’fgeneric’, dim, fgeneric(’ftarget’), ...

eval(maxfunevals) - fgeneric(’evaluations’));

if fgeneric(’fbest’) < fgeneric(’ftarget’) || ...

fgeneric(’evaluations’) + eval(minfunevals) > eval(maxfunevals)

break;

end

end

disp(sprintf([’ f%d in %d-D, instance %d: FEs=%d with %d restarts,’ ...

’ fbest-ftarget=%.4e, elapsed time [h]: %.2f’], ...

ifun, dim, iinstance, ...

fgeneric(’evaluations’), ...

restarts, ...

fgeneric(’fbest’) - fgeneric(’ftarget’), ...

etime(clock, t0)/60/60));

fgeneric(’finalize’);

end

disp([’ date and time: ’ num2str(clock, ’ %.0f’)]);

end

disp(sprintf(’---- dimension %d-D done ----’, dim));

end

RR n➦ 7215



6 N. Hansen, A. Auger, S. Finck and R. Ros

5. the target function value ftarget is provided for conclusive termination
of trials, in order to reduce the overall CPU requirements. The target
function value is not intended to be utilized as algorithm input otherwise.

Based on these input parameters, the parameter setting and initialization
of the algorithm is entirely left to the participants. As a consequence, the
setting shall be identical for all benchmark functions of one testbed (the function
identifier or any known characteristics of the function are not meant to be input
to the algorithm, see also Section 4).

2.2 Termination Criteria and Restarts

Algorithms with any budget of function evaluations, small or large, are con-
sidered in the analysis of the results. Exploiting a larger number of function
evaluations increases the chance to achieve better function values or even to
solve the function up to the final ftarget

1. In any case, a trial can be conclu-
sively terminated if ftarget is reached. Otherwise, the choice of termination is a
relevant part of the algorithm: the termination of unsuccessful trials affects the
performance in BBOB-2010. To exploit a large number of function evaluations
effectively, we suggest considering a multistart procedure, which relies on an
interim termination of the algorithm.

Independent restarts, as implemented in Figure 1, do not change the main
performance measure expected running time (ERT, see Appendix D.1). Inde-
pendent restarts mainly improve the reliability and “visibility” of the measured
value. For example, using a fast algorithm with a small success probability, say
5% (or 1%), chances are that not a single of 15 trials is successful. With 10
(or 90) independent restarts, the success probability will increase to 40% and
the performance of (here out of 15) are desirable to accomplish a stable perfor-
mance measurement. This reasoning remains valid for any target function value
(different values will be considered in the evaluation).

Restarts either from a previous solution, or with a different parameter setup,
for example with different (increasing) population size, might be considered as
well, as it has been applied quite successfully [2, 6]. Choosing different setups
mimics what might be done in practice. All restart mechanisms are finally
considered as part of the algorithm under consideration.

3 Time Complexity Experiment

In order to get a rough measurement of the time complexity of the algorithm,
the overall CPU time is measured when running the algorithm on f8 (Rosen-
brock function) for at least a few tens of seconds (and at least a few iterations).
The chosen setup should reflect a “realistic average scenario”. If another termi-
nation criterion is reached, the algorithm is restarted (like for a new trial). The
CPU-time per function evaluation is reported for each dimension. The time
complexity experiment is conducted in the same dimensions as the benchmark-
ing experiment. The chosen setup, coding language, compiler and computational
architecture for conducting these experiments are described. Figure 2 shows a

1The easiest functions can be solved in less than 10D function evaluations, while on the
most difficult functions a budget of more than 1000D2 function evaluations to reach the final

ftarget = fopt + 10−8 is expected.

