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Abstract
The CONNECT Integrated Project aims at enabling continuous composition of networked systems, by
developing techniques for synthesizing connectors. A prerequisite for synthesis is to learn about the
interaction behavior of networked peers. The role of WP4 is to develop techniques for learning models
of networked peers and middleware through exploratory interaction.
In this deliverable, we survey the CONNECT process in order to derive requirements for the participat-
ing learning techniques. We also report on a number of case studies from which such requirements
are extracted. These include requirements on the ability to interact with the networked peer, whose be-
havior is being learned, as well as requirements on the learned model, in order that it can be used for
subsequent manipulation in the CONNECT process, such as connector synthesis. A major challenge
is to extract and maintain detailed information about the interface of the networked peer, as well as to
relate this information to the produced model, in which abstractions have been employed in order to
make synthesis tractable. We describe our approach for representing and maintaining this information,
and how we have adopted existing learning techniques to make use of it. Ontologies are proposed as
a suitable vehicle for representing the information. We also report on work performed to develop and
adapt existing learning tools, in order that they be suitably useful in the CONNECT process.
This deliverable summarizes the progress and achievements during Year 1 in WP4.
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1 Introduction
The CONNECT Integrated Project aims at enabling continuous composition of networked systems to
respond to the evolution of functionalities provided to and required from the networked environment. At
present the efficacy of integrating and composing networked systems depends on the level of interoper-
ability of the systems’ underlying technologies. However, interoperable middleware cannot cover the ever
growing heterogeneity dimensions of the networked environment. CONNECT aims at dropping the inter-
operability barrier by adopting a revolutionary approach to the seamless networking of digital systems,
that is, synthesizing on the fly the connectors via which networked systems communicate. Connectors
are implemented through a comprehensive dynamic process based on (i) extracting knowledge from, (ii)
learning about and (iii) reasoning about, the interaction behavior of networked systems, together with
(iv) synthesizing new interaction behaviors out of the ones exhibited by the systems to be made inter-
operable, and further (v) generating and deploying corresponding connector implementations. This aim
raises challenges for modeling and reasoning about system and connector behaviors, and for synthesizing
specifications of connector behavior. One cannot expect all networked systems to provide formal spec-
ifications of their interaction behavior. It is then necessary to have learning algorithms and techniques
to dynamically infer specifications or models of the connector-related behavior of networked peers and
middleware.

A high level view of CONNECT operation is described, in Section 5.1 of D1.11, as a system of various
enablers that exchange information about the networked system to be constructed, as shown in Figure 1.1.
In particular, the Learning enabler (represented by the box labeled “WP4: Learning”) takes interface
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descriptions of components in the networked system, along with information on used data domains, to
1CONNECT Deliverable D1.1,’Initial Connect Architecture’
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create a formal model of the behavior of networked systems using exploratory interaction, i.e., analyzing
the messages exchanged with the environment. The resulting formal model can be in the form of a Mealy
machine or a Labeled Transition System (LTS).

Furthermore the learning enabler will take as input information about metrics that are measureable
when interacting with the networked systems and guarantees the systems make concerning those met-
rics. From this and through measurements, made during the course of learning, the learning enabler will
produce refined or enriched data concerning the guarantees as a secondary output.

It is envisioned for the learning enabler to cooperate closely with the monitoring system, developed
in WP5 (see D5.1), in order to get information about the (in-)correctness of inferred models. The learn-
ing enabler will therefore provide the monitoring system with corresponding conditions, which are to be
checked on the running system. In case such conditions are violated, the learning enabler will be notified
and the (incremental) process of inference will be reissued. The use of monitoring to enable the update
of inferred models is one of the research goals that WP4 will pursue in the second year of the project.

1.1 The role of Work Package 4

It is the task of Work Package 4 to develop techniques to realize the Learning enabler, i.e., to develop
techniques for learning and eliciting representative models of the connector-related behavior of networked
peers and middleware through exploratory interaction. The objectives, as stated in the Description of Work
(DoW)2, are:

’... to develop techniques for learning and eliciting representative models of the connector-
related behavior of networked peers and middleware through exploratory interaction, i.e., an-
alyzing the messages exchanged with the environment. Learning may range from listening
to instigating messages. In order to perform this task, relevant interface signatures must be
available. A bootstrapping mechanism should be developed, based on some reflection mech-
anism. The work package will investigate minimal requirements on the information about inter-
faces provided by such a reflection mechanism in order to support the required bootstrapping
mechanism. The work package will further support evolution by developing techniques for
monitoring communication behavior to detect deviations from learned behavior, in which case
the learned models should be revised and adaptors resynthesized accordingly.’

In the DoW, Work Package 4 is structured into three subtasks.

Task 4.1: Learning application-layer and middleware-layer interaction behaviors in which techniques
are developed for learning relevant interaction behavior of communicating peers and middleware,
and building corresponding behavior models, given interface descriptions that can be assumed
present in the CONNECT environment, including at least signature descriptions.

Task 4.2: Run-time monitoring and adaptation of learned models in which techniques are developed
for monitoring of relevant behaviors, in order to detect deviations from supplied models.

Task 4.3: Learning tools in which learning tools will be elaborated, by building upon the learning frame-
work developed by TU Dortmund (LearnLib), and considerably extending it to address the demand-
ing needs of CONNECT.

The work in WP4 is based on existing techniques for learning the temporal ordering between a finite
set of interaction primitives. Such techniques have been developed for the problem of regular inference
(i.e., automata learning), in which a regular set, represented as a finite automaton, is to be constructed
from a set of observations of accepted and unaccepted strings. The most efficient such techniques use
the setup of active learning, where the automaton is learned by actively posing two kinds of queries:
a membership query asks whether a string is in the regular set, and an equivalence query compares
a hypothesis automaton with the target regular set for equivalence, in order to determine whether the

2CONNECT Grant Agreement, Annex I
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learning procedure was (already) successfully completed. The typical behavior of a learning algorithm is
to start by asking a sequence of membership queries, and gradually build a hypothesized automaton using
the obtained answers. When a “stable” hypothesis has been constructed, an equivalence query finds
out whether it is equivalent to the target language. If the query is successful, learning has succeeded;
otherwise it is resumed by more membership queries until converging at a new hypothesis, etc. A more
detailed account of active automata learning is presented in Section 2.1.

There are several techniques (e.g., [4, 21, 30, 40, 5]) essentially based on the same principles; they
differ in how observations may be chosen and in the details of automata construction. The techniques
guarantee that a correct and minimal automaton will be constructed if “enough” information is obtained.
This class of techniques has recently started to get attention in the testing and verification community,
e.g., for regression testing, and for building models to support testing of legacy systems [25, 27, 28].
Another use is in inferring rules of usage of APIs from observations of call sequences [3]. A third use
is in combination with conformance testing and model checking [36, 24, 18], in order to check temporal
logic properties of modules without consulting their source code. For example, we ran a series of learning
experiments on a parametric network router which led to a learned model with more than 22.000 states
[39].

1.2 Challenges for WP4

In order to meet the challenges posed by CONNECT, we must further develop learning techniques to
make them cope with realistic systems as envisaged by CONNECT, and also adapt them to fit into the
overall CONNECT operation. The former of these issues requires that we develop more efficient learning
algorithms, which can deal with more complex features of component interfaces, including certain forms
of Quality of Service (QoS) features, and embody them in efficient implemented learning tools. For the
latter issue, we see the following challenges for WP4.

Producing models that can be used by other CONNECT enablers: we approach this by focusing our
work on inferring Mealy machine models. Mealy machines are a natural model for communicating
systems. We have previously developed a straight-forward adaptation of automata learning to Mealy
machines [34], also implemented in LearnLib [39]. Mealy machines can be straightforwardly trans-
formed into LTSs. The challenge is to produce Mealy machine models of the behavior of realistic
networked systems, which are also useable in the context of CONNECT.

Utilizing interface descriptions and data domain information: previous work in the learning commu-
nity has assumed the set of interaction primitives to be an unstructured finite set. How to use
interface descriptions and information about message data has not been considered, nor in what
form this information must be in order to enable successful learning.

Bridging between abstract formal models and concrete system interfaces: in WP4, we must take into
consideration that learning can only be performed in terms of concrete interaction with a networked
peer, whereas the desired output of the learning enabler is abstract models, e.g., in the form of
LTSs. A systematic approach for bridging between these very different levels of abstraction must be
developed.

Prerequisites for the learning process: our developed techniques are based on performing repeated
experiments on the networked peers. We should investigate under which conditions such experi-
ments can be performed.

We conclude that it is necessary to develop a comprehensive framework in which different interface de-
scriptions, data information, and different levels of abstractions can be taken into account by a learning
enabler. We must also investigate prerequisite requirements on networked peers.
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1.3 Outline

In this deliverable, we describe our approach to solving these problems and how, so far, we have ad-
dressed the Challenges for WP4. We also present results from validating our solutions on a number of
case studies. The included contributions are as follows.

Prerequisites for the learning process: in Chapter 2, we provide our conclusions on required condi-
tions for learning. These are derived from conducting a number of case studies, including the
popcorn scenario. The popcorn scenario will be described in detail in Section 2.3. The other case
studies are described in detail in the appendices.

Handling interface descriptions and data domain information: In Chapter 3, we give an overview of
our framework for incorporating interface descriptions, data information, and different levels of ab-
straction into the operation of a learning enabler. A key idea is to use ontologies for representing
the information associated with these issues. We describe the information that such ontologies will
provide, including:

• information about interface primitives, their parameters and data types;
• information about data types and their ranges;
• information about dependencies between interface primitives.

Bridging between abstract formal models and concrete system interfaces: in Section 3.3, we show
how information about interfaces, together with other information (e.g., about data domains) is used
to build an abstract alphabet of action symbols for, e.g., an LTS. We start by observing that the move
between different levels of abstraction is a cross-cutting concern between CONNECT enablers, im-
plying that information about the bridging between different abstraction levels must be represented
in such a way that it can be reused in other work packages. We adapt techniques for representing
and revising abstractions in areas like formal verification and program analysis, to the task of repre-
senting the connection between different levels of abstraction in the Learning enabler. We describe
how the abstraction is initialized by the information available a priori to the Learning enabler, and how
it may be revised when subsequent exploration reveals more about the structure of the networked
peer.

Tool support: in Chapter 4, we report on extensions we have made to existing tools, in order to enable
the implementation of the methods developed in Chapter 2 and Chapter 3.

Feasibility study: As a small feasibility study, investigating under what conditions different CONNECT
enablers will cooperate, the work packages in CONNECT collectively carried out a dry run of the so-
called popcorn scenario. This scenario is reported in Section 2.3 from a WP4 perspective, shedding
light on the Challenges for WP4. The conclusions that can be drawn from the feasibility study and
from several other small case studies are discussed in Chapter 2 (with respect to requirements on
systems to be inferred) and in Chapter 3 (with respect to necessary expert knowledge and tech-
niques for data abstraction).

Future plans: Chapter 5 covers future plans.

Case studies: this deliverable also reports results from a number of case studies that have been per-
formed. They include:

• the ’Pay on The Move’ (PoTM) case study, reported in Appendix A.1;
• a reformulation of the NASA Voyager mission, reported in Appendix A.2;
• the synthesis dry run (popcorn), investigation cooperation between CONNECT enabler, reported

in Section 2.3;
• learning models of SIP and TCP protocol modules, reported in Appendix A.3 ;
• learning a model of the Mobile Arts Advanced Mobile Location Center (A-MLC) protocol, re-

ported in Appendix A.4.
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2 Understanding Requirements for Learning
According to the DoW, one part of the work in Task 4.1 is finding minimal requirements on interface

information that enables learning of interaction behavior. In the context of CONNECT, interface information
is primarily information about the syntax and semantics of parameters of the interfaces’ primitives. Infor-
mation about the primitives themselves can also be included: the notion of primitives is equivalent to the
notion of message types, and message types are parameters of messages.

The requirements on interface information can be classified into two groups. On the one hand, there
is information that is crucial for theoretical reasons, e.g., an abstraction leading to finite state models or
information about the semantics of certain data values, such as sequence numbers. Exploiting this kind
of information and techniques is the key to a theoretical framework that enables the behavioral inference
and representation of networked systems. On the other hand, there is information that is crucial when it
comes to the practical application of the theoretical methods. This includes information about how to reset
a networked system into an initial state or how to prevent the tests executed during learning from having
permanent effects in a productive environment.

In this chapter, we report on progress towards understanding the practical requirements for learning
techniques in the context of CONNECT. Theoretical requirements, related to the handling of data values
and (abstract) behavior modeling are discussed in Chapter 3. Before discussing the requirements we
will give a short and informal introduction to the flavor of automata learning we use. For a more formal
description we refer to [39].

2.1 A brief account of active automata learning

Machine learning deals in general with the problem of automatically generating system descriptions. Aside
from synthesis of static software and hardware properties, in particular invariants [10, 19, 35], the field of
automata learning, also called regular extrapolation [25] or regular inference [17], is of particular interest
for software and hardware engineering [15, 33, 36]. We have used automata learning techniques in a
number of contexts, e.g. to automatically construct models of web applications as demonstrated in [37].
Automata learning attempts to construct a deterministic finite automaton that matches the behavior of a
given target automaton on the basis of observations of the target automaton and perhaps some further
information on its internal structure. The interested reader may refer to [25, 28, 32] for our view on the use
of learning. Here, we only summarize the basic aspects of our realization, which is based on Angluin’s
learning algorithm L∗ from [4].

Definition 1 A Deterministic Finite Automaton (DFA) is a tuple M = (S, s0,Σ, δ, F ) where:

• S is a finite nonempty set of states,

• s0 ∈ S is the initial state,

• Σ is a finite alphabet,

• δ : S × Σ→ S is the transition function, and

• F ⊆ S is the set of accepting states.

Intuitively, a DFA evolves through states s ∈ S. Whenever one applies an input symbol (or action)
a ∈ Σ, the machine moves to a new state according to δ(s, a). A word q ∈ Σ∗ is accepted by the DFA if
and only if the DFA reaches an accepting state si ∈ F after processing the word starting from its initial
state. We write s

a−→ s′ to denote that on input symbol a the DFA moves from state s to state s′. The
transition function δ : S×Σ→ S can be extended to δ′ : S×Σ∗ → S such that for all states s, s′ ∈ S letters
a ∈ Σ and words w ∈ Σ∗ the following holds: δ′(s, ε) = s, and δ′(s, aw) = δ′(δ(s, a), w).

L∗, also referred to as an active learning algorithm, learns DFAs by actively posing membership
queries and equivalence queries to the target automaton in order to extract behavioral information, and
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by refining successively an own hypothesis automaton based on the answers. A membership query tests
whether a string (a potential run) is contained in the target automaton’s language (its set of runs), and an
equivalence query compares the hypothesis automaton with the target automaton for language equiva-
lence, in order to determine whether the learning procedure was (already) successfully completed. In this
case, the experimentation can stop. In its basic form, L∗ starts with a hypothesis automaton that treats all
words over the considered alphabet (of elementary observations) alike (i.e., it has one single state), and
refines this automaton on the basis of query results iterating two steps. Here, the dual method by which
L∗ characterizes (and distinguishes) states on its way to construct the minimal deterministic automaton
following the pattern of the well-known Nerode congruence is central [28]:

• from below, by words reaching the states. This characterization is too fine, as different words may
well be Nerode congruent, i.e., having the same suffix language. This characterization thus leads to
a relation between states that is contained in the relation corresponding to the Nerode congruence.

• from above, by the future behavior of the states with respect to a dynamically increasing finite set
of words, which the learning algorithm produces as evidence of the difference with respect to the
Nerode congruence. Future behavior is thus essentially characterized by bit vectors, where a “1”
means that the corresponding word of the set is guaranteed to lead to an accepting state and
a “0” captures the complement. This characterization is typically too coarse, as the considered
sets of words are typically rather small, and do not fully capture the Nerode congruence. This
characterization thus leads to a relation between states that contains the relation corresponding to
the Nerode congruence.

The second characterization directly defines the hypothesis automata: each occurring bit vector cor-
responds to one state in the hypothesis automaton, which is successively refined during the learning
process. The initial hypothesis automaton is characterized by the outcome of the membership query for
the empty observation. It thus accepts any word in case the empty word is in the language and no word
otherwise. The learning procedure (1) iteratively establishes local consistency, after which it (2) checks
for global consistency.

