Probabilistic 3D Occupancy Flow with Latent Silhouette Cues

Li Guan 1 Jean-Sébastien Franco 2, 3 Edmond Boyer 4 Marc Pollefeys 1, 5
3 IPARLA - Visualization and manipulation of complex data on wireless mobile devices
Université Sciences et Technologies - Bordeaux 1, Inria Bordeaux - Sud-Ouest, École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), CNRS - Centre National de la Recherche Scientifique : UMR5800
4 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In this paper we investigate shape and motion retrieval in the context of multi-camera systems. We propose a new low-level analysis based on latent silhouette cues, particularly suited for low-texture and outdoor datasets. Our analysis does not rely on explicit surface representations, instead using an EM framework to simultaneously update a set of volumetric voxel occupancy probabilities and retrieve a best estimate of the dense 3D motion field from the last consecutively observed multi-view frame set. As the framework uses only latent, probabilistic silhouette information, the method yields a promising 3D scene analysis method robust to many sources of noise and arbitrary scene objects. It can be used as input for higher level shape modeling and structural inference tasks. We validate the approach and demonstrate its practical use for shape and motion analysis experimentally.
Document type :
Conference papers
Complete list of metadatas

Cited literature [27 references]  Display  Hide  Download


https://hal.inria.fr/inria-00463031
Contributor : Jean-Sébastien Franco <>
Submitted on : Tuesday, July 26, 2016 - 6:40:35 PM
Last modification on : Tuesday, August 20, 2019 - 5:16:03 PM
Long-term archiving on : Thursday, October 27, 2016 - 2:30:15 PM

Files

1520.pdf
Files produced by the author(s)

Identifiers

Citation

Li Guan, Jean-Sébastien Franco, Edmond Boyer, Marc Pollefeys. Probabilistic 3D Occupancy Flow with Latent Silhouette Cues. CVPR 2010 - IEEE Computer Vision and Pattern Recognition, Jun 2010, San Francisco, United States. pp.1379-1386, ⟨10.1109/CVPR.2010.5539807⟩. ⟨inria-00463031v3⟩

Share

Metrics

Record views

2091

Files downloads

753