INRIA
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Figure 2: exampletiming.m: example for measuring the time complexity of
MY OPTIMIZER given in MATLAB/Octave. An example for MY OPTIMIZER

is given in Appendix A

% runs the timing experiment for MY_OPTIMIZER. fgeneric.m

% and benchmarks.m must be in the path of MATLAB/Octave

addpath(’PUT_PATH_TO_BBOB/matlab’); % should point to fgeneric.m etc.

more off; % in octave pagination is on by default

timings = [];

runs = [];

dims = [];

for dim = [2,3,5,10,20,40]

nbrun = 0;

ftarget = fgeneric(’initialize’, 8, 1, ’tmp’);

tic;

while toc < 30 % at least 30 seconds

MY_OPTIMIZER(@fgeneric, dim, ftarget, 1e5); % adjust maxfunevals

nbrun = nbrun + 1;

end % while

timings(end+1) = toc / fgeneric(’evaluations’);

dims(end+1) = dim; % not really needed

runs(end+1) = nbrun; % not really needed

fgeneric(’finalize’);

disp([[’Dimensions:’ sprintf(’ %11d ’, dims)]; ...

[’ runs:’ sprintf(’ %11d ’, runs)]; ...

[’ times [s]:’ sprintf(’ %11.1e ’, timings)]]);

end

respective MATLAB/Octave code example. For CPU-inexpensive algorithms
the timing might mainly reflect the time spent in function fgeneric.

4 Parameter setting and tuning of algorithms

The algorithm and the used parameter setting for the algorithm should be de-
scribed thoroughly. Any tuning of parameters to the testbed should be de-
scribed and the approximate number of tested parameter settings should be
given. Whether or not all functions were approached with the very same pa-
rameter setting (which might well depend on the dimensionality, see Section 2.1)
should be stated clearly and the crafting effort should be given for each dimen-
sion (see below). The crafting effort is zero, if the setting was identical for all
functions.

In general, we strongly discourage the a priori use of function-dependent
parameter settings (crafting effort larger than zero). In other words, we do
not consider the function ID or any function characteristics (like separability,
multi-modality, . . . ) as input parameter to the algorithm (see also Section 2.1).
Instead, we encourage benchmarking different parameter settings as “different

RR n➦ 7215



8 N. Hansen, A. Auger, S. Finck and R. Ros

algorithms” on the entire testbed. In order to combine different parameter set-
tings, one might use either multiple runs with different parameters (for example
restarts, see also Section 2.2), or use (other) probing techniques for identifying
function-wise the appropriate parameters online. The underlying assumption
in this experimental setup is that also in practice we do not know in advance
whether the algorithm will face f1 or f2, a unimodal or a multimodal function. . .
therefore we cannot adjust algorithm parameters a priori2.

In case that, nevertheless, in one dimension K > 1 different parameter
settings were used, the procedure of how to come up with the different settings
should be explained. The settings and the functions, where they were used,
should be given together with the entropy measure crafting effort (see also
[5, 8]3) for each dimensionality D:

CrE = −

K
∑

k=1

nk

n
ln

(nk

n

)

(1)

where n =
∑K

k=1 nk is the number of functions in the testbed and nk is the
number of functions, where the parameter setting with index k was used, for
k = 1, . . . ,K. When a single parameter setting was used for all functions, as
recommended, the crafting effort is CrE =

∑1
k=1

n
n ln

(

n
n

)

= 0.4

5 Data to Provide

The provided implementations of the benchmark functions generate data for
reporting and analysis. Since one goal is the comparison of different algorithms,
the data from the experiments shall be submitted to http://coco.gforge.

inria.fr/doku.php?id=bbob-2010. All submitted data will be made available
to the public.

6 Post-Processing and Data Presentation

Python scripts are provided to produce tables and figures reporting the outcome
of the benchmarking experiment that can be compiled into a paper in the follow-
ing way. A more detailed description of the post-processing software is accessible
at http://coco.gforge.inria.fr/doku.php?id=bbob-2010-downloads.

2In contrast to most other function properties, the property of having noise can usually
be verified easily. Therefore, for noisy functions a second testbed has been defined. The two
testbeds can be approached a priori with different parameter settings or different algorithms.

3Our definition differs from [5, 8] in that it is independent of the number of adjusted
parameters. Only the number of used different settings is relevant.