Local consistency This first step (also referred to as automatic model completion) again iterates two
phases. One checks whether the constructed automaton is closed under the one-step transitions, i.e.,
each transition from each state of the hypothesis automaton ends in a well defined state of this very
automaton. The other phase checks for consistency according to the bit vectors characterizing the future
behavior as explained above, i.e., whether all reaching words with an identical characterization from above
possess the same one-step transitions. If this is not the case, a distinguishing transition is taken as an
additional distinguishing future in order to resolve the inconsistency, i.e., the two reaching words with
different transition potential are no longer considered to represent the same state.

Global equivalence After local consistency has been established, an equivalence query checks whether
the language of the hypothesis automaton coincides with the language of the target automaton. If this is
true, the learning procedure successfully terminates. Otherwise, the equivalence query returns a coun-
terexample, i.e., a word which distinguishes the hypothesis from the target automaton. This counterexam-
ple gives rise to a new cycle of modifying the hypothesis automaton and starting the next iteration.

In a practical attempt of learning legacy systems in a black-box setting, the equivalence tests can
only be approximated, but membership queries can be answered by testing the target systems. We
investigated several methods for approximating equivalence queries. One such way was via conformance
testing [12, 20]. In fact, it turns out that learning and conformance testing have a lot in common [6].

In contrast to DFA’s, reactive systems do not distinguish between accepting states and non accepting
states, but produce some output in response to the inputs. Mealy machines are well-known models of
“deterministic” reactive systems. We therefore adapted Angluin’s algorithm to work on Mealy machines in
order to better capture the needs of reactive systems [32].
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Improved algorithms for equivalence queries If a representation of the target automaton is available
(i.e., if we are in a white-box context), then an equivalence query can be performed by comparing the
language of the hypothesis automaton with that of the target automaton. Such algorithms are applicable,
e.g., in compositional verification, where learning can be employed to find small assumptions on the
context of a component [11], or when combining model checking and learning [36]. During Y1, we have
improved on the efficiency of the best available algorithms for performing such comparisons, even for the
case where the representation of the target automaton is nondeterministic [2]. Since white-box scenarios
are not the main focus of CONNECT, we provide only a brief summary of this improvement in the following
paragraph; details are available in [2].

In a white-box scenario, an equivalence check is essentially the problem of checking for language
inclusion between two finite automata, which is PSPACE-complete when one of the automata (the one
acting as specification) may be nondeterministic. Broadly, there are two types of methods for proving
language inclusion. One type is based on computing a simulation relation on the states of the two au-
tomata: this can be done in polynomial time, but the method is incomplete. Another type is based on
performing a subset construction: this is complete, but typically causes an exponential blow up. Recently,
Wulf et al. [41] proposed a new approach based on so-called antichains, which improved the efficiency of
methods based on the subset construction. In our Y1 work [2], we describe a new approach that nicely
combines the simulation-based and the antichain-based approaches: a computed simulation relation is
used for pruning out unnecessary search paths in the antichain-based method. Extensive experimentation
on a large set of finite automata obtained from verification examples show that this approach significantly
outperforms the previous antichain-based approach.

2.2 Conducted Case Studies

The CONNECT requirements on learning reach quite far. Ultimately, learning is supposed to provide miss-
ing knowledge about the behaviour of systems independent of the platform they run on and of the way they
can technically be addressed; and all this, if possible, in real time. Learning under these circumstances
and at this scale is a challenge, which we from the start, tried to better understand by investigating a
varying collection of case studies, e.g.:

• Pay on The Move (WSDL)
The “Pay on The Move” case study, reported in Appendix A.1, is centered on a web-service for
mobile payment. It is taken from the EU STREP project SHADOWS (IST FP6). While in SHADOWS
healing and correctness were the main interests, the case study was re-evaluated for CONNECT with
respect to issues when learning web services.

• SIP and TCP
We have shown that the techniques we have developed for building and using abstractions, reported
in Section 3.3, scale to the learning of realistic protocol models, by case studies where we learn
models of entities in the SIP and TCP standard protocols, reported in Appendixr̃efappend:a. The
implementations to be learned were existing ones, provided by the protocol simulator ns-2 [29].

• A-MLC
Another validation, reported in Appendixr̃efappend:b, has been performed on the Mobile Arts Ad-
vanced Mobile Location Center (A-MLC) protocol, which is a commercially available middleware
protocol allowing mobile network operators to provide presence information from the GSM/UMTS
network. We have used an executable specification of A-MLC, developed by developers and test
engineers.

• NASA Voyager (ASSL)
ASSL is an executable specification language. A reformulation of the NASA Voyager mission in
ASSL is the basis for this case study, reported in Appendix A.2. Here behavioral models were
learned using the generated executable Java code corresponding to the mission’s specification.

• The synthesis dry run (Popcorn)
For the dry run, a scenario involving different stadiums and mobile devices was assumed. Each
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stadium had a slightly different food ordering system. Merchants and customers would, by means
of their mobile devices, establish a market place for goods typically traded in stadiums (food and
drinks). The aim was to simulate parts of the connector-synthesis process envisioned for a con-
nected world.

Whereas the first case study concerns the learning of Web services, one of the many options of how
to address the peers’ functionality in CONNECT, the 2nd and 3rd case study, in particular, deal with the
inevitable problem of adequate abstraction. The problem studied in the fourth case study was special in
that it triggered its target system at the JVM-level, while the fifth case study was specifically designed for
CONNECT. It will therefore be presented in more detail in the next subsection. Detailed presentations of
the other case studies are included in this document as appendices.

Despite all these differences, which required special care and dedicated technology e.g. concerning
the necessary resetting between membership queries, or the mapping between the different abstraction
levels, we could identify a simple learning pattern in all these case studies: a learning algorithm is in-
stantiated with an (abstract) set of input symbols for the system to be inferred. The membership queries
(sequences of input symbols) the algorithm produces in the course of learning, are then passed to a
special test driver. The test driver operates the system to be inferred by 1) translating the membership
queries into sequences of actions on the real system and 2) performing these actions one-by-one on the
system. For each performed action a third component, a logging facility, records the reactions of the actual
system. After the execution of a sequence of inputs has finished, the resulting sequence of reactions is
translated into a sequence of (abstract) symbols understood by the learning algorithm and passed back
(to the learning algorithm).

Figure 2.1: schematic view of the experimental setup

This leads to an experimental setup resembling closely the one for the case of a Java runtime envi-
ronment, shown in Fig. 2.1. A learning algorithm (e.g. from LearnLib) is connected to a special runtime
environment (in this case, a Java virtual machine). The virtual machine boots the system under test and
some test driver. The test driver then executes actions on the system under test on behalf of LearnLib,
while the virtual machine (or some other adequate facility) monitors the system reaction. The reactions
are translated by the test driver and the translated versions are reported to LearnLib.
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2.3 On the synthesis dry run: The Popcorn Case Study

The main aim of the dry run was to get an idea of divergences between the expected output and input
of the single enablers shown in Figure 1.1. For a detailed description of the scenario we refer to D1.1
(Section 5). For the learning enabler, input was provided by the discovery enabler (WP 1) in the form of in-
terface descriptions of the components to be inferred. On the basis of the provided information, behavioral
models of the networked components were produced and additional requirements and assumptions were
identified. The aim of WP4 was to produce models meeting the requirements of the synthesis enabler (or
otherwise identifying obstacles).

The following explanation of the services’ behaviors is derived from the scenario description given in
D1.1 (Section 5). The “popcorn” services evolve around a scenario set in sport stadiums across Europe. In
these stadiums merchants for popcorn and other goods can publish their adverts to the popcorn system.
Consumers can search for products and place orders through the system. Payment is not part of the
system. The case study is evaluated in different work packages with respect to different properties. Within
WP4, the inference of behavioral models and associated concerns were considered.

During the dry run the realizations in two different stadiums have been analyzed: one stadium’s im-
plementation of the popcorn system was assumed to be based on a Tuple Space, whereas in the other
stadium, a UPnP-based peer-to-peer system was assumed to exist. The models inferred by the learning
enabler have been confirmed to match the ones assumed as input by WP 3 (synthesis).

Here we will only discuss the results for a part of the Tuple Space scenario (the merchant’s web-
service), as inference does not differ in principle for the other networked systems. The complete outcome
of the dry run can be found as a special appendix in D1.11.

The whole dry run had several aims. Aside from making explicit divergences in the formalisms used
by the different enablers (and developing methods to bridge the gaps) for the learning enabler, these aims
were:

• Interface descriptions
Using only the input provided by the discovery enabler, we attempted to infer the behavior of the
services by means of active learning techniques. To apply those, some modifications to the original
theoretical approach had to be made (Section 2.3.1).

• Domain specific knowledge
Aside from interface descriptions, in a real setup extra domain specific knowledge would be needed.
We analyzed what kind of knowledge this would be, and what impact different qualities of knowledge
would have on the result (Section 2.3.1).

• Output format
Considering the expected input for the synthesis enabler a method had to be found to transform
the direct learning output (finite state acceptors) into a format meeting these requirements (Section
2.3.3).

• Additional output
The synthesis enabler expects as input very abstract models. The learning enabler takes as input
concrete service descriptions. To bridge this gap, abstractions of concrete models are produced
by the learning enabler. For the synthesis enabler, to be able to generate real connectors after the
matching (on the abstract level) is accomplished, knowledge about the necessary model refinements
(back to the concrete level) will be needed. The knowledge (and additional output) required for this
purpose should be examined (Section 2.3.2).

• Additional assumptions
Active learning makes some (implicit) assumptions about the available ways to interact with the
system to be inferred. One aim was to make these assumptions and possible related pitfalls explicit
(Section 2.3.4).

1Available at http://www-roc.inria.fr/connect/connect-dry-run/.
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...

<xsd:element name="Publish">

...

<xsd:element name="productID" type="xsd:string"/>

<xsd:element name="location">

<xsd:complexType>

...

<xsd:element name="numberAvailable" type="xsd:int"/>

<xsd:element name="price" type="xsd:int"/>

...

<xsd:element name="merchantID" type="xsd:string"/>

...

<xsd:element name="Request">

<xsd:element name="productID" type="xsd:string"/>

...

<xsd:element name="numberOrdered" type="xsd:int"/>

<xsd:element name="requestID" type="xsd:string"/>

<xsd:element name="merchantID" type="xsd:string"/>

<xsd:element name="consumerID" type="xsd:string"/>

...

<wsdl:message name="Out(Publish)">

<wsdl:part name="body" element="Publish"/>

</wsdl:message>

<wsdl:message name="Notification(Request)">

<wsdl:part name="body" element="Request"/>

</wsdl:message>

Figure 2.2: Excerpt from the specification of the Tuple Space Vendor

2.3.1 From WSDL to finite Mealy machine models

To learn a networked system, an alphabet of the system under analysis is needed by the learning enabler.
This alphabet is the set of input actions from which input sequences are formed. The complete set of
actions that can be performed on the system is the cross product of the different valuations of each
primitive’s parameters. In order to circumvent the exponential influence of the set of input symbols on
the number of experiments, a finite abstraction on the data domains of the primitives parameters was
constructed (cf. Section 3.3). The information required, of the kind discussed in Chapter 3, was assumed
to be available to the learning enabler.

From the discovery enabler, interface descriptions (WSDLs) for the single components were provided.
The required abstractions on the data domains were hand tailored. All interface descriptions followed the
same structure: definition of complex data types from primitive ones, definition of messages with complex
data parts, definition of primitives as signatures of messages and finally definition of interfaces as sets of
primitives. As an example, excerpts of the specification of the Tuple Space vendor is shown in Fig. 2.2.
The figure contains definitions for complex data types, messages and primitives.

Learning uses symbolic alphabets whose letters are (state-aware) translated into concrete symbols -
and back (see Section 3.3). The Out(Publish) primitive, for example, has a complex parameter, Publish,
containing information about offered products, prices and available amounts along with the merchant’s
unique identifier. We introduced an abstract Out(Publish) symbol, concretized into a message always
using the same unique identifier, the same product, price and amount. During the execution of the exper-
iments the two symbolic valuations of the messages are replaced by known concrete valuations with the
corresponding properties. Some data is shared between different messages of the same experiment, but
needs to be reset between experiments (such as identifiers). These values are kept by the abstraction as
global variables and used on demand during concretization.

As we assumed to be dealing here with a real black-box scenario, the equivalence queries would have
to be approximated. This could be done, e.g., using conformance testing methods [12]. As a matter of
fact, however, none of the analyzed systems would require an equivalence test in order to identify all
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states. For each system all states would differ directly in the associated output behavior. This behavior is
due to the assumptions we made about the setup and the hypothetical implementations.

We assumed that misplaced messages (resends, wrong ordering, etc.) would have been ignored or
dropped by the systems.

Regarding the number of networked systems, we assumed only one instance of each entity of a
kind during the experiments (one merchant, one client, one Tuple Space). Furthermore, for the sake of
simplicity, it was assumed that certain workflows would act like transactions. An ordering once begun
would not be interrupted by a search for new products or the arrival of a second order. Dropping any
of these assumptions would have led to models with more transitions and more states. Other problems
covered by this simplification are related to the transformation of learning output into adequate synthesis
input.

The actual inference of the behavioral models was carried out in a setup resembling the one shown in
Fig. 2.1. The runtime environment was then replaced by a human “oracle”, compiling by hand the output
a system would generate.

Figure 2.3: Mealy machine model of the Tuple Space Merchant

In all five cases (Tuple Space, Ts Merchant, Ts Consumer, Upnp Merchant, Upnp Consumer) the
obtained models are quite small. This is mainly due to the assumptions of only one entity of a kind and
of a perfect (as coarse as possible without missing behavior) abstraction. Figure 2.3 shows a graphical
representation of the model a learning algorithm would create exploring the Tuple Space Merchant. The
transitions are labeled with the appropriate input and output symbols. The shown output symbols are the
return values (messages) of the primitives’ invocations.

According to the obtained model, the component behaves as follows: when started by the user, the
service publishes its products and registers to receive requests by customers made for such products.
On the notification of such requests the according request is evaluated with respect to the distance to the
potential customer and the ordered amounts. If the evaluation is positive (the order can be processed) the
service will answer accordingly. As soon as the merchant’s device then comes close to the consumer’s
device a proximity notification is issued.

2.3.2 From Mealy machine models to LTS

The transformation from Mealy machine models into Labeled Transition System models (LTS), cf. deliver-
able D3.1 for a definition, is in principle not problematic. Each state of the Mealy machine will become a
location of the LTS. The transitions are divided into input and output. Each part becomes a transition in the
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LTS, connected to a dedicated location. An LTS produced this way is nearly bipartite. Only for transitions
of the Mealy machine that contain several output symbols, chains of output transitions will be generated.
Figure 2.4 shows the LTS derived from the Mealy machine from Fig. 2.3.

The main difference between the LTSs derived from the inferred Mealy machine model and the ones
expected by the synthesis enabler is the existence of transitions that model user actions (colored red in
Fig. 2.4). These transitions are needed during learning in order to obtain deterministic models. These
transitions, however, are problematic for the synthesis enabler, as they do not have matching counterparts
in the system to connect to. The synthesis enabler is concerned only with the network-related behavior of
the system, but can (as opposed to learning algorithms) deal with nondeterminism in the components.

During the dry run, it was assumed that the user transitions could be removed from the models in a
straightforward way, making the subsequent output transitions begin in the location of the user transition.
It is however not evident if this transformation is unambiguously reversible and if it needs to be. It is
furthermore not clear if the transformation is as simple in the case of parameterized more complex user
inputs.

Another potential problem arises from the requirement of the synthesis enabler to have matching
names in two to-be-connected systems or at least an ontology matching between them. These abstract
names will typically be created as part of an abstraction during the process of learning and will have to be
provided as additional output of the learning enabler. In order to enable synthesis, the learning enabler will
have to be able to assign properties to those names (by means of ontological relations) thereby realizing
what the naming reflects. To be able to synthesize running code from the model of a connector, knowledge
about necessary model concretizations will have to be provided alongside the abstract models.

2.3.3 Conformance with synthesis input

One aim of the dry run was to make gaps (in the expressiveness) between the modeling formalisms used
by different enablers explicit. The input from the discovery enabler could be used in a straightforward way.
It covered only information about primitives and data types on a syntactic level. For the learning to be
successful, more (semantic) information would have been needed. For a detailed discussion about the
information needed about data types and data values, we refer to Chapter 3.

The output we produced almost met the models that have been assumed as input by the synthesis
enabler. However, even the Mealy machine models we present here are quite abstract. One of the future
challenges of WP 4 will be inferring models on a lower level, e.g., including parameters and developing
means of generating appropriate abstractions.

Most of the differences between the output produced by the learning enabler and the input assumed
by the synthesis enabler originate in different assumptions about the imagined actual systems. These
differences would not exist if actual implementations had been the basis of the whole process.

The second source for differences has already been discussed. It is the fact that synthesis models
contain only transitions for network-related primitives of the networked systems, while the models pro-
duced immediately by the learning enabler will contain transitions for other primitives (e.g., user inputs) as
well.

2.3.4 Summary

Though this is only a very small scenario in which most of the results achieved by learning have been
achieved manually, there are some lessons to be learned:

1. active learning relies on several properties of the inferred black box system as pointed out throughout
the text. These properties will have to be guaranteed for the networked systems.

2. the abstraction we introduced was chosen carefully and validated to reveal complete, input-deterministic
behavioral models of the systems. In general, this has to be considered as an approximation. It may
well be that some parameter valuation leads to behavior an abstraction does not cover. In general
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Figure 2.4: LTS model of the Tuple Space Merchant
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the quality of abstractions will rely on domain knowledge and on an idea of what the intention of the
inferred system is.

3. the model transformation used to provide synthesis ready output may not be trivial in the general
case. It will be necessary to extend the dry run to include the generation of running code and to
complement the dry run with a case study on implemented systems.

What has not been considered here is the effect that different levels of abstractions will have on the
size of the models and on the number of queries needed. The number of parameters has an influence
on the number of queries needed that is exponential. When choosing the right level of abstraction, the
trade off between making things too expensive to be dealt with and missing relevant behavior has to
be considered. One big step forward will be moving the responsibility for supplying a good abstraction
refinement from the user to the learning algorithm. The learning algorithm will then incrementally increase
the number of abstract valuations by exploring and partitioning the concrete parameter-space in whatever
fashion.

A future interest will also be to integrate time related behavior learning and automata learning. For
the sake of the dry run it was assumed that the inferred systems react instantaneously to messages and
do not have any time dependent behavior (as timeouts) so that the automata learning algorithm will gain
control, e.g., over timeout experiments to be performed.

2.4 Discussion

From the common experimental setup and from the lessons we learned in the case studies, the following
general practical requirements on interface information, interfaces and networked systems in general can
be stated.

Reset: Learning reactive systems in principle requires means of re-setting the inferred system to its initial
state: in order to guarantee meaningful results, all membership queries (or experiments) have to
be performed using the same initial conditions. This is a fairly strong requirement and may not
be assumed to hold in the case of real-life systems. In none of the case studies an explicit reset
mechanism was present. We have found several ways to handle this issue:

• In the WSDL study, abstraction was used to circumvent resets. This was achieved by using new,
free unique transaction identifiers for every experiment. The “freshness” of the used values
could be tested before every experiment by utilizing some of the primitives of the service that
were assumed not to alter the state of the system and to provoke different reactions for free
and used values.

• A similar solution was used in the A-MLC case study, where the learned service was able to
create a new process to handle each newly initiated session.
In the scenario of CONNECT this seems to be a promising approach. Networked systems (on
the protocol level) are naturally able to handle multiple connections and provide a behaviorally
equivalent service for each new connection.

• In the NASA Voyager case study a globally valid “homing sequence”, a sequence of actions
leading to the initial state was given. This homing sequence however was derived manually be-
fore the actual learning process could start. The sequence consisted of a number of primitives
that would empty the underlying message channels.
This approach may be generalized and exploited for parts of the middleware that rely heavily
on the message passing paradigm. For this system an arbitrary-length sequence of actions
that consume messages, un-subscribe and destroy channels will leave the system in a defined
state. Executing the sequence twice will still lead to the same “empty” state. For most other
systems that comprise a more complicated control structure it is not obvious that a globally
valid homing sequence even exists.
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• In the SIP and TCP study, the implementation of the protocol module was restarted for each
new membership query/test case. Realistically, this can be done if one has access to an imple-
mentation for off-line experimentation, which is not always the case in CONNECT scenarios.
Part of the contribution of WP 4 is to identify requirements on the interfaces (or systems) to
be inferred. We suggest a certain “design for CONNECT” or more specifically in our case a
“design for learnability”. One key feature of systems that are inferrable is a means of resetting
the systems.

A general conclusion that can be drawn from the case studies is that means for resetting inferred
systems can be provided in manifold ways. The hard assumption of an explicit reset can be re-
laxed to the assumption of behaviorally indistinguishable instances. Interface information (provided
through discovery) will have to include information on how to reset a specific system under test
into its initial state. As part of a “design for learnability”, we propose that systems designed to be
connected are designed to come with a reset mechanism of some kind.

Testability: Learning is essentially driven by counterexamples. As we assume to be dealing here with
real black-boxes, equivalence queries will have to be approximated through (conformance) testing.
The theoretical complexity of conformance tests may be exponential in the size of the system when
measured in tests to be executed. The networked systems that are to be inferred as well as the
infrastructure must be laid out to support this extra load.

As a matter of fact, all of the systems in the case studies would require only a small number of
equivalence tests in order to identify all states. For most systems all states would differ directly in
the associated output behavior. In order to keep costs and load for equivalence approximation low,
systems that are especially designed to fit the needs of a connected world should be “talkative” in
the sense that each internal control state produces a unique output signature.

Reversibility: To learn systems in a real environment, it is necessary to assume that the experiments
conducted by the learning algorithms do not harm the system. This requirement is twofold: learning
produces a huge amount of interaction with the inferred system (as discussed above). And each
experiment that is run on a networked component may have consequences: imagine e.g. in the
stadium example a real order being placed each time the corresponding experiment is executed.
For learning to be applied at runtime, it is necessary to ensure that the experiments conducted by
learning have no real (permanent or non-reversible) effects.

There are two possible ways to ensure this. One would be to guarantee the reversibility of all actions
and to provide means to do so. The information about negative elements could be provided by
discovery through ontologies of actions. Besides avoiding unwanted consequences in the inferred
systems, reversibility of actions might be used to emulate the reset of systems. However there
may be actions that are naturally non-reversible (such as firing an alarm). The other way would be
including a special test mode in each component and providing the learning algorithms with a means
of identification for enabling this test mode. Actions performed in this test mode would then be by
definition without “real” consequences. While the former solution will not work in all scenarios, the
latter one re-introduces a strong assumption similar to the one that systems can be reset into initial
states.

Input-Determinism: All the systems in the case studies can be thought of as protocol entities: they
expose one (behavioral) interface to a (network) peer and at least one other interface to some other
party. In the popcorn case study, for example, all services are assumed to run on mobile devices.
The mobile devices of consumers and merchants determine the distance between the devices by
some (unspecified) means, and provide the distance information to the system realizing the trading
system (which decides, e.g., when to issue a proximity notification on the basis of this information).
The behavioral models of the inferred services depend on (1) the messages that can be received by
peers and (2) decisions resp. inputs a user (or some other system) can provide.

More generally put, most systems will (from a learning perspective) not only communicate with one
peer, but at least with two peers. From the CONNECT perspective in many cases all but one peer will
not be relevant and, more importantly, outside the scope of discovery.
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The merchant’s system in the popcorn case study may, as a second example, reject orders if the
distance between the merchant and the potential customer is too great. The regular update of
the current location can be modeled as an additional input. To infer the behavioral model of the
system completely and without contradictions, the learning algorithm will have to use setting the
location explicitly as an input to the system. Otherwise the same experiment executed at random
(and different) distances to the target may result in different observations.

The same input resulting in different outputs is a symptom of inherent nondeterminism. For in-
herently nondeterministic systems it is impossible to measure if at some point all nondeterministic
choices have been observed. Even more severe is that in general it is not possible to make the
system under test make the “right” choices at certain points (in order to study the behavior from a
special state). This renders it very hard to infer models of these systems.

The systems in the scope of CONNECT (protocol entities) typically have a finite and input-deterministic
control behavior. One problem when learning networked systems will be getting hold of all inputs
a system exhibits - not only the ones it exhibits towards the network (those are provided through
discovery).

Finiteness and Concurrency: The systems in the scope of CONNECT typically will behave identically
and independently (without side-effects) for two different connections: protocol entities will exhibit
the same behavior for every new session or to every new peer. This assumption enables the learning
algorithms to infer a model for only one connection (or peer etc.). Models including multiple entities
can then be constructed after the learning through composition.

In the dry run, e.g., we assumed only one instance of each kind of peer during each experiment
(one merchant, one client, one Tuple Space). Furthermore for the sake of simplicity it was assumed
that certain workflows would act like transactions. A ordering once begun would not be interrupted
by a search for new products or the arrival of a second order. Dropping any of these assumptions
would have led to models with more transitions and more states.

In the case where different connections can influence each other learning will become more expen-
sive (in terms of the number of experiments to be performed). As part of a “design for learnability”
we suggest information on independence of connections to be provided with a service.
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3 Managing Information in the learning enabler
In this chapter, we give an overview of our approach for managing and utilizing information needed by

the learning enabler, in order to describe how we address the following challenges outlined in Chapter 1.

Utilizing interface descriptions and data domain information: previous work in the learning commu-
nity has assumed the set of interaction primitives to be an unstructured finite set. It has neither
seriously considered how to use interface descriptions and information about the messages data,
nor has it considered what form this information must have to enable successful learning.

Bridging between abstract formal models and concrete system interfaces: in WP4, we must take into
consideration that learning can only be performed in terms of concrete interaction with a networked
peer, whereas the desired output of the learning enabler are abstract models, e.g., in the form of
LTSs. A systematic approach for bridging between these very different levels of abstraction must be
developed.

To address these challenges, several things must be accomplished.

• Information about the interface must be provided and represented. This information should at least
include the interaction primitives exchanged with the peer, their parameters with associated types
and data domains; otherwise the learning process can not be realized. We report on our achieve-
ments in Section 3.2

• To bridge between concrete component interfaces and abstract formal models utilized by learning
and synthesis techniques, abstractions should be developed to relate different levels of abstraction.
We report on our achievements in Section 3.3

• Additional information about the interfaces and data domains can be used to make the learning more
efficient. These issues are reporet on throughout Sections 3.2 and 3.3.

3.1 Ontologies

We have found ontologies to be a suitable vehicle for representing information associated with these
issues. Ontologies have recently become a central means to support user-level semantic descriptions on
various levels, simply by means of intuitive classification schemes together with some relations describing
mutual dependencies. In essence these descriptions can be seen as very high level type descriptions
from the user-level perspective enriched by some knowledge base, additionally relating facts, concepts
and entities.

Ontological knowledge can be exploited at different levels during the learning process: initially, at the
interface level, in order to fix the learning alphabet, and during the evaluation of the equivalence queries
in order to steer the search.

Practical learning and ontological descriptions are mutually supportive:

• Ontological descriptions related to the involved component interfaces form a good basis for building
abstractions at an adequate level for the learning procedure. They may help to guide the learning
enabler in exploring the a priori unknown parts of component behavior, in particular when searching
for counter-examples as part of the so-called equivalence queries.

• Practical learning, on the other hand, may refine the existing ontological knowledge by experimen-
tally revealing previously unknown structure in the component interface, like precedence or causality
relations between interface primitives or activities, or like specific input/output patterns.

It is the nature of learning to neither be correct nor complete, but in a certain sense optimal with
respect to the considered observations. It is therefore important to distinguish assured knowledge, as
may be given in terms of interface descriptions or service level agreements, and hypothesis, as provided
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by learning. This distinction should be indicated within the ontologies, as it is important when facing
differences between the model and the running system. In these cases, hypothetical knowledge must
simply be refined, whereas assured knowledge indicates some kind of (system) error.

3.2 Representing Information needed by the learning enabler

In this section, we describe the different types of information used by the learning enabler, and how they
can be represented.

Interface Descriptions must be provided and represented, otherwise it is impossible to perform the
learning process. An interface description should at least include the interaction primitives exchanged
over the interface, their parameters with associated types and data domains. This information can be
obtained in several ways:

• In the synthesis dry run and the in the PoTM case study this information was provided partly through
documents provided alongside the services (as WSDL document). From these descriptions the
functionality necessary to interact with the system could be generated automatically. Information
about data values was taken manually from examples that came with the scenario descriptions.

• In the NASA Voyager case study information about data types was obtained by means of reflection
from the tested entities (Java objects). Valuations used in the learning process were determined in
a semi-automated trial-and-error fashion.

• In the case studies, where models of the SIP, TCP, and A-MLC protocols were learned, the interface
descriptions were obtained from additional documentation: standard documents (IETF RFCs) in the
case of SIP and TCP, and internal documentation in the case of A-MLC.

Information about data types (number, text, truth value etc.) and their ranges This information
is needed for the learning algorithm in practice to be able to construct a finite abstraction on the input
alphabet of the system to be learned. Type information is typically too coarse to serve as an adequate ab-
straction for the learning procedure. In such cases, being able to provide a corresponding finite (abstract)
data domain is essential. Knowing for example only that some value is a textual type will be insufficient.
However knowing that the domain is [jan,feb,mar,...] directly supports a systematic learning process. In
the next section, we elaborate further on how this information is used when building abstractions.

Parameters’ role or function This refers to information such as “parameter x is of type SOME”, where
“SOME” is just a (type)label. In this situation, relational knowledge about type compatibility assists in opti-
mizing the search for adequate (action) primitives following a given output of the system: a corresponding
ontology might relate input and output parameters to each other allowing one to steer the selection of the
next membership query, and therefore to focus the search inherent in practical realizations of equivalence
queries.

Information about dependencies between primitives (actions) Ontologies may also express rela-
tionships between whole (action) primitives such as (in)dependence, causality, and reversibility. Using
information about reversibility (negative elements) can be exploited for building homing sequences, lead-
ing the system back to the initial state (the requirement to reset a system in its initial state is discussed in
Chapter 2). Information about independence of actions and causality of actions may be used to reduce
the amount of membership queries needed during learning [27].
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3.3 Building Abstractions for the learning enabler

As stated in Chapter 1, we must take into consideration that learning can only be performed in terms of
concrete interaction with a networked peer, whereas the desired output of the learning enabler is abstract
models, e.g., in the form of Mealy machines or LTSs.

A systematic method for bridging between these levels is to develop means to represent the relation
between different levels of abstraction. Such a relation is needed, not only for generating abstract models
by the learning enabler, but also later when generating running code from an abstract specification of a
synthesized connector. Fig. 3.1 shows the assumed stack of model transformation during the learning
and synthesis process. Starting from the lower left (resp. right) with discovery of services the synthesis

Figure 3.1: Protocol Transformation Stack

of connectors will rely on synthesizing test drivers from the information provided by discovery. These
test drivers will provide the discovered interface to the upper levels and, on its downward side, operate the
actual networked systems. They may be synthesized by means provided alongside standard technologies
(e.g. WSDL binding). On top of these test drivers the learning enabler will produce several levels of
abstractions resulting in abstract LTS models. The transition labels in the abstract models will correspond
to primitives in the test drivers with concrete parameter valuations. These valuations may even be history
dependent as learning may introduce state variables at the intermediate levels. At the (abstract) top of
the stack connectors are synthesized via protocol matching. The derived abstract connector model must
then be passed down the complete transformation stack in order to generate corresponding running code.
This is indicated in the middle column of Fig. 3.1.

How are Abstractions Generated and Revised?

As stated, the relationship between different levels of abstraction in the protocol transformation stack of
Fig. 3.1 are represented by adopting abstraction techniques. Abstraction techniques have been used
in program analysis [16], and in formal verification [31, 14]. In contrast to abstraction for analysis and
verification, however, we are now in a black-box setting, meaning that we do not have access to source
code or formal models on which an abstraction can be straight-forwardly defined. One difference is that
it is not equally easy to ascertain that the abstraction results in a (not too big) finite-state model. Instead,
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building an abstraction will be part of the learning process. Typically, the learning process will start with
an initial hypothesized abstraction, which may be revised as information about the component is revealed
during the learning process.