4We give another example: say, in 5-D all functions were optimized with the same parame-
ter setting. In 10-D the first 14 functions were approached with one parameter setting and the
remaining 10 functions with a second one (no matter how many parameters were changed).
In 20-D the first 10 functions were optimized with one parameter setting, functions 11–13 and
functions 23–24 were optimized with a second setting, and the remaining 9 functions 14–22
were optimized with a third setting. The crafting effort computes independently for each
dimension in 5-D to CrE5 = 0, in 10-D to CrE10 = −

`

14
24

ln 14
24

+ 10
24

ln 10
24

´

≈ 0.679, and in

20-D to CrE20 = −
`

10
24

ln 10
24

+ 5
24

ln 5
24

+ 9
24

ln 9
24

´

≈ 1.06.
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6.1 Processing the data

Single Algorithm Given the output data from an experiment are in the folder
mydata of the current directory5, the command line6

python path_to_postproc_code_folder/bbob_pproc/run.py mydata

creates the folder ppdata in the working directory containing figures and
tables.

Comparison of Two Algorithms Let the output data from two experiments
with two different algorithms be in the folders mydata0 and mydata1 re-
spectively for the algorithms ALG0 and ALG1.

python path_to_postproc_code/bbob_pproc/runcomp2.py mydata0 mydata1

generates the folder cmp2data containing the comparison figures and ta-
bles7. The data are displayed in this fashion: mydata1 (the second argu-
ment) is for the data of the “algorithm under consideration” or “algorithm
of interest”, while mydata0 (first argument) is for the data of the “algo-
rithm to compare with”.

6.2 Compiling a LATEX document

Finally, the paper template is compiled by one of the commands

latex templateBBOBarticle

latex templateBBOBarticletwo

latex templateBBOBnoisyarticle

latex templateBBOBnoisyarticletwo

that uses tables and figures from ppdata or cmp2data, respectively. (Using
pdflatex is not recommended as it might result in large file sizes and rather
poor graphics. Use dvipdf to create a pdf instead). The folder ppdata or
cmp2data, the respective .tex file and the file sig-alternate.cls (ACM SIG
proceedings template) have to be in the working directory. Compiled examples
are accessible at http://coco.gforge.inria.fr/doku.php?id=bbob-2010.

Acknowledgments

The authors would like to thank Petr Poš́ık and Arnold Neumaier for the inspir-
ing and helpful discussion. Steffen Finck was supported by the Austrian Science
Fund (FWF) under grant P19069-N18.

5The data can be distributed over several folders. In this case several folders are given as
trailing arguments.

6 Under Windows the path separator ’\’ instead of ’/’ must be used in the command line.
Python 2.5 or 2.6, Numpy, and Matplotlib must be installed. For higher Python versions,
e.g. 3.0 or 3.1, the necessary libraries are not (yet) available and the code could not be
verified. Python 2.5 and 2.6, Numpy and Matplotlib are freely available on all platforms.
Python can be downloaded from http://www.python.org/download/releases/, Numpy from
http://numpy.scipy.org and Matplotlib from http://matplotlib.sourceforge.net.

7 The same can be accomplished within a Python shell by typing “from bbob pproc import

runcomp2; bbob pproc.runcomp2.main(’mydata0 mydata1’.split())”. The first command
requires that the path to the package bbob pproc is in the Python search path.
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APPENDIX

A Example Optimizer with Multistarts

The optimizer used in Fig. 1 and 2 is given in Fig. 3.

B How to Resume an Experiment

We give a short description of how to cleanly resume an experiment that was
aborted before its completion.

1. Find the last modified .info file (see Appendix E). Function number and
dimension, where the experiment was aborted, are given in the third to
last line of the file. For example:

funcId = 13, DIM = 40, Precision = 1.000e-08, algId = ’my optimizer’

% all default parameters

data_f13/bbobexp_f13_DIM40.dat, 1:5387|-4.4e-09, 2:5147|-3.9e-09, 3

The last line points to the written data file and the last number in the
last line contains the function instance number of the unfinished trial (see
also Appendix E).

Now, there are two options: either restarting by rerunning all experiments
for f13 in 40-D, or restarting from the very instance 3, which is more involved.

Option 1 (rerun the complete “line” in info file)

2. (optional) delete the respective two(!) data files, in our example

data_f13/bbobexp_f13_DIM40.dat

data_f13/bbobexp_f13_DIM40.tdat

3. delete the last three lines in the info file

4. modify your experiment script (see e.g. Fig. 1) to restart with the
respective function and dimension, here f13 in 40-D

Option 2 (rerun from the broken trial)

2. remove the last characters, in the above example, “, 3” from the last
line of the info file. If the first entry is already the unfinished one,
refer to Option 1.