A small Illustration In order to make the discussion more concrete, let us illustrate by a small example,
taken from [1], also enclosed as an appendix. In this example, we infer the behavior of a protocol entity
(called SUT) which services requests to set up a connection. To us, SUT is a black box, for which we have
obtained an interface description which states that it communicates with its environment by receiving input
messages of form REQ(id, sn) and CONF(id, sn), where the parameters id and sn are natural numbers,
and transmitting messages of form REPL(id, sn), ACK(id, sn), or REJ.

In order to employ learning, we need to construct an abstraction between the interface of the SUT
and a small finite alphabet. Ideally, the symbols in this small finite alphabet should represent equivalence
classes of interface primitives of the SUT, which convey the same “meaning” on the interface. As an
example, we could employ an abstract symbol of form REQ(CUR,CUR) to denote input symbols of form
REQ(id, sn) where id is the identifier of the currently active connection, and sn is the lowest untransmitted
sequence number. An abstraction mapping is used to represent the relation between these two sets of
interface symbols. In Figure 3.2, we show how the abstraction mapping may translate between the two
levels of abstraction.

Learner Abstraction SUT

-REQ(CUR, CUR) -REQ(25, 4)

� REPL(25, 5)�REPL(CUR, CUR + 1)

Figure 3.2: Introduction of Abstraction between Learner and SUT

Requirements on Abstractions It is important the abstraction employed reflects a natural classification
of the concrete interface primitives. An important test is that the abstraction produces a deterministic
interface. Intuitively, this requires that two concrete interface input symbols are mapped to the same
abstract symbol only if they are “handled in the same way” by the component, i.e., alter the internal
(control-)state of the component in the same way. (a formalization of this requirement appears in Section
5 of Appendix A.3). For example, in the example shown in Figure 3.2, the requirement would imply that
whenever a message of form REQ(id, sn), where id is the identifier of the currently active connection and
sn is the lowest untransmitted sequence number, is transmitted to the SUT, then the SUT will respond
with a message of form REPL(id′, sn′), where id = id and sn′ = sn + 1. If there are situations where it
does not, techniques could be devised to refine the input abstraction appropriately, as discussed further
below.

Building Abstractions Producing a suitable initial abstraction is obviously important for the success of
learning. So far, we have approached this problem on a case-by-case basis using hand-tailored abstrac-
tion mappings.

• For common types of communication protocols, such as SIP and TCP, there are natural abstractions
of parameters that represent, e.g., sequence numbers, identities of connections, sessions, etc. For
identities of connections, abstractions typically only need to consider whether a connection is the
one under consideration by the learning session. For sequence numbers, abstractions only need
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to worry about the possibility to increment some counter (as, e.g., for SIP), whereas there are also
cases with more complex flow control (as in TCP), where finding a good abstraction is more difficult.

• For web-services, initial abstractions can be built based on WSDL and additional heuristics that
employ the defined types in the WSDL.

In subsequent work, we should aim to understand how to build good initial abstractions for different classes
of applications.

Another concern is that in the work done so far, abstractions have been supplied by hand. It is desirable
that the abstractions are automatically generated by the learning tool. We are approaching this problem in
the same way as the problem of resolving nondeterminism (reported below). This means that whenever
specific parameter values are relevant for the behavior of a module, we classify these values by adequate
parameter/action refinement, which is delegated to algorithms tailored for the treatment of data. Our
empirical results indicate the value of our general framework which allows the composition of complex
learning processes from dedicated algorithms each with their specific application profile [26].

Revising Abstractions Typically abstractions as described above are maintained in mapping tables
situated outside of the core learning algorithm, exposing only abstract symbols to the learner. Due to
this opaque nature of the abstract mapping all modifications to the abstraction are driven outside of the
inference process, often leading to manual modifications.

The employed active learning techniques assume a deterministic behavior, meaning in particular that
this abstraction has to impose a deterministic behavior on the concrete system. This is a very strong re-
quirement when dealing with black box systems and it would be highly beneficial to satisfy this requirement
with automated means of abstraction-refinement.

We are working on a method to automatically refine a given abstraction until a level is reached where
this abstraction imposes a deterministic behavior on the concrete system. Like automata learning itself,
this method is in general neither sound nor complete, but it also enjoys similar convergence properties
as long as the concrete system itself behaves deterministically. Key to this method is the switch of the
learning scenario from the left configuration to the right configuration shown Fig. 3.3.

The left half of the figure shows the typical learning setup, that uses a fixed, hand-tailored abstraction
mapper (cf. Fig 3.2). This setup suffers from the discussed flaws. The setup shown in the right half of
the figure circumvents these problems by making the abstraction the dominating component. Thus the
learning algorithm no longer relies on the correctness of the initially given abstraction and the abstraction
may be refined during the course of learning. Technically this is achieved by a change of perspective:
rather than working at the abstract level, the Learner is sitting now at the concrete level in order to ob-
serve the concrete system behavior for a set of representatives of the equivalence classes imposed by
the abstraction. Thus abstraction is no longer a “filter” between the concrete system and the learning al-
gorithm, but rather a teacher, helping the Learner to choose adequate representative tests. This Learner
is able to automatically resolve controllable non-determinism, i.e., non-determinism which is due to the
imposed abstraction, as long as all the entities of the concrete system are finite. Thus the control over
abstraction becomes part of the learning process, with the effect that detected non-determinism does not
lead to failure, but to a dynamic refinement of the abstraction.

Producing Compact models A problem is that existing regular inference techniques, even when em-
ploying abstraction, produce “flat” state machines, in which neither states nor transitions have the structure
that would be used in a manually produced model. We have therefore experimented with techniques for
restructuring the representation of an unstructured finite-state machine, in order to get less complex and
better structured models. In [9], also included as Appendix A.4, we have employed an approach where the
flat state machine is structured by means of a set of decision diagram from each control location. These
are constructed by the ID3 Decision Tree generation algorithm. We have evaluated this technique by
applying them to the Mobile Arts Advanced Mobile Location Center (A-MLC) protocol, which is a commer-
cially available middleware protocol that allows mobile network operators to provide presence information
from the GSM/UMTS network.
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Figure 3.3: traditional use of abstraction (left) and abstraction as part of the learning process
(right)

Summary During Year 1, we have spent significant effort on developing the use of abstraction in the
context of automata learning: the conceptual foundations for the approach are under development, and
several exploratory case studies have been performed. This provides a basis for further work, as outlined
in Chapter 5.
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4 Development of tools
LearnLib [39] is a library of tools for automata learning, which is explicitly designed for the systematic

experimental analysis of the profile of available learning algorithms and corresponding optimizations.
Its modular structure allows flexible configuration of tailored learning scenarios, which exploit specific

properties of their envisioned applications. Exploiting application-specific structural features enables op-
timizations that may lead to performance gains of several orders of magnitude, a necessary precondition
to make automata learning applicable to realistic scenarios as those considered in the CONNECT project.

Work has been done on further extending the scope of modularization and configuration, converting
LearnLib into a set of loosely coupled, reusable and easily interchangeable modules. Apart from allowing
for easy setup of learning experiments this paves the way for advanced handling of abstraction within the
learning framework.

In the context of CONNECT it is important to be able to adapt learning to a wide range of scenarios,
each potentially challenging learning in different ways. Fixed learning strategies may prove to be inef-
ficient when coping with parts of the scenario-landscape, thus the flexibility provided by the extended
component-based approach should provide immediate benefits when dealing with CONNECT scenarios.
The learning-solution should also be deployable on a wide range of systems and provide means to evalu-
ate the efficiency of learning strategies, e.g., by providing statistics on runtime behavior.

4.1 Modernizing LearnLib

LearnLib originally was written in C++ for POSIX-compatible operating systems (such as Linux and So-
laris), with dependencies on libraries only available on a limited number of systems. This has proven
problematic as this restricts the environment in which LearnLib could successfully be deployed. Also of
concern were issues with memory-management, as effective memory allocation (e.g., avoiding memory
fragmentation) is very important to learn models of big systems.

Thus we ported LearnLib to the Java platform, ensuring that LearnLib is deployable on any system for
which a Java runtime environment is available, including Windows and MacOS. Java provides a rich sys-
tem library, which amongst other things provides highly optimized standard data structures, and supports
multi-threading and web-services as core features, both of which are relevant to the CONNECT project for
reasons of performance and connectivity.

Another emphasis was put on the ease of use and intuitive handling of the LearnLib in order to provide
it for experimentation for the whole CONNECT consortium. This is important for CONNECT because it
allows the other groups to better understand the concepts of automata learning.

4.2 Model-based learning

The extended component-based approach of the reengineered LearnLib enables easy integration into
model-driven application building tools, like the Java Application Building Center (jABC). Within the jABC
learning setups can be created and adapted to accommodate new scenarios (Fig. 4.1 shows a graphically
composed learning process loaded into the jABC). This elevates LearnLib onto a new level, creating
the Next Generation LearnLib. Integrated into Next Generation LearnLib are means for gathering and
visualizing statistics on learning processes (Fig. 4.2 shows a diagram on the distribution of query lengths),
which allows for apple-to-apple comparisons between learning setups and will help to evaluate learning
strategies within CONNECT scenarios.

A complete learning system is usually composed of several components, some of which are optional
while some are not:

• At the core of any learning system a learning algorithm has to be selected, fit to the scope of
application chosen.
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Figure 4.1: jABC with a minimal learning setup loaded

Figure 4.2: Visualization GUI for statistics on learning processes
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Figure 4.3: Structure of a generic learning process

• It is necessary to have means to connect to the system whose behavior is to be learned. In this
context we call those connectors “oracles”, as they deliver answers (system responses) to questions
(queries) generated by the learning algorithm.

• The number of queries an active learning algorithm generates can quickly reach millions. Depending
on how fast system response can be generated it may be necessary to reduce the number of queries,
which motivates the introduction of filters that answer queries using application-expert knowledge.

Many of those components are reusable in nature and should easily be employable in various applica-
tion contexts. The Next Generation LearnLib exposes such components to the jABC, enabling engineers
to compose application-fit learning experiments from easy-to-use building blocks.

When looking at the learning process (as shown in Fig. 4.3) one can easily identify recurring structures
that are near-identical in many learning experiments: the learning setup undergoes a configuration phase,
after which a learner is instantiated. After starting the learner instance queries are processed in a loop,
involving system interaction. Once a hypothesis is constructed an approximate equivalence oracle is
invoked, generating more queries that are processed in a loop. If the equivalence approximation found a
counterexample disproving the hypothesis learning will resume via a loop to the top, otherwise learning is
complete.

This general structure is the same for basically all learning experiments, thus modeling and editing
those in jABC enables evolutionary development based on prior designs, maximizing reusability.
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4.3 Conducted studies

The existing stack of learning technologies has already proven its usefulness for exploration of black-box-
systems in case studies predating the CONNECT project.

In [38] dynamic testing is presented, a method that exploits automata learning to systematically test
(black box) systems almost without prerequisites. Based on interface descriptions and optional sample
test cases, this method successively explores the system under test (SUT), in order to extrapolate a
behavioral model. This is in turn used to steer the further exploration process. Due to the applied learning
technique, this method is optimal in the sense that the extrapolated models are most concise (i.e. state
minimal) in consistently representing all the information gathered during the exploration.

This method can be elegantly combined with numerous optimizations of the learning procedure, with
various choices of model structures, and with the option of dynamically/interactively enlarging the alphabet
underlying the learning process. The latter is important in the Web context, where totally new situations
may arise when following links, but is also relevant for other context, e.g., for protocols that negotiate
client/server capabilities during a “connection handshake”.

For dynamic testing a study was conducted using the web application Mantis, a bug tracking system
widely used in practice as was another case study demonstrating the scalability of the approach. It was
shown that behavioral models arise that reveal the system structure from a user perspective. Besides
steering the automatic exploration process, those models are ideal for user guidance and for improving
system understanding. This is relevant in the context of CONNECT scenarios as “user perspective” in
connectors often can be translated to “client perspective”, which reveals behavioral information on the
involved counterpart of a client/server setup.
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5 Future Plans
During Year 1, we have spent significant effort on understanding needs for learning, in order to develop

its power and in order to fill the needs of the CONNECT context. Main directions for subsequent work are
as below.

Extending automata learning. State of the art learning algorithms work on rather unexpressive models
(finite state machines). To support all the phenomena that are typically used in the specification of net-
worked components (parameterized actions, functional and non-functional parameters, state- or global
variables) in a feasible fashion, the underlying models will have to be extended accordingly.

Priori to CONNECT, we proposed first ideas for dealing with such richer models [7, 8]. The proposed
approaches however rely on plain automata learning. Rich models are constructed externally and not as
part of the actual learning process. During the first year, we began to develop methods that are necessary
to support rich models and can be tightly integrated with the learning process, as described in Chapter 3.
From the current point of view the phenomena that will have to be integrated and will be (continued to be)
studied are: abstract and local alphabets, variables and assignments, and parameterized symmetries.

Within a suitable general framework, we should develop appropriate specializations to handle learning
for specific types of systems. Examples of such classes include communication protocols, which require
a proper treatment of parameters, and web services, where associated metadata descriptions should be
exploited by suitable techniques. These specializations should result in modules learning tools that are
under development.

Handling QoS. The CONNECT framework also takes QoS parameters into account. As shown in Fig. 1.1
(in the introduction), the learning enabler is envisioned to be one source of data concerning the fulfillment
of QoS properties. We will develop techniques for monitoring and learning QoS properties of interaction
behavior.

Latency behavior can, in a first approximation, be modeled as an additional parameter that is supplied
in inputs and outputs. Initial steps to consider this approach have already been proposed in [23, 22]. A
satisfactory incorporation of QoS requires, however, a robust incorporation of nondeterminism into the
learning framework. Nondeterminism is therefore one of the concepts that should be considered when
extending automata learning during the second and third year of the project.

Monitoring to support re-learning. Observation of components behavior is inherently part of the over-
all learning process, therefore off-line monitoring is already used as a basic functionality that supports
learning. While off-line monitoring could suffice in the initial learning phase, updating learned models
once the CONNECTed system is in execution requires on-line monitoring techniques, which can be ap-
plied with minimal overhead to observe a running system that is already deployed in the field.

In CONNECT, on-line monitoring is implemented in WP5 as a cross-cutting functionality that will be re-
alised according to a modular architecture, with a shared core (implementing generic monitoring features)
and a set of specialised components that will provide specific support to activities including connector syn-
thesis (WP3), dependability analysis (WP5), and, in WP4, re-learning (i.e., the update of existing learned
models of NS).

In particular, in WP4, monitoring will contribute to bridge the gap between current learning approaches
and the dynamic open world of evolving systems that is peculiar of the CONNECT project. Therefore, the
key goal of WP4 research on monitoring in the next period of the project is to devise and implement mech-
anisms to observe running CONNECTed systems, in order to provide feedback to the learning enablers
in such a way that existing learned behavioral models can be continuously updated, based on actual
observations taken in the field.

Since efficiency is a major concern for on-line monitoring, we will investigate specific techniques that
aim at minimizing overhead by allowing lossy observation, thus trading completeness of observation for ef-
ficiency, while preserving good detection power (i.e., while minimizing the probability of missing interesting
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events).

Tool plans. It is planned to extend support for abstractions and parameters in the Next Generation
LearnLib, taking advantage of the modular structure of the learning framework. We plan to provide an
easily deployable “learning studio” available to project partners. Some central learning services may be
provided using web-service technology, including hosting and maintenance. Tool-integration with monitor-
ing tools is envisaged.
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A Case Studies
A.1 The NetTech (PoTM) Case Study

Imagine a web-service for mobile payment transactions. The “Pay On The Move” (PoTM) service provides
the functionality to manage payments between customers and owners of web-shops. A company can login
into the system, users (or, better, shops acting on the behalf of users) can begin transactions providing
thereby wiring details for a payment and credentials for the used account. They may also suggest a
transaction id. The service exposes two additional primitives: one to check the status of a transaction and
one to let a bank confirm a transaction (in case the planned withdrawal is possible).

Assume this service runs on an infrastructure that is to be extended by some high availability features.
Now it shall be proven that enabling the new features does not have any impact on the service’s functional
behavior in order to guarantee a seamless update. As users of the service are only provided with the
services interface description (in form of a WSDL document, an excerpt of which is shown below) and
some scarce explanation of the service’s intention, a model generated only using this information will
resemble the behavior experienced by users of the service.

...

<xs:complexType name="Login">

<xs:sequence>

<xs:element minOccurs="0" name="companyName" type="xs:string"/>

<xs:element minOccurs="0" name="companyPassword" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="BeginTransaction">

<xs:sequence>

<xs:element minOccurs="0" name="companyName" type="xs:string"/>

<xs:element minOccurs="0" name="companyPassword" type="xs:string"/>

<xs:element minOccurs="0" name="details" type="tns:transactionDetails"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="transactionDetails">

<xs:sequence>

...

<xs:element minOccurs="0" name="customerPassword" type="xs:string"/>

<xs:element minOccurs="0" name="customerUsername" type="xs:string"/>

<xs:element minOccurs="0" name="externalTransactionId" type="xs:string"/>

<xs:element minOccurs="0" name="paymentType" type="xs:string"/>

<xs:element minOccurs="0" name="transactionId" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="CheckTransactionStatus">

<xs:sequence>

<xs:element minOccurs="0" name="transactionId" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AknowledgeTransaction">

<xs:sequence>

<xs:element minOccurs="0" name="transactionId" type="xs:string"/>

<xs:element minOccurs="0" name="transactionRef" type="xs:string"/>

</xs:sequence>

</xs:complexType>

...

To verify functional equivalence two test environments were created, one running the original version
of the service and one running the service with the additional high availability features enabled. The
experiments were performed in an active black box learning approach against the web-service interface.
To ensure the absence of feature related impacts on functional behavior several aspects of the web-
service (internal logical consistency, conformance between old and new service) were tested.
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A.1.1 Experiments goals and hypothesis

The case study aims at several goals. The main target was the verification of the assumed absence
of functional impacts due to cross cutting high availability technology in the PoTM service. Apart from
that the design of the case study can also be understood as a prototypical application of learning and
model checking in the situation of service integrators, that use off-the-shelf or closed source third party
components, and must provide the (provably correct) integration of the service with possibly other such
services or own developments, provided only with the mere interface description and some intuition about
the provided functionality. To verify the functional equality of the two variants of the PoTM service, different
aspects of both instantiations were inferred and compared to each other with respect to conformance. The
aspects examined were:

• model inference
The functional behavior of the services was extrapolated by active learning techniques. To apply
those, some modifications to the original theoretical approach had to been made (see below).

• conformance of models
The models of the different versions of the PoTM service were tested for conformance. Conformance
was verified by testing the obtained models for isomorphism.

• internal logical consistency
The inferred models where searched for unwanted / unexpected behavior by means of model check-
ing techniques.

For the active learning we use “LearnLib”. To connect the web-service under test to LearnLib we
generated a web-service client from the provided WSDL and wrote a test driver that translates LearnLib’s
queries into invocations of the service’s primitives and routes them through the generated client. The
resulting setup, which resembles the one outlined in Section 2.2, is shown in Fig. A.1. The learning
algorithm generates queries using an abstract language. The test driver translates those into actual
actions on the system under test and records the system’s reactions when exposing it to the actions. The
inferred models were processed with a graphical modeling and model checking tool.

Figure A.1: Experimental setup for learning the PoTM service
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A.1.2 Methodology

Handling Data Values One of the key problems when dealing with systems is that primitives typically
have data parameters. To learn the service we need to provide an alphabet of the system under analysis.
This is the set of input actions from which input sequences are formed. In presence of parameters the
set of actions that can be performed on the system is the cross product of the different valuations of each
primitive’s parameters. The sets of possible valuations for some of the parameters are very big (e.g., in
the case of character sequences it is exponential in the length of the word). As the number of queries
needed to infer a system under test linearly depends on the size of the input alphabet, it is not feasible to
test each input symbol.

We therefore used symbolic alphabets whose letters are (state-aware) translated into concrete sym-
bols - and back. The abstraction mapping (cf. Section 3.3) was constructed manually. The login primitive
for example had two parameters, which represent a pair of username and password. So we introduced an
abstract login(c) symbol (where c ∈ valid, invalid). During the execution of the experiments the two
possible symbolic valuations of c are replaced by the test driver by known concrete valuations with the
corresponding properties (i.e., granting access or not). For the login(c) primitive the needed valuations
are taken from piece of example source code provided with the service. The used credentials are the
same in all experiments.

Handling Reset For the symbols that require a unique transaction id, finding an adequate abstraction
is a bit more complicated. Learning relies on the possibility of running numerous experiments on a sys-
tem under test and requires that in each experiment the system’s behavior is consistent with all other
experiments. This is typically achieved by means of some kind of reset-mechanism in research setups.
The existence of such a mechanism however is not typical in real-world scenarios. As in this case we
did not have any way of accessing the service other than via the given web-service interface, we simu-
lated resetting the system in the following way. A relaxed version of the requirement to reset the system
into “the same state” is to reset the system into “an observationally equivalent state”. The absence of
differences in observable behavior has to include not only the state the system assumes at reset but has
also to hold for all states possibly reached during experiments. As the service has no primitives to add,
modify or delete users and companies, it may be assumed that the used valuations for those parame-
ters will behave in the same way over time. Thus the behavior of the systems can only be different for
the same (or different) transaction identifiers in different experiments (say, if one tries to use the same
transaction identifier twice). The relaxation can thus be achieved by using “fresh” transaction identifiers in
every experiment. Fresh here means transactions identifiers that have not been used in the system so far.
Freshness was tested using the checkTransaction(tid) primitive which returns differently for used and
unused transaction identifiers and does not change the state of the system (at least as far as we could
observe).

Table A.1: abstraction used for the transaction details

Parameter Type Abstract Value Concrete representative
amount float - 1.0
charge type int - 2
client ip string - hermes
customer email string - test@test.de
customer full name string - Mustermann
customer mobile string - 0191058989
customer password string valid, invalid test1, test2
customer username string - test1
payment type string valid, invalid 8826a7bc-ff6e-4e06-8ef3-26dad264dfbd,-
transaction id string TID context dependent
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Levels Of Abstraction The valuations used for the details-parameter of the beginTransaction primitive
are taken partly from the same piece of source code that already contained the company credentials, and
they are partly chosen experimentally, in a trial-and-error kind of approach. They are chosen so that every
valuation would reveal different behavior. The abstract and concrete valuations chosen are shown in Table
A.1. This results in the following abstract set of parameterized input actions.

begina1(c, d1, d2, d3)c ∈ {valid, invalid} companycred.

d1 ∈ {valid, invalid} userpasswd.

d2 ∈ {valid, invalid} paymenttype

d3 ∈ TID
login(c)c ∈ {valid, invalid} companycred.

check(t)t ∈ TID
ack(t)t ∈ TID

The abstract input alphabet is the set of possible valuations of these actions. As is seen easily, there
are 12 different valuations if the set TID of transaction identifiers is of size one. For |TID| = 2 it are
22 possible valuations. To study the influence of the alphabet size on the complexity of the approach
we use a second abstraction in which we further restrict the allowed valuations of the beginTransaction’s
parameters: begina2(c, t) = begina1(c, valid, valid, t) As during the first experiments the login primitive
produced reflexive transitions only, we removed the corresponding action from the second tested abstract
alphabet. This leads to the following two sets of abstract actions.

A1 = begina1(c, d1, d2, d3), check(t), ack(t), login(c)A2 = begina2(c, t), check(t), ack(t)

For each set of actions we did the learning twice, (once with |TID| = 1 and once with |TID| = 2). All
four setups are run against both the original and the new service.

As we are dealing here with a real black-box scenario the equivalence queries have to be approxi-
mated. We did this using the W-method conformance tests [12], for which we choose the upper bound on
the number of states to be the size of the conjecture (i.e. intermediate hypothesis) plus two. We use the
LearnLib’s learning algorithm for Mealy machines, which can be understood as performing a W-method
test with a “plus one” bound during each learning phase already. This on the one hand reduces the num-
ber of equivalence queries, but on the other hand leads to more membership queries during the learning
phase.

A.1.3 Results

The key parameters of the four different learning setups are shown in Table A.2, Where “abstraction”
denotes the used abstract alphabet, “tid” the number of different transaction identifiers per experiment, |Σ|
and |Ω| the sizes of the input- and the output-alphabet, “states” the number of states the learned model
has and “mqs” and “eqs” the number of the membership queries and equivalence queries performed to
infer the model.

Table A.2: key parameters of the learning experiments on the PoTM

abstraction tids |Σ| |Ω| states mqs eqs
A1 2 22 8 4 1.936 1
A1 1 12 8 2 288 1
A2 2 8 4 4 256 1
A2 1 4 4 2 32 1

CONNECT 231167 42/78



In all four cases the obtained models are very small. In the setups with only one (abstract) transaction
identifier the learned models have two states, in the setups with two transaction identifiers the models
consist of four states. In all setups only one conformance test was performed at the end of the learning
and none found a counterexample.

Fig. A.2 shows a graphical representation of the model the learning algorithm created exploring the
payment service for abstraction level A2 and using one transaction id. The transitions are labeled with the
according input and output symbols. The shown output symbols are the return values of the primitives’
invocations. A return value of “1002” denotes a successful return (thus when using models for model
checking this value was translated to “ok”). In the case of an error or exception the cause given by the
web-service is shown as output-symbol.

Figure A.2: Inferred model of the “plain” PoTM service [A2, 1 tid]

According to the obtained model the web-service behaves as follows: using the checkTransaction or
acknowledgeTransaction primitive on a transaction identifier that is unknown to the system will result in
an error (“no entry found”). Using invalid credentials will result in “can not login”. A beginTransaction
using an unknown transaction identifier and valid credentials will return “1002” (resp. “ok”). Using the
checkTransaction or acknowledgeTransaction primitive with a transaction identifier that is already known
to the system will return “ok” while trying to begin a new transaction with an already known identifier will
return ’could not insert’. The models for abstraction level A1 exhibit the same behavior. All parameter
valuations that were not used for abstraction level A2 result in reflexive transitions. Especially for the login
primitive this is quite strange as it obviously has no functional impact on the system. The only parameters
of this primitive are company credentials (a pair of username and password). No useful (state influencing)
data is passed to the web-service. Fig. A.3 shows the model inferred for abstraction level A1 using two
transaction identifiers. In the Figure only numerical labels are used for input- and output-symbols.

Figure A.3: Inferred model of the ’plain’ PoTM service [A1, 2 tids]

Internal logical consistency It is easy to see that by starting a new transaction with valid information
and an unused transaction identifier the state of the system changes permanently - there is no transition
that leads back to the initial state. The same holds for the other models. This however contradicts the
interpretation of the service’s semantics given above.
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The missing of a roll back in the models could have been due to the missing ability to cover time
controlled behavior properly by state of the art automata learning techniques. To rule out this possibility,
we performed a series of experiments focusing timeout behavior (as written above). The results are
discussed below.

In this case the strange respectively unwanted behavior was easy to locate. One would not have to
perform over 200 invocations of the service’s primitives (as our learning required) to be sure that this does
not work as expected. In larger scale scenarios however failure might not be so easy to identify. For
example, we ran a series of learning experiments on a parametric network router which led to a learned
model with over 22.000 states: searching for unwanted or unexpected behavior in models of this size
can not be accomplished without tools. This is then the right situation to apply formal methods. Testing
properties on the learned system for instance can be done by model checking.

Figure A.4: Kripke representation of the PoTM model [A2, 1 tid] in GEAR

To apply model checking we used the jABC and its integrated model checker GEAR. The learned
models were imported into the jABC and then transformed into Kripke structures, which is shown in
Fig. A.4. To ease the readability, all the transitions of the learned Mealy automata are represented finer
granularly, with two nodes (for the input and output symbols, respectively), carrying as atomic propositions
the names of the alphabet-symbols. States with input symbols are additionally labeled valid or invalid
depending on the concrete valuation of the symbol’s parameters in that location. The initial state has the
atomic proposition “start”. The (in our case study) missing discard or timeout functionality can then be
proven by the following CTL [13] formula.

((begin ∨ valid ∨ EXok) ∨ (EFstart))

The former half holds for all valid beginTransaction input symbols from which in the next step an
(output) state with the proposition “ok” is reached. The latter half holds for all states from which the initial
state can be reached. The jABC shows which states of the Kripke structure satisfy a (sub)-formula by
selecting the (part of the) formula: Fig. A.5 shows all states that satisfy the latter half of the formula.

When confronted with the resulting model, the provider of the web-service confirmed that the reason
for the unexpected behavior was due to the test setup. This was configured to acknowledge transactions
immediately after they are started.
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Figure A.5: Kripke structure, colored according to a formula

Conformance of original and new service For no experiment there was a difference in the observable
behavior between the two implementations of the web-service. The absence of observable differences in
the behavior is proved by testing the models of both services for isomorphism. Due to the small sizes of
the models this could be done without the help of any tool. The models obtained from the two versions
of the web-service being isomorphic is to be understood as a passed regression test: enabling the high
availability technology had no influence on the application’s functional behavior (which is what is exposed
by learning).

A.1.4 Discussion

Though this is only a very small scenario in which most of the results achieved by learning (and model
checking) could also have been achieved manually, there are some lessons learned here. It was proven
(under the always to be made constraints) the conformance of the original and the new version of the
PoTM web-service. The constraints to be named are:

1. active learning relies on equivalence queries which can only be approximated in practice. The value
of the results thus generally depends on the confidence level of the performed equivalence query
approximation. The exact confidence level however can only be determined with respect to an
upper bound on the number of states the system under test may have. We chose an upper bound
that seems sound in the given case study. With respect to this bound the confidence level of the
performed approximation is 100%.

2. the abstraction we introduced was chosen carefully and validated in a series of pre-experiments to
reveal the complete behavioral model of the web-service. As for the equivalence queries this has
to be considered an approximation. It may well be that some parameter valuation leads to behavior
the abstraction we used does not cover. In general abstractions made manually will rely on profound
domain knowledge with an idea of what the goal of the performed experiments is.

Some other insights may be drawn from the case study: networked components exposing an acces-
sible interface can be dealt with as black boxes (at least regarding the functional properties) that lack
any kind of reset mechanism. The problem of missing reset functionality may be addressed in two ways:
(1) by setting up services in learning-enabled environments which add the missing functionality on top of
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the real service, (2) by finding ways around the hard reset requirement as the “not observable different”
relaxation we introduced.

While deploying existent real life web-services in a special environment before learning seems quite
expensive, using “fresh” values in every experiment may be impractical in some cases. Though the correct
decision regarding this will always depend on the scenario, the second approach is probably more light
weighted and more flexible. As web-services will often be designed to provide the same functionality to
different, independent users there seems to be a fair chance of getting along with the approach taken here
quite well.

The effects of the different levels of abstractions on the number of queries needed can be read from
Table A.5. The number of parameters has an influence on the number of queries needed that is expo-
nential. When choosing the right level of abstraction the trade off between making things too expensive
to be dealt with and missing relevant behavior has to be considered. One big step forward will be moving
the responsibility for supplying a good abstraction refinement from the user to the learning algorithm. The
learning algorithm will then incrementally increase the number of abstract valuations by exploring and
partitioning the concrete parameter-space in whatever fashion.

A.2 The Voyager Case Study

This section presents the learning experiments performed on the ASSL Voyager Case Study. The ex-
periments were performed in an active learning approach on the Java binaries generated from the ASSL
specification of NASA’s Voyager mission.

A.2.1 ASSL Voyager

ASSL is a language designed for the specification of systems of autonomous agents. It is developed
by NASA and intended to be used for describing future space missions. For our case study we were
provided with (1) a formal specification of NASA’s voyager mission re-modeled in ASSL and with (2) a
corresponding set of java classes generated by an ASSL-to-Java code generator. Fig. A.6 contains a
detail of the specification.