3. remove the respective data of the unfinished last trial in both data
files, .dat and .tdat, in our example

data_f13/bbobexp_f13_DIM40.dat

data_f13/bbobexp_f13_DIM40.tdat

4. modify you experiment script to restart your experiment from this
very function instance (which can be a bit tricky).

RR n➦ 7215



12 N. Hansen, A. Auger, S. Finck and R. Ros

Figure 3: Example optimizer used in Fig. 1 and 2

function [x, ilaunch] = MY_OPTIMIZER(FUN, DIM, ftarget, maxfunevals)

% minimizes FUN in DIM dimensions by multistarts of fminsearch.

% ftarget and maxfunevals are additional external termination conditions,

% where at most 2 * maxfunevals function evaluations are conducted.

% fminsearch was modified to take as input variable usual_delta to

% generate the first simplex.

% set options, make sure we always terminate

% with restarts up to 2*maxfunevals are allowed

options = optimset(’MaxFunEvals’, min(1e8*DIM, maxfunevals), ...

’MaxIter’, 2e3*DIM, ...

’Tolfun’, 1e-11, ...

’TolX’, 1e-11, ...

’OutputFcn’, @callback, ...

’Display’, ’off’);

% set initial conditions

xstart = 8 * rand(DIM, 1) - 4; % random start solution

usual_delta = 2;

% refining multistarts

for ilaunch = 1:1e4; % up to 1e4 times

% try fminsearch from Matlab, modified to take usual_delta as arg

x = fminsearch_mod(FUN, xstart, usual_delta, options);

% terminate if ftarget or maxfunevals reached

if feval(FUN, ’fbest’) < ftarget || ...

feval(FUN, ’evaluations’) >= maxfunevals

break;

end

% terminate with some probability

if rand(1,1) > 0.90/sqrt(ilaunch)

break;

end

xstart = x; % try to improve found solution

usual_delta = 0.1 * 0.1^rand(1,1); % with small "radius"

% if useful, modify more options here for next launch

end

function stop = callback(x, optimValues, state)

stop = false;

if optimValues.fval < ftarget

stop = true;

end

end % function callback

end % function

INRIA
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C Rationales Behind the Parameter Settings

Rationale for the choice of Ntrial = 15 (see also Section 2.2) Param-
eter Ntrial determines the minimal measurable success rate and influences the
overall necessary CPU time. Compared to a standard setup for testing stochas-
tic search procedures, we have chosen a small value for Ntrial. Consequently,
within the same CPU-time budget, single trials can be longer and conduct more
function evaluations (until ftarget is reached). If the algorithm terminates before
ftarget is reached, longer trials can be trivially achieved by independent multi-
starts as implemented in Figure 1, which indeed resemble a larger number of
trials. Because these multistarts are conducted within each trial, more sophis-
ticated restart strategies are feasible. Finally, 15 trials are sufficient to make
relevant performance differences statistically significant8.

Rationale for the choice of ftarget The initial search domain and the tar-
get function value are an essential part of the benchmark function definition.
Different target function values might lead to a different characteristics of the
problem to be solved, besides that larger target values are invariably less dif-
ficult to reach. Functions might be easy to solve up to a function value of 1
and become intricate for smaller target values. The actually chosen value for
the final ftarget is somewhat arbitrary and reasonable values would change by
simple modifications in the function definition. The performance evaluation will
consider a wide range of different target function values to reach, all being larger
or equal to the final ftarget = fopt + 10−8.

D Rationale Behind the Data Presentation

D.1 Performance Measure: Expected Running Time

We advocate performance measures that are

❼ quantitative, ideally with a ratio scale (opposed to interval or ordinal
scale)9 and with a wide variation (i.e. for example with values ranging not
only between 0.98 and 1)

❼ well-interpretable, in particular by having a meaning and semantics at-
tached to the number

❼ relevant with respect to the “real world”

❼ as simple as possible

For these reasons we use the expected running time (ERT, introduced in [8]
as ENES and analyzed in [1] as success performance) as most prominent per-
formance measure, more precisely, the expected number of function evaluations
to reach a target function value for the first time. For a non-zero success rate
ps, the ERT computes to

8If the number of trials is chosen much larger, even tiny, irrelevant performance differences
become statistically significant.