AESELF_MANAGEMENT {
OTHER_POLICIES {

POLICY IMAGE_PROCESSING {
FLUENT inTakingPicture {

INITIATED_BY { EVENTS.timeToTakePicture }
TERMINATED_BY { EVENTS.pictureTaken }
}
FLUENT inProcessingPicturePixels {

INITIATED_BY { EVENTS.pictureTaken }
TERMINATED_BY { EVENTS.pictureProcessed }
}
MAPPING {

CONDITIONS { inTakingPicture }
DO_ACTIONS { ACTIONS.takePicture }
}
MAPPING {

CONDITIONS { inProcessingPicturePixels }
DO_ACTIONS { ACTIONS.processPicture }
}
}
}
} // AESELF_MANAGEMENT

FLUENT inStartingGreenImageSession {
INITIATED_BY { EVENTS.

greenImageSessionIsAboutToStart }
TERMINATED_BY { EVENTS.

imageSessionStartedGreen }
}
FLUENT inCollectingImagePixelsBlue {

INITIATED_BY { EVENTS.imageSessionStartedBlue }
TERMINATED_BY { EVENTS.imageSessionEndedBlue }
}

EVENT greenImageSessionIsAboutToStart {
ACTIVATION { SENT { AES.Voyager.

AEIP.MESSAGES.msgGreenSessionBeginAus } }
}
EVENT imageSessionStartedBlue {

ACTIVATION { RECEIVED { AES.Voyager.
AEIP.MESSAGES.msgBlueSessionBeginAus } }

}

Figure A.6: Detail from the ASSL document specifying the Voyager mission

The ASSL description specifies four antennas (located on earth) and the voyager spacecraft. The
spacecraft is equipped with two cameras, a narrow angle one and wide angle one. Every time the space
craft passes by interesting objects or at least every 60 seconds it will take a picture with one of the cameras
(the cameras are used in turn). The taken picture will then color by color and pixel by pixel be sent to each
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of the antennas separately. After receiving the complete picture an antenna will send a message to
the mission control center indicating the arrival of a new picture. All communication is realized through
channels in a publish-subscribe manner: the antennas subscribe to the channel the voyager publishes
to and then they publish to a channel mission control subscribes to. The specified mission is shown in
Fig. A.7.

Figure A.7: Voyager mission (schematic)

A.2.2 Experiments goals and hypothesis

In this scenario the combination of learning and model checking can be used to study several things: one
may search for unexpected behavior allowed by the specification by means of finding such behavior in the
implementation. Drawing conclusions about the specification whilst looking at the implementation however
implicitly makes the assumption that the implementation is a valid refinement of the specification. Thus
testing the conformance of specification and implementation will be the second thing one is interested in.
In the particular setup of this case study unconformant behavior will imply errors in the code generator. A
third point of interest may be testing of the integratability of the different components of the system. This
lead to the following experiments:

• model inference
The functional behavior of the specified components was extrapolated by means of active learning.
The problem of inferring Java code lead to some technical questions (see below).

• conformance of models and specification
The models of the components were tested for conformance to the specification. Conformance was
verified by going through models and specification manually.

• internal logical consistency
The inferred models where searched for unwanted / unexpected behavior by means of model check-
ing techniques.

To apply active learning techniques in the given scenario we used code instrumentation which however
has its limitations (see PoTM Case Study). To test the advantages and potential of a heavyweight ap-
proach to tracing we developed a test driver basing on an extended Java virtual machine (JikesRVM).

To connect the system under test to LearnLib, which provides the means for learning for this case
study, we generated test drivers that translate LearnLib’s queries into invocations of the modeled entities’
methods and that monitor the output of the system.
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A.2.3 Methodology

Viewed from the learning perspective, this scenario comes with several challenges. The first challenge is
to infer the behavior of Java code in general. It is not immediately clear how the notion of input and output
alphabet is to be transferred to the learning of Java programs. As the ASSL code generator places each
modeled entity (as cameras, spacecrafts, messages, channels etc.) into separate Java singletons which
communicate by method invocation, it seemed adequate to use method invocations as input and output
symbols. For input symbols this idea is quite easy to implement: after instantiating the system under test
the learner has to get hold of a set of references to methods it may invoke as inputs.

In the case of output symbols we needed a technique for tracing all method invocations throughout
the tested code. Such “cross cutting concerns” are well addressed by aspect oriented programming resp.
code instrumentation. As stated above we used two slightly different approaches here. A lightweight using
aspectj and a heavyweight one based using JikesRVM.

Figure A.8: schematic view of the experimentalsetup

The third challenge was the intense use of the singleton design pattern and multithreading in the code
generated by the ASSL code generator. Extensive use of singletons in Java becomes a problem when
separate copies of the system under test are instantiated for each experiment to be run. This however is
a Java related issue. Singletons (static references) and every object referenced by one are never garbage
collected, which pretty quick leads to lack of free memory. There are two possible solutions to this. One
can either run each experiment in its own process or run all experiments on the same system under
test. While the former is quite expensive (as every instantiation of the system under test costs several
seconds) the latter requires a mechanism to reset the system into the initial state. We went for the latter
approach and developed a homing sequence (of input actions) that would put the system into the initial
state. The homing sequence essentially consisted of a sequence of actions consuming all the messages
in the channels used by the modeled entities and leaving all components in their initial states.

This lead to the following experimental setup (see Fig. A.8): LearnLib was connected to the modified
java virtual machine which on start would boot up the system under test and some test driver. The
test driver would then stimulate the system under test on behalf of LearnLib, while the virtual machine
monitored the call stack. In case a method assigned to an output symbol was called, the test driver would
be informed and would at the end of each experiment report back to LearnLib.

The possibility to trace the complete call hierarchy makes this setup more grey-box than black-box.
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It makes it possible to view parts of the otherwise hidden inner-workings of the components. In ASSL
the hidden states of components for instance are designed as “fluents”. Those can be activated and
terminated by external or internal events and may while active lead to some action. Monitoring calls of the
methods of the fluents may then lead to a more detailed picture of components (fluent-level) which should
be a valid refinement of a coarser model. We ran experiments with different levels of detail against one
of the antennas. On the coarser level we would only monitor method calls that represent the insertion of
messages into one of the channels (message-level).

Table A.3: stimuli used on different levels of abstraction

Entity Input Symbols Output Symbols
antenna msgBeginc fluentInitc
(fluent-level) msgEndc fluentDonec

msgPixelc msgImageComplete
Multiple antennas msgBegina,c msgImageCompletea

(message-level) msgEnda,c

msgPixela,c

Voyager timeToTakeP icture msgBegina,c

(message-level) msgEnda,c

msgPixela,c

c ∈ {red, blue, green}, a ∈ {aus, jpn, cal, spa}

The behavior of the voyager spacecraft was inferred only on the message-level. As the voyager has
only one stimulus, which on the message-level changes the state anytime it is used, there is no chance
to get a more detailed model by taking into account the inner-workings. To verify that the four antennas
work completely independent from each other we did set up one scenario with two parallel antennas (for
used stimuli see Table A.3).

The ASSL-to-Java code generator makes extensive use of threads. Each autonomous entity and most
of its components are put into separate threads. Each thread runs its own main loop in which taking turns
the application’s logic is run and the thread is paused for a fixed amount of time. To examine if timing
and scheduling have any impact on the system under test the fluent-level version was run with simulated
threads and a fixed scheduling among the simulated threads. All other experiments were run with real
threads and the virtual machine’s scheduler.

As the Voyager’s output symbols are the antennas input symbols, it is not reasonable to test the
Voyager together with the antennas. This leads to experiments shown in Table A.4.

Table A.4: performed experiments

Experiment Entities Level Test driver
A1 Voyager message-level JikesRVM
A2 Antenna Australia message-level JikesRVM
A3 Antenna Australia fluent-level simulated threads / man trace
A4 Antennas Aus+Spa message-level JikesRVM

A.2.4 Results

Performance results for all experiments are shown in Table A.5. |Σ| and |Ω| denote the sizes of the input-
and the output-alphabet respectively, “states” denotes the number of states the learned model has. “mqs”
and “eqs” indicate the number of the membership queries and equivalence queries performed to infer the
model, respectively.
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Table A.5: performance results for performed experiments

Experiment |Σ| |Ω| states mqs eqs
A1 1 2 2 3 1
A2 7 2 3 98 1
A3 7 10 8 490 1
A4 13 3 9 1.521 1

Model inference None of the experiments required more than one equivalence query. The model for
experiment A2 (one antenna, message level) is shown in Fig. A.9.

Figure A.9: Model from experiment A2 (Antenna Aus., message-level, all primitives)

Due to the quadratic influence of the number of input symbols (compared to the linear influence of the
number of states) in this case, it is not surprising that the setup with two antennas and 13 stimuli was
the most expensive with regard to membership queries. As one antenna on the message-level has three
states, it is reasonable that two antennas have 9 (= 32) states (see Fig. A.11). Colored red and green are
the states in which only one antenna is outside its initial state, the white states are those in which both
antennas can be triggered to send the msgImageComplete message to mission control in the next step.

On the fluent-level and using simulation code one antenna has eight states: each color can be acti-
vated for processing or not, which makes eight (23) states (see Fig. A.10).
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Figure A.10: Model from experiment A3 (Antenna Aus., fluent-level, sim. threads)

The voyager takes a picture with each camera in turn. The two resulting states differ only in the
number of pixels that are sent to each antenna afterwards as is shown in Fig. A.12. For ease of readability
the Voyager was modified on the source code level for the experiments to send messages to only one
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Figure A.11: Model from experiment A4 (two antennas, message-level, green primitives only)

0

1

TIME_TO_TAKE_PICTURE /

 BLUE_SESSION_BEGIN_AUS; 6 x PIXEL; BLUE_SESSION_END_AUS

 RED_SESSION_BEGIN_AUS; 6 x PIXEL; RED_SESSION_END_AUS

 GREEN_SESSION_BEGIN_AUS; 6 x PIXEL; GREEN_SESSION_END_AUS

TIME_TO_TAKE_PICTURE /

 BLUE_SESSION_BEGIN_AUS; 3 x PIXEL; BLUE_SESSION_END_AUS

 RED_SESSION_BEGIN_AUS; 3 x PIXEL; RED_SESSION_END_AUS

 GREEN_SESSION_BEGIN_AUS; 3 x PIXEL; GREEN_SESSION_END_AUS

Figure A.12: Model from experiment A1 (Voyager, sending to one antenna)

antenna. Otherwise the actions along each transition would have been performed for each of the four
antennas.

Conformance of models and specification Fig. A.13 shows the learned model from the setup with
one antenna on the message-level (A2) imported to the jABC/GEAR. Only the green phase’s primitives
were imported as the primitives for the other colors do not reveal interesting behavior. The corresponding
Kripke structure is shown in Fig. A.14. The Kripke structure used here represents names of input and
output symbols as atomic propositions. In the cases where there is no output the state representing the
output symbol is omitted. This seemed reasonable as there exist only two output symbols in this setup:
the empty output and msgImageComplete. In most cases no additional proposition is needed and states
with no proposition would blow up the size of the Kripke structure without any use.

In the textual version of the specification it is written thatmsgImageCompletewill be sent by an antenna
if and only if the fluent representing the phase in which green image pixels are transferred is terminated
(which is triggered by msgEndgreen):

FLUENT inSendingImage
INITIATED_BY { EVENTS.imageSessionEndedGreen }
TERMINATED_BY { EVENTS.imageAntCaliforniaSent }

As the model of the voyager (see Fig. A.12) shows and as it is specified in the ASSL document, the
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Figure A.13: jABC with imported model for A2 (green primitives only)

transmission phase for the green image pixels is always the last one for a picture. Terminating the green
phase leads automatically to the initiation of the phase (fluent) during which the msgImageComplete will
be sent. The general order of the three phases is not well defined for the antennas.

DO {
CALL AEIP.FUNCTIONS.receiveImagePixelMsg
numPixels = numPixels + 1

}
WHILE numPixels < AS.numPixelsPerImage
CALL AEIP.FUNCTIONS.receiveSessionEndMsg(filterName)

It is specified however (see above) that the actions performed when receiving an opening message for
a phase will lead directly to the termination of the same phase.

Contradicting the specification Fig. A.14 shows that the sequence < msgEndgreen,msgBegingreen >
will lead to msgImageComplete being sent also (in the figure it is < end, begin >). As all other than the
messages related to the green phase resulted in reflexive transitions those are omitted in the imported
model).

Using the GEAR model checker the violation of the “send message after green phase” property can
be visualized in a fashion that shows exactly which states violate it. The used formula (CTL in GEAR
dialect1) reads:

(¬send− image ∨AXb(end)) ∧ (¬EX(send− image) ∨ end)

The former half of the formula will fail for all states annotated with send−image but preceded by something
other than end. The latter half will fail for states that are not labeled end but are succeeded by a send −
image.

1In the CTL dialect provided by GEAR AXb denotes “for all predecessors”
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Figure A.14: Kripke structure of model from Fig. A.13, colored according to CTL formula

To substantiate the assumption that the behavior found is actually an example of unconformant behav-
ior any influence of the experimental setup had to be disqualified. We thus ran the erroneous sequence
on the system under test using the HotSpot Jvm without any modifications. The result was the same as
observed during the learning. The system would send the message after receiving the two messages in
the wrong order. As the system under test is generated directly from the specification by an ASSL-to-Java
code generator the existence of unconformant behavior implies errors in the generator.

Apart from the presented error no other unconformity was found comparing the textual specification
with the learned models.

Internal logical consistency The < msgEndgreen,msgBegingreen > sequence produced unwanted
behavior in all JikesRVM setups but not for the fluent-level setup in which simulation code was used. In
the simulated code no threads were used and scheduling would take place in a well defined order. A
< msgEndgreen,msgBegingreen > sequence has no effect. After ruling out the modified VM as cause for
the unconformant behavior, it had to be explainable by the differences between the simulation scenario
and the ones using a modified VM.

One possible explanation for what happens here is timing and scheduling related. After sending both
messages, due to some not expected race condition, the green transmission fluent is activated and then
terminated directly afterwards. This possibility was eliminated by introducing long enough waits between
the single steps done in each experiment. The erroneous behavior was not influenced.

This is only possible because messages are never lost in the generated code. The channels work
like a set of buckets. There is one bucket for each message type and no bucket is ever emptied. Thus a
< msgEndgreen,msgBegingreen > sequence will lead to starting the green transmission phase and then
using the stored message terminating it immediately. We found that in the simulation scenario channels
were emptied by the test driver after each single step, while in the VM scenario only after each experiment
the channels were emptied.

The cause for the unwanted behavior is due to the unrealistic implementation of message passing
between the Voyager and the antennas. As in reality only loss of messages, but no modifications to the
sequence, may occur we modified the experimental setup accordingly (by clearing channels before each
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Figure A.15: jABC imported model for A2, only green phase, corr. channel behavior

step) and rerun experiment A2. The resulting model imported into jABC/GEAR is shown in Fig. A.15.
Evidently the unwanted behavior is no longer existent.

A.2.5 Summary

The conformance of textual specification and generated code was tested successfully. The one error found
lead to unexpected behavior of the generated message channels. Apart from this error the code generator
works (considering the typical constraints to be made when applying active learning) as expected and
produce code conforming to the specification. The constraints to be named are:

1. active learning relies on equivalence queries which can only be approximated in practice. The value
of the results thus generally depends on the confidence level of the performed equivalence query
approximation. The exact confidence level however can only be determined with respect to an
upper bound on the number of states the system under test may have. We chose an upper bound
that seems sound in the given case study. With respect to this bound the confidence level of the
performed approximation is 100%.

2. active learning is not capable of representing time dependent behavior. The ASSL-to-Java code
generator uses threads in many places. To cover the possible behavior completely scheduling had
to be part of the learning process.

Though this case study is only dealing with quite small models some valuable conclusions may be
drawn from it. For a complete discussion we refer to Chapter 2.
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A.3 Generating Models of Communication Protocols using Regular
Inference with Abstraction

This paper contains a worked-out presentation of the framework for using abstraction for bridging between
different levels of abstraction, which is reported in Section 3.3. Such bridging is needed, not only for
generating abstract models by the learning enabler, but also later when generating running code from
an abstract specification of a synthesized connector. The paper also evaluates the applicability of this
approach to real-world protocols by reporting on an implementation of the techniques by connecting the
LearnLib tool for regular inference with the protocol simulator ns-2, and generating models of SIP and
TCP protocol components as implemented in ns-2.
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ABSTRACT
To promote model-based verification and validation, it would
be highly useful to develop techniques for generating mod-
els of communication system components from observations
of their external behavior. Previous work on model gener-
ation has employed regular inference techniques which gen-
erate only finite-state models. However, typical protocol
entities do not have finite-state models, since they use se-
quence numbers, buffers, and other unbounded data do-
mains. We present a framework, which adapts regular in-
ference to generating models of infinite-state components
with infinite message alphabets. We adapt abstraction tech-
niques, used in formal verification and program analysis, to
the constraints of a black-box setting. A component inter-
face is augmented by an abstraction layer, which produces
a finite-state abstract view: by regular inference, a finite-
state model is inferred, which can thereafter be mapped to
an infinite-state model of the component. Since inference
cannot access the internal state of a component, it is more
difficult to define abstractions than in, e.g., model checking:
therefore we present techniques for generating them system-
atically under restrictions on component behavior. We have
implemented our techniques by connecting the LearnLib tool
for regular inference with the protocol simulator ns-2, and
generated models of SIP and TCP protocol components as
implemented in ns-2.

1. INTRODUCTION
Model-based techniques for verification and validation of
communication protocols and reactive systems, including
model checking and model-based testing [6] have witnessed
drastic advances in the last decades, and are being applied in
industrial settings (e.g., [18]). They require formal models

∗Supported in part by EC Proj. 231167 (CONNECT).
†Supported in part by the European Community’s 7th
Framework Programme No. 214755 (QUASIMODO). Fides
Aarts and Johan Uijen are currently affiliated with the Inst.
f. Comp. and Inf. Sciences, Radboud University

that specify the intended behavior of system components,
which ideally should be developed during specification and
design. However, the construction of models typically re-
quires significant manual effort, implying that in practice
often models are not available, or become outdated as the
system evolves. Automated support for constructing models
of the behavior of implemented components would therefore
be extremely useful, e.g., for regression testing, for replac-
ing manual testing by model based testing, for producing
models of standardized protocols, for analyzing whether an
existing system is vulnerable to attacks, etc. Techniques,
developed for program analysis, that construct models from
source code (e.g., [3, 17]) are often of limited use, due to the
presence of library modules, third-party components, etc.,
that make analysis of source code difficult. We therefore
consider techniques for constructing models from observa-
tions of their external behavior.

The construction of models from observations of component
behavior can be performed using regular inference (aka au-
tomata learning) techniques [2, 9, 20, 27]. This class of
techniques is now receiving increasing attention in the test-
ing and verification community, e.g., for regression testing
of telecommunication systems [16, 19], for integration test-
ing [21, 21, 15], security protocol testing [29], and for com-
bining conformance testing and model checking [25, 14]. Al-
gorithms for regular inference pose a sequence of membership
queries, each of which observes the component’s output in
response to a certain input string, and thereafter produce a
minimal deterministic finite-state machine which conforms
to the observations. After a sufficient number of member-
ship queries, the produced machine will be a faithful model
of the observed component.

Since regular inference techniques are designed for finite-
state models, previous applications to model generation have
been limited to generating a finite-state view of the system
behavior, implying that, e.g., the alphabet must be made fi-
nite, e.g., by suppressing parameters. However, typical pro-
tocol entities do not have finite-state models, since they use
sequence numbers, buffers, and other unbounded data do-
mains. Modeling this part of behavior is often important:
for instance the influence of data on control flow is used
in model-based test generation tools, such as ConformiQ
Qtronic [18]. Extensions of regular inference to handle sim-
ple forms of identifiers [5] or timed automata [11, 12, 13] have
been proposed, using techniques specific to the proposed ex-
tensions, but there is no general framework for generating



infinite-state models, incorporating data and control, by in-
ference.

In this paper, we propose a framework for using regular in-
ference to produce models of infinite-state components with
infinite communication alphabets. The idea is to augment
finite-state regular inference by an abstraction layer, which
provides a finite-state abstract view to the inference engine,
but allows to generate infinite-state models by reversing the
effect of the abstraction. This technique is inspired by pred-
icate abstraction [22, 7], which has been successful for ex-
tending finite-state model checking to large and infinite state
spaces. In contrast to that work, however, we are now in a
black-box setting, so we cannot define the abstraction di-
rectly on the source code of a component. Abstractions
are typically history-dependent, so the abstraction must also
maintain local state information. Since (in contrast to model
checking) we cannot access the internal state of a compo-
nent, finding suitable abstractions is more challenging, but
it becomes feasible under restrictions on what operations the
component may perform on data.

In this paper, we present a general framework for generat-
ing infinite-state models of components: an abstraction is
constructed as consisting of a separately maintained local
state and a mapping of interface symbols. By regular in-
ference, a finite-state model of the abstracted interface is
inferred. The abstraction can then be reversed to generate
an infinite-state model of the component. Since inference
cannot access the internal state of a component, it is more
difficult to define abstractions than in, e.g., model check-
ing. We therefore present techniques for generating abstrac-
tions systematically under restrictions on component behav-
ior. We propose to realize the abstraction by an external
component, which we call a Mapper. We have implemented
our techniques by connecting the LearnLib tool for regular
inference with the protocol simulator ns-2, which provides
implementations of standard protocols. We have used it to
generate models of the ns-2 implementations of entities in
the SIP and TCP protocols.

Related Work.. Regular inference techniques have been used
for several tasks in verification and test generation, e.g.,
to create models of environment constraints with respect
to which a component should be verified [8], for regression
testing to create a specification and a test suite [16, 19],
to perform model checking without access to source code
or formal models [14, 25], for program analysis [1], and for
formal specification and verification [8]. Groz, Li, and Shah-
baz [21, 28, 15] extend regular inference to Mealy machines
with data values, for use in integration testing, but use only
a finite set of the data values in the obtained model. In par-
ticular, they do not infer internal state variables. Shu and
Lee [29] learns the behavior of security protocol implemen-
tations for a finite subset of input symbols, which can be
extended in response to new information obtained in coun-
terexamples. Mariani and Pezzé use inference in integration
testing of commercial off the shelf components [23]. They
infer two separate models, which are not closely related: one
for the finite-state control, and the others being a relation
on the parameters in each interaction. They use different in-
ference techniques for each type of model. The approach we

present in this paper unifies the control and data inference
in one framework. Extensions of regular inference have been
proposed to handle infinite-state systems, in which parame-
ters of messages and state variables are from an unbounded
domain, e.g., for identifiers [5], and timers [11, 10]. These
extensions are specialized towards a particular data domain:
this paper proposes a general framework for incorporating a
range of such data domains, into which techniques special-
ized for different data domains can be incorporated. In pre-
vious work [4], we also presented an optimization of regular
inference for models with boolean data parameters, contain-
ing techniques for refining guards which can be adapted to
refining abstractions in the framework of this paper.

Organization.. In the next section, we give an overview of
our approach by means of a simple example. Basic defini-
tions of Mealy machine are in Section 3 and presentation
of inference in Section 4. The abstraction technique is pre-
sented in Section 5, and the application to SIP and TCP
are reported in Section 6. Section 7 contains conclusions
and directions for future work.

2. AN INTRODUCTORY EXAMPLE
Let us introduce our techniques by means of a small exam-
ple. Assume we are given a protocol entity (called SUT)
which services requests to set up a connection. To us, SUT
is a black box. We know its static interface: it receives input
messages of form REQ(id, sn) and CONF(id, sn) and trans-
mits output messages of form REPL(id, sn), ACK(id, sn),
or REJ, where the parameters id and sn range over natural
numbers. We intend to infer a model of its dynamic behav-
ior by means of regular inference. However, SUT can not be
modeled as a finite-state machine (since it handles sequence
numbers and connection identifiers), whereas regular infer-
ence can only infer finite-state models. We overcome this
discrepancy by introducing an abstraction, which maps the
elements in the (infinite) static interface of SUT to a (small)
finite alphabet. As in model checking, this abstraction map-
ping may depend on the previous sequence of symbols trans-
mitted over the interface, which is typically summarized in
state variables. In model checking this is made easier, since
the given model provides access to the internal state of the
SUT. However, we are in a black-box setting, where the
information maintained by the SUT can only be inferred
through observation. This becomes tractable if we may as-
sume restrictions on what operations the SUT can perform
on data parameters received in input messages, making its
behavior “not too complicated”.

Let us say that we can assume that the id parameter always
represents a connection identifier, and that the sn parame-
ter represents a sequence number (this information could be
obtained using documentation, type description, reflection,
or some other means). We assume that the only allowed bi-
nary operations on these parameters are to check for equal-
ity. In addition, sequence numbers may be incremented,
but at most once between each reception of a message and
the transmission of the corresponding response. By system-
atically observing the behavior of SUT during the regular
inference (as described more precisely in Section 5), we can
deduce which input parameters it remembers. Suppose that
this investigation reveals that the id and sn parameters that



are received in the first REQ message are remembered by the
SUT when processing subsequent messages, but thereafter
forgotten. This conclusion leads us to define an abstraction
mapping based on two state variables:

• cur id, which is initially “undefined” (denoted ⊥), and
thereafter assigned to the id parameter of the first re-
ceived REQ message.

• cur sn, which is also initially “undefined” and there-
after assigned to the sn parameter of the first received
REQ message.

Using these state variables, the abstraction is defined as fol-
lows. Each message of form REQ(id, sn), CONF(id, sn),
RESP(id, sn), or ACK(id, sn) is mapped to a symbol of form
REQ(ID,SN), CONF(ID,SN), RESP(ID,SN), or ACK(ID,
SN), where ID is either CUR, denoting the id parameter
value that is remembered, and OTHER, denoting any other
parameter value. Analogously SN is either CUR, denoting
the sn parameter value that is remembered, OTHER, de-
noting any other parameter value, or CUR + 1, denoting
the result of incrementing the remembered value. Table 1
summarizes the mapping from “concrete” parameter values
to corresponding abstract parameter values. Each entry in
the table contains constraints under which the parameter of
the row (id or sn) will be mapped to the abstract value of
the column (CUR, CUR + 1, or OTHER). We use mtype
to denote the type of the message considered (being either
REQ, CONF, RESP, ACK, or REJ). Thus, in total there

par CUR CUR + 1 OTHER

id

cur id = ⊥
∧ mtype = REQ
∨

id = cur id
∧ cur id 6= ⊥

id 6= cur id
∧ cur id 6= ⊥

sn

cur sn = ⊥
∧ mtype = REQ
∨

sn = cur sn
∧ cur sn 6= ⊥

sn = cur sn + 1
∧ cur sn 6= ⊥

sn = cur sn
∧ cur sn 6= ⊥

Table 1: Abstraction mappings for parameters

are 12 abstract input symbols and 13 abstract output sym-
bols (the symbol REJ is mapped to itself). This abstraction
mapping is naturally extended to a mapping from sequences
of (concrete) messages to sequences of abstract symbols. It
is then possible to infer the behavior over abstract symbols,
modeled as a finite-state machine, using regular inference.

To actually perform the inference, we assume that we have a
Learner module, which uses regular inference to infer finite-
state models from observed responses to sequences of input
symbols. We wrap the interface of SUT by a Mapper module,
as shown in Figure 1. The Mapper maintains the local state
information that is needed to perform the abstraction map-
ping (in this example the state variables cur id and cur sn).
Intuitively, the Mapper hides the details of the “data part”
of SUT, so that the Learner can be used to infer its “control
part”. Each symbol a sent by the Learner is translated by
the Mapper to some message, which is mapped to a by the
abstraction mapping, and sent to SUT. The corresponding

Learner Mapper SUT

-REQ(CUR, CUR) -REQ(25, 4)

�REPL(25, 4)�REPL(CUR, CUR)

Figure 1: Introduction of Mapper module

reply by SUT is translated to an abstract symbol, using the
mapping, and sent back to the Learner. Thus, the Learner
perceives a Mealy machine which interacts using the alpha-
bet of abstract symbols. She can now proceed to infer a
finite-state machine that describes the possible sequences of
abstract symbols transmitted between the Learner and the
Mapper. A possible result is the Mealy machine in the figure
below.

?j
?
REQ(CUR,CUR) / REPL(CUR,CUR)j
?CONF(CUR,CUR + 1) / ACK(CUR,CUR + 1)j
�
	
�
� REQ(CUR,CUR) / REPL(CUR,CUR)

Each arc is labeled by an input symbol followed by the out-
put symbol that the Learner observes in response. From the
picture, we have excludes all arcs that contain the output
symbol REJ: these all go to a terminal error state (also not
shown).

Knowing the behavior of the Mapper, we can transform the
above Mealy machine into a symbolically described infinite-
state Mealy machine, which describes the behavior of the
SUT. This is done by replacing each abstract input and
output symbol by a symbolic expression that characterizes
the corresponding concrete messages, and by adding assign-
ments to maintain local variables of the Mapper. The result
is shown below. The machine is initially in the uppermost
control location, and variables cur id and cur sn are initial-
ized to ⊥. Each transition is triggered by the reception of
a message, if parameter values satisfy the guard following
when. If triggered, the transition will perform the assign-
ments and transmission of output message occurring after
the /. For brevity, we have omitted checks that cur id and
cur sn are not ⊥ in the guards of the two lower arcs. As
for the abstract machine, we have suppressed all arcs where
the machine replies with the output symbol REJ and lead
to a terminal error state: their guards are satisfied by input
symbols not covered by any of the displayed statements.



?j
?

REQ(id, sn) when cur id = cur sn = ⊥ /
cur id, cur sn := id, sn; REPL(cur id, cur sn);

j
?
CONF(id, sn) when (id = cur id + 1 ∧

sn = cur sn + 1) /
ACK(cur id, cur sn + 1) ;j

�
�
�
� REQ(id, sn) when (id = cur id ∧ sn = cur sn) /

REPL(cur id, cur sn) ;

3. MEALY MACHINES

Basic Definitions. We will use Mealy machines to model
communication protocol entities. Here we define the “flat”
version of Mealy machines. A Mealy machine is a tuple
M = 〈ΣI ,ΣO, Q, q0, δ, λ〉 where ΣI is a nonempty set of
input symbols, ΣO is a nonempty set of output symbols, Q is
a nonempty set of states, q0 ∈ Q is the initial state, δ : Q×
ΣI → Q is the transition function, and λ : Q× ΣI → ΣO is
the output function. Elements of Σ∗I are called input strings,
and elements of Σ∗O are called output strings. The sets of
states and symbols can be finite or infinite.

An intuitive interpretation of a Mealy machine is as follows.
At any point in time, the machine is in some state q ∈ Q.
It is possible to give inputs to the machine, by supplying an
input symbol a ∈ ΣI . The machine responds by producing
an output symbol λ(q, a) and transforming itself to the new

state δ(q, a). We use the notation q
a/b−→ q′ to denote that

δ(q, a) = q′ and λ(q, a) = b; in this case q
a/b−→ q′ is called a

transition of M.

We extend the transition and output functions from input
symbols to input strings in the standard way, by defining:

δ(q, ε) = q λ(q, ε) = ε
δ(q, ua) = δ(δ(q, u), a) λ(q, ua) = λ(q, u)λ(δ(q, u), a)

The Mealy machines that we consider are completely speci-
fied, meaning that at every state the machine has a defined
reaction to every input symbol in ΣI , i.e., δ and λ are total.
They are also deterministic, meaning that for each state q
and input symbol a exactly one next state δ(q, a) and output
string λ(q, a) is possible.

Given a Mealy machine M with input alphabet ΣI , output
function λ, and initial state q0, we define λM(u) = λ(q0, u),
for u ∈ Σ∗I . Two Mealy machines M and M′ with input
alphabets ΣI are equivalent if λM(u) = λM′(u) for all input
strings u ∈ Σ∗I .

Symbolic Representation. When modeling entities of com-
munication protocols, messages are typically described as
consisting of a message type with a number of parameters,
and states are typically defined by a combination of a con-
trol location and state variables. We will therefore define a
symbolic way to represent Mealy machines, as a particular
form of “Extended Finite State Machines” (EFSMs).