9http://en.wikipedia.org/w/index.php?title=Level_of_measurement&oldid=

261754099 gives an introduction to scale types.
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ERT(ftarget) = RTS +
1 − ps

ps

RTUS (2)

=
psRTS + (1 − ps)RTUS

ps

(3)

=
#FEs(fbest ≥ ftarget)

#succ
(4)

where the running times RTS and RTUS denote the average number of function
evaluations for successful and unsuccessful trials, respectively (zero for none
respective trial), and ps denotes the fraction of successful trials. Successful
trials are those that reached ftarget and evaluations after ftarget was reached are
disregarded. The #FEs(fbest ≥ ftarget) is the number of function evaluations
conducted in all trials, while the best function value was not smaller than ftarget

during the trial, i.e. the sum over all trials of

max{FE s.t. fbest(FE) ≥ ftarget} .

The #succ denotes the number of successful trials. ERT estimates the expected
running time to reach ftarget [1], as a function of ftarget. In particular, RTS and
ps depend on the ftarget value. Whenever not all trials were successful, ERT
also depends (strongly) on the termination criteria of the algorithm.

D.2 Bootstrapping

The ERT computes a single measurement from a data sample set (in our case
from Ntrial optimization runs). Bootstrapping [4] can provide a dispersion
measure for this aggregated measurement: here, a “single data sample” is de-
rived from the original data by repeatedly drawing single trials with replacement
until a successful trial is drawn. The running time of the single sample is com-
puted as the sum of function evaluations in the drawn trials (for the last trial
up to where the target function value was reached) [1, 3]. The distribution of
the bootstrapped running times is, besides its displacement, a good approxima-
tion of the true distribution. We provide some percentiles of the bootstrapped
distribution.

D.3 Fixed-Cost versus Fixed-Target Scenario

Two different approaches for collecting data and making measurements from
experiments are schematically depicted in Figure 4.

Fixed-cost scenario (vertical cuts). Fixing a number of function evalua-
tions (this corresponds to fixing a cost) and measuring the function values
reached for this given number of function evaluations. Fixing search costs
can be pictured as drawing a vertical line on the convergence graphs (see
Figure 4 where the line is depicted in red).

Fixed-target scenario (horizontal cuts). Fixing a target function value
and measuring the number of function evaluations needed to reach this
target function value. Fixing a target can be pictured as drawing a hori-
zontal line in the convergence graphs (Figure 4 where the line is depicted
in blue).

INRIA
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Figure 4: Illustration of fixed-cost view (vertical cuts) and fixed-target view
(horizontal cuts). Black lines depict the best function value plotted versus
number of function evaluations.

It is often argued that the fixed-cost approach is close to what is needed for real
word applications where the total number of function evaluations is limited. On
the other hand, also a minimum target requirement needs to be achieved in real
world applications, for example, getting (noticeably) better than the currently
available best solution or than a competitor.

For benchmarking algorithms we prefer the fixed-target scenario over the
fixed-cost scenario since it gives quantitative and interpretable data: the fixed-
target scenario (horizontal cut) measures a time needed to reach a target func-
tion value and allows therefore conclusions of the type: Algorithm A is two/ten/
hundred times faster than Algorithm B in solving this problem (i.e. reaching
the given target function value). The fixed-cost scenario (vertical cut) does not
give quantitatively interpretable data: there is no interpretable meaning to the
fact that Algorithm A reaches a function value that is two/ten/hundred times
smaller than the one reached by Algorithm B, mainly because there is no a
priori evidence how much more difficult it is to reach a function value that is
two/ten/hundred times smaller. Furthermore, for algorithms invariant under
transformations of the function value (for example order-preserving transfor-
mations for algorithms based on comparisons like DE, ES, PSO), fixed-target
measures can be made invariant to these transformations by simply transform-
ing the chosen target function value while for fixed-cost measures all resulting
data need to be transformed.

D.4 Empirical Cumulative Distribution Functions

We exploit the “horizontal and vertical” viewpoints introduced in the last Sec-
tion D.3. In Figure 5 we plot the empirical cumulative distribution function10

(ECDF) of the intersection point values (stars in Figure 4). A cutting line in
Figure 4 corresponds to a “data” line in Figure 5, where 450 (30 × 15) con-
vergence graphs are evaluated. For example, the thick red graph in Figure 5

10 The empirical (cumulative) distribution function F : R → [0, 1] is defined for a given set
of real-valued data S, such that F (x) equals the fraction of elements in S which are smaller
than x. The function F is monotonous and a lossless representation of the (unordered) set S.

RR n➦ 7215
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Figure 5: Illustration of empirical (cumulative) distribution functions (ECDF)
of running length (left) and precision (right) arising respectively from the fixed-
target and the fixed-cost scenarios in Fig. 4. In each graph the data of 450
trials are shown. Left subplot: ECDF of the running time (number of function
evaluations), divided by search space dimension D, to fall below fopt + ∆f

with ∆f = 10k, where k = 1,−1,−4,−8 is the first value in the legend. Data
for algorithms submitted for BBOB 2009 and ∆f = 10−8 are represented in
the background in light brown. Right subplot: ECDF of the best achieved
precision ∆f divided by 10k (thick red and upper left lines in continuation of
the left subplot), and best achieved precision divided by 10−8 for running times
of D, 10 D, 100 D, 1000D. . . function evaluations (from the rightmost line to the
left cycling through black-cyan-magenta-black).

shows on the left the distribution of the running length (number of function
evaluations) [7] for reaching precision ∆f = 10−8 (horizontal cut). The graph
continues on the right as a vertical cut for the maximum number of function
evaluations, showing the distribution of the best achieved ∆f values, divided
by 10−8. Run length distributions are shown for different target precisions ∆f

on the left (by moving the horizontal cutting line up- or downwards). Precision
distributions are shown for different fixed number of function evaluations on the
right. Graphs never cross each other. The y-value at the transition between left
and right subplot corresponds to the success probability. In the example, just
under 50% for precision 10−8 (thick red) and just above 70% for precision 10−1

(cyan).

E Data and File Formats

E.1 Introduction

This section specifies the format for the output data files and the content of the
files, as they are written by the provided benchmark functions implementations.
The goal is to obtain format-identical files which can be analyzed with the
provided post-processing tools. The first section explains the general settings.
Afterwards the format for the different output files will be given in detail and
with examples.

INRIA
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→֒ container folder

→֒ fileprefix f1.info

→֒ data f1

→֒ fileprefix f1 DIM5.dat

→֒ fileprefix f1 DIM5.tdat

→֒ fileprefix f1 DIM10.dat

→֒ fileprefix f1 DIM10.tdat

→֒ fileprefix f2.info

→֒ data f2

→֒ fileprefix f2 DIM5.dat

→֒ fileprefix f2 DIM5.tdat

→֒ container folder2

→֒ ...

Figure 6: Example data file structures obtained with the BBOB experiment
software.

E.2 General Settings

The output from Ntrial optimization runs for a given function-dimension pair
is written in a folder which path is decided by the user and consists of at least
one index file and at least two data files. The output files contain all necessary
data for post-processing. The extensions are ’*.info’ for the index file and ’*.dat’,
’*.tdat’ for the data files. An example of the folder/file structure can be found in
Fig 6. After performing all simulations, the user can use the data files with the
provided post-processing tool to obtain LATEX files, including tables and figures
of the results.

E.3 Output Files

E.3.1 Index File

The index file contains meta information on the optimization runs and the
location of the corresponding data files. The user is free to choose any prefix
for the index file name. The function identifier will be appended to it and the
extension will be ’.info’. The contents of the index file are the concatenation of
3-line index entries (output format is specified in brackets):

❼ 1st line - function identifier (%d), search space dimension (%d), precision
to reach (%4.3e) and the identifier of the used algorithm (%s)

❼ 2nd line - comments of the user (e.g. important parameter or used internal
methods)

❼ 3rd line - relative location and name of data file(s) followed by a colon
and information on a single run: the instance of the test function, final

RR n➦ 7215
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number of function evaluations, a vertical bar and the final best function
value minus target function value.

All entries in the 1st line and the 3rd line are separated by commas.
For each function-dimension pair the provided data-writing tools generate

one index file with the respective entries. All index files have to be included in
the archive for the submission and will contain the relative location of the data
files within the archive. Thus, it is necessary to archive all files in the same
folder-subfolder structure as obtained. An example of an index file is given in
Fig 7. An entry of the index file is written at the start of the first sample run

funcId = 12, DIM = 5, Precision = 1.000e-08, algId = ’ALG-A’

% parameterA = 2, parameterB = 3.34, ...

data f12\test f12 DIM5.dat, 1:387|-2.9e-009, 2:450|-2.8e-009, 3:422|-2.1e-009, data f12\test-01 f12 DIM5.dat, 1:5000000|1.8e-008,
...

funcId = 12, DIM = 10, Precision = 1.000e-08, algId = ’ALG-A’

% parameterA = 2, parameterB = 3.34, ...

data f12\test1 f12 DIM10.dat, 1:307|-8.6e-008, 2:321|-3.5e-008, ...

...

Figure 7: Example of an index file

for a given function and dimension.

E.3.2 Data Files

A data file contains the numerical output of an optimization run on a given
objective function. The content of the data file is given in the following. Data
files will be placed in subfolders at the location of their corresponding index
file. At the start of each sample run the header for the data file is written. The
header is one line with the titles for each data column:

❼ function evaluation

❼ noise-free fitness - Fopt (and its value)

❼ best noise-free fitness - Fopt

❼ measured fitness

❼ best measured fitness

❼ x1, x2, . . . (one column for each dimension)

Fopt is the optimum of the test function considered. In the header, each of these
entries are separated by the |-symbol. Each data line in the data file contains
the following information:

❼ 1st column - recent number of function evaluation in format %d

❼ 2nd column - recent noise-free function value in format %+10.9e

❼ 3rd column - best noise-free function value so far in format %+10.9e

❼ 4th column - recent measured (noisy) function value in format %+10.9e

❼ 5th column - best measured (noisy) function value so far in format %+10.9e

❼ (5+d)th column - value of the dth (d = 1, 2, . . . , DIM) object parameter
of the best so far noise-free function value (3rd column) in format %+5.4e

INRIA
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% function evaluation | noise-free fitness - Fopt (6.671000000000e+01) | best noise-free fitness - Fopt | measured fitness | best

measured fitness | x1 | x2 |...
1 +9.324567891e+05 +9.324567891e+05 +1.867342122e+06 +1.867342122e+06 +4.2345e+01 ...

2 +9.636565611e+05 +9.324567891e+05 +8.987623162e+05 +8.987623162e+05 +3.8745e+01 ...

...

31623 9.232667823e+01 9.576575761e+01 -6.624783627e+01 -1.657621581e+02 +5.1234e-02 ...

32478 1.000043784e+02 9.576575761e+01 -4.432869272e+01 -1.657621581e+02 +3.8932e-02 ...

35481 ...

...

Figure 8: Example of a data file

An example is given in Fig 8.
Each entry in the index files is associated to at least two data files: one for the

function value-aligned data and another for the number of function evaluations-
aligned data. The data file names are identical except for the file extension
being ’*.dat’ and ’*.tdat’ respectively.

The writing to the function value aligned data file happens only each time
the noise-free function value minus the optimum function value is less than 10i/5,
for all integer i, for the first time (note, that the provided software does not
return this difference to the algorithm).

The writing to the number of function evaluations aligned data file happens:

❼ in the first file each time the function evaluation number is equal to
⌊

10i/20
⌋

for at least one i = 1, 2, . . . This means, that writing happens
after about 12.2% additional function evaluations have been conducted.
In particular the first 8 evaluations are written and also evaluations . . . ,
89, 100, 112, 125, 141,. . . , 707, 794, 891, 1000, 1122,. . .

❼ when any termination criterion is fulfilled (writing the recent evaluation
and the current best so far values)

The prefix for the data file names of one function-dimension pair will be the
same as the prefix of the corresponding index file. The function identifier and
the dimension of the object parameters will be appended to this prefix. All
data files will be saved in subfolders data fX, where X is the function identifier,
located at the same location as their index file.
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