Input and output symbols will be represented using finite
sets I and O of (input and output) action types. Each action
type α has a certain arity, which is a tuple of domains (a
domain is a set of allowed data values)Dα,1, . . . ,Dα,n (where

n depends on α). We will use d, d1, d2, etc. to range over
data values. Let ΣI be the set of input symbols of form
α(d1, . . . , dn), where di ∈ Dα,i is in the appropriate domain
for each i with 1 ≤ i ≤ n. The set of output symbols ΣO is
defined analogously.

To represent states, we use a finite set L of locations, and
a finite set V of state variables. Each state variable v has
a domain of possible values, and a unique initial value. Let
a valuation σ be a partial mapping from the set V of state
variables to data values in their respective domains. Let σ0

denote the valuation which maps each state variable to its
initial value. The set of states of a Mealy machine is now
the set of pairs 〈l, σ〉, where l ∈ L is a location, and σ is a
valuation. The initial state is 〈l0, σ0〉.

Let us finally consider the representation of the transition
and output functions. There are several possible ways to rep-
resent these symbolically. We have chosen a simple formal-
ism based on guarded assignment statements. We will use
a finite set of formal parameters, ranged over by p1, p2, . . .,
which will serve as local variables in each guarded assign-
ment statement. We will assume some constants and opera-
tors to form expressions, and extend the definition of valua-
tions to expressions over state variables in the natural way;
for instance, if σ(v3) = 8, then σ(2 ∗ v3 + 4) = 20.

A symbolic transition is a transition between locations, la-
beled by a guarded assignment statement. We denote it as

il il′-
α(p1, . . . , pn) when g / v1, . . . , vk := e1, . . . , ek ;

β(eout1, . . . , e
out

m)

where

• l and l′ are locations,

• p1, . . . , pn is a tuple of different formal parameters, In
what follows, we will use d for d1, . . . , dn and p for
p1, . . . , pn,

• g is a boolean expression (the guard) over p and the
state variables in V ,

• v1, . . . , vk := e1, . . . , ek is a multiple assignment state-
ment, which to some (distinct) state variables v1, . . . , vk
in V assigns the values of the expressions e1, . . . , ek;
here e1, . . . , ek are expressions over p and state vari-
ables in V ,

• eout1, . . . , eoutm is a tuple of expressions over p and
state variables, which evaluate to data values d′1, . . . , d′m
so that β(d′1, . . . , d′m) is an output symbol.

Intuitively, the above guarded assignment statement denotes
a step of the Mealy machine in which some input symbol of
form α(d1, . . . , dn) is received and the values d1, . . . , dn are
assigned to the corresponding formal parameters p1, . . . , pn.
If now the guard g is satisfied, the state variables among
v1, . . . , vk are assigned new values and an output symbol, ob-
tained by evaluating β(eout1, . . . , e

out
m), is generated. The

statement does not denote any step in case g is not satisfied.



Formally, the guarded assignment statement above denotes
that for the location l and the input symbols of form α(d)
for which σ(g[d/p]) is true we have

• δ(〈l, σ〉, α(d)) = 〈l′, σ′〉, where σ′ is the valuation such
that σ′(v) = σ(ei[d/p]) if v is among v1, . . . , vk, and
σ′(v) = σ(v) otherwise

• λ(〈l, σ〉, α(d)) = β(σ′(eout1 [d/p]), . . . , σ′(eoutm [d/p])).

4. INFERENCE
In this section, we present the setting for inference of Mealy
machines. It is formulated in the same setting as Angluin’s
L∗ algorithm [2], in which a so called Learner, who initially
knows nothing about the Mealy machine M, is trying to
inferM, by asking queries to a so called Oracle. The queries
are of two kinds.

• A membership query asks what the output is on a string
w ∈ (ΣI)

∗.

• An equivalence query asks whether a hypothesized Mealy
machine H is correct, i.e., whether H is equivalent to
M. The Oracle will answer yes if H is correct, or else
supply a counterexample, which is a string u ∈ (ΣI)

∗

such that λM(u) 6= λH(u).

The typical behavior of a Learner is to start by asking a
sequence of membership queries until she can build a“stable”
hypothesis H from the answers. After that she makes an
equivalence query to find out whether H is equivalent to
M. If the result is successful, the Learner has succeeded,
otherwise she uses the returned counterexample to perform
subsequent membership queries until converging at a new
hypothesized Symbolic Mealy machine, which is supplied in
an equivalence query, etc.

For flat finite-state Mealy machines, the above problem is
well understood, and there is an implementation in the Learn-
Lib tool [26] of an adaptation of the L∗ algorithm due to
Niese [24]. In a black-box setting, equivalence queries can
only be approximated: in LearnLib by test suites of user-
controllable size.

5. INFERENCE USING ABSTRACTION
In this section, we present our technique for using regular
inference to infer models of large- or infinite-state Mealy ma-
chines: the main idea is to transform the dynamic interface
of the SUT into a finite-state interface by an abstraction
mapping. We have adapted ideas from predicate abstrac-
tion [22, 7], which has been successful for extending finite-
state model checking to larger and even infinite state spaces.
However, we are in a black-box setting and so we must use
abstraction in a different way.

We assume that we are given the task of inferring a symbolic
representation of a Mealy machineM = 〈ΣI ,ΣO, Q, q0, δ, λ〉,
where ΣI ,ΣO, and Q may be large or even infinite. As in
Section 2, this is done by defining an abstraction mapping,
which transforms input and output strings ofM into strings
over a finite alphabet, so that the resulting behavior can be

described by a (hopefully small) finite-state Mealy machine
MA, in which the alphabets and set of states are finite. We
will often refer to the latter Mealy machine as an “abstract”
one, and similarly for its input and output alphabets, etc.
We will use the superscript A when referring to the abstract
version of alphabets, states, etc.

The abstraction is defined using an additional set R of local
states, containing an initial state r0. Whenever a new input
symbol is observed, the local state is updated by a function
δR : R × ΣI 7→ R. We can extend δR to a mapping from
sequences of input symbols to the reached local state, by
defining:

δR(ε) = r0 δR(ua) = δR(δR(u), a),

The local state is used to define two state-dependent ab-
straction mappings:

• abstrI : R × ΣI 7→ ΣAI maps input symbols to a finite
set ΣAI of abstract input symbols,

• abstrO : R × ΣO 7→ ΣAO maps output symbols to a
finite set ΣAO of abstract output symbols. The mapping
abstrO is required to be deterministic in the sense that
for each r ∈ R and bA ∈ ΣAO there is at most one
output symbol b ∈ ΣO such that abstrO(r, b) = bA.

These mappings (abstrI and abstrO) together imply the be-
havior of MA: if after the input sequence u it has reached
state qA, its reaction λA(qA, u) is abstrO(r, λ(q, a)), where
abstrI(r, a) = abstrI(r, a

′). Here, r = δR(u) and q = δ(u)
are the states reached after u in the abstraction and in M,
respectively.

Intuitively, one can think of the behavior of MA as fol-
lows: WheneverMA receives an abstract input symbol aA ∈
ΣAI , this corresponds to M receiving some symbol a with
abstrI(r, a) = aA, where r is the maintained local state
of the abstraction. Then M then responds by the output
symbol λ(q, a) which is mapped to abstrO(r, λ(q, a)), which
becomes the output from MA. Since each abstract mem-
bership query in (ΣAI )∗ in general corresponds to several
concrete queries to M, a thorough inference process should
perform each abstract query several times, with a strategy
for covering the set of corresponding concrete input strings.
This aspect is outside the scope of this paper, so we do not
further elaborate on that here.

We see that the behavior of MA is deterministic only if

abstrI(r, a) = abstrI(r, a
′)

implies
abstrO(r, λ(q, a)) = abstrO(r, λ(q, a′))

for all input symbols a, a′, and (reachable combinations of)
states q, r. Intuitively, this means that two input symbols (a
and a′ in this case) should be mapped to the same abstract
input symbol only if they are “handled in the same way” by
M (i.e., produce the same abstract output symbol). Later
in this section, we present techniques to construct abstrac-
tions that satisfy this condition. We also present techniques,
which can refine the input abstraction abstrI appropriately if
it is discovered that the condition is violated for some input
symbols a, a′ and local state r of the abstraction.



Let us now describe how abstraction mappings can be con-
veniently defined symbolically:

• Local states are defined by a set V ′ of state variables
with initial values, and expressions for updating their
values in response to each input symbol in ΣI . The set
R is then the set of valuations of the variables in V ′.

• abstrI (the input abstraction mapping) can be defined
by supplying, for each abstract input symbol aA in ΣAI ,

and each input action type α, a guard ga
A
α which char-

acterizes when an input symbol of form α(p1, . . . , pn)
is mapped to the abstract symbol aA.

• abstrO (the output abstraction mapping) can be de-
scribed by letting each abstract output symbol in ΣAO
be an expression of form β(eout1 , . . . , eoutm ), where each
eouti is an expression over state variables and param-
eters in the just received triggering input message, so
that β(eout1 , . . . , eoutm ) evaluates to an output symbol
β(d1, . . . , dm) in ΣO. In Section 2 and 6, we use a
variation of this, in the form of constraints on the pa-
rameters of β.

If the Mapper is designed properly, the Learner will be able
to infer an abstract Mealy machine
MA = 〈ΣAI ,ΣAO , QA, qA0 , δA, λA〉. We can then derive the
corresponding behavior ofM, represented as the Mealy ma-
chine M = 〈ΣI ,ΣO, QA ×R, 〈qA0 , r0〉, δ, λ〉, where

• λ(〈qA, r〉, a) is an output symbol b such that abstrO(r, b) =
λA(qA, a), and

• δ(〈qA, r〉, a) = 〈δA(qA, a), δR(r, a)〉.

We note that the requirement that abstrO be injective is
essential for obtaining a deterministic output function for
M.

To obtain a symbolic representation of M, we simply let
QA be the set of locations, and transform each transition

qA
aA/bA−→ rA, where bA is β(eout1 , . . . , eoutm ), into the symbolic

transition

mqA mrA-
α(p) when ga

A
α / v := e ;β(eout1 , . . . , eoutm )

where v := e is the update defined in response to an input

symbol of form α(p) when ga
A
α is satisfied.

As indicated in Section 2, we will typically succeed in build-
ing a suitable abstraction only if we can make restrictive
assumptions on the behavior of M. Typically, we assume
that M can be modeled as a finite control skeleton which
manipulates the data received in input messages. The ab-
straction mapping is then used to capture the potential“data
aspects” of M, leaving the control aspects to be inferred by
regular inference. For different assumptions on how data are
manipulated byM, we can devise systematic techniques for

using observations to define an initial abstraction: these ob-
servations can be made in a preliminary phase before the
actual inference process, or can be integrated with the infer-
ence. An alternative to such an initial observation phase is
that we have enough a priori knowledge about the behavior
of M to define an initial abstraction.

Let us present how the definition of an abstraction can be
generated for the case that parameters are data values from
a potentially unbounded set, where the only allowed opera-
tions are to generate fresh values or compare existing ones
for equality. They are adapted from our previous work [5].
For parameters of this form, the crucial decision in the design
of a suitable abstraction is to decide when to store received
parameters in state variables to allow comparisons with pa-
rameters that occur in the future. The techniques for finding
out which parameters to store are, in short, as follows.

Consider an input string u, which contains a parameter value
d. We intend to investigate whether M remembers d af-
ter having received u. This is done by observing the out-
put of M in response to continuations following u. Let d′

be a fresh data value that did not occur in u. If there is
some continuation v of u such that the reponse λ(δ(q0, u), v)
to v and the reponse λ(δ(q0, u), v[d′/d]) to v[d′/d] (i.e., v
where all occurrences of d have been replaced by d′) satisfy
λ(δ(q0, u), v[d′/d]) 6= λ(δ(q0, u), v)[d′/d] then u must be re-
membered after u: this is so, since M does not treat d in
the same way as a fresh value d′.

Based on this principle, we systematically monitor member-
ship queries to detect which parameters should be stored in
state variables. Should the abstraction mapping violate the
well-formedness property stated above, the input abstrac-
tion can be refined so that the partitioning on input sym-
bols induced by the input abstraction mapping is refined, if
necessary by adding more state variables to r. Techniques
for this can be adapted from [4, 5].

For parameters which are of type sequence number, the
above scheme can be modified to find out which data values
must be remembered in the abstraction mapping. Analo-
gous schemes have been developed for timers in the context
of (subclasses of) timed automata [10, 13].

6. EXPERIMENTS
We have implemented and applied our approach to infer
models of two implemented standard protocols: the Session
Initiation Protocol (SIP) and the Transmission Control Pro-
tocol (TCP). In this section, we first describe our experimen-
tal setup, thereafter its application to the two protocols.

In order to have access to a large number of standard com-
munication protocols, for development and evaluation of our
inference techniques, we use the protocol simulator ns-21 to
serve as SUT. The protocol simulator ns-2 provides imple-
mentations of a large number of communication protocols.
Messages are represented as C++ structures, saving us the
trouble of parsing messages represented as bitstrings. As
Learner, we use the LearnLib tool [26], developed at the
Technical University Dortmund, which has an efficient im-

1http:/www.isi.edu/nsnam/ns/



plementation of the L∗ algorithm that can construct both
finite automata and Mealy machines. LearnLib provides sev-
eral different realizations of equivalence queries, including
random test suites of user-controlled size.

To set up the experiments, we implemented a Mapper mod-
ule, which performs a translation as described in Section 2.
Our Mapper module also had to bridge between the asyn-
chronous buffered interface of LearnLib and the synchronous
interface of ns-2, which represents each received message as
a method call. Each membership query issued by LearnLib
must be transformed to a new protocol session with ns-2.
The overhead for setting up and closing sessions imposed
some limits on the number of membership queries that could
be performed in reasonable time.

6.1 SIP
SIP is an application layer protocol for creating and manag-
ing multimedia communication sessions, such as voice and
video calls. Although a lot of documentation is available,
such as the RFC 3261, no proper reference behavior model,
as a state machine, is available. Our first case study con-
sisted of the behavior of the SIP Server entity when set-
ting up and closing connections with a SIP Client. A mes-
sage from the SIP Client to the SIP Server has the form
Request(Method,From,To,Contact,CallId,CSeq,Via),
where

• Method defines the type of request, either INVITE,
PRACK or ACK.

• From contains the address of the originator of the re-
quest.

• To contains the address of the receiver of the request.

• CallId is a unique session identifier.

• CSeq is a sequence number that orders transactions in
a session.

• Contact is the address on which the Client wants to
receive Request messages.

• Via indicates the transport that is used for the transac-
tion. The field identifies via which nodes the response
to this request need to be sent.

A response from the Server to the Client has the form
Response(StatusCode,From,To,CallId,CSeq,Contact,Via),
where StatusCode is a three digit code status that indicates
the outcome of a previous request from the Client, and the
other parameters are as for a Request message. In the fol-
lowing, we will omit the Response and Request field, and
denote the Method and StatusCode fields as message types,
i.e., a Response will have the form
StatusCode(From,To,CallId,CSeq,Contact,Via).

Abstraction Mapping. Let us describe how we arrived at
an abstraction mapping for SIP. We consider separately the
parameters. The parameters From, To, and Contact must
be pre-configured in a session with ns-2, so they are set to

constant values throughout the experiment. The Via param-
eter is a pair, consisting of a default address and a variable
branch. The parameters Via, CallId, and CSeq are poten-
tially interesting parameters. A priori, they can be handled
as parameters from a large domain, on which test for equal-
ity and potentially incrementation can be performed, so we
use the technique described in Section 5 to devise appropri-
ate mapping functions. Monitoring reveals that the ns-2 SIP
implementation for each of these parameters remembers the
value which is received in the first Invite message (presum-
ably, it is interpreted as parameters of the connection that
is being established). For each of the three parameters, it
also remembers the value received in the previous Request
message when producing the corresponding Response reply,
but thereafter forgets it.

Following this information, the abstraction mapping is based
on six state variables. For the CallId parameter, the state
variable firstId stores the CallId parameter of the first In-
vite message, and lastId stores the CallId parameter value
of the most recently received message. The state variables
firstCSeq and lastCSeq store the analogous values for the
CSeq parameter, and the state variables firstVia and lastVia
store the analogous values for the Via parameter. The map-
ping, based on these state variables, is shown in Tables 2
and 3. The tables say that the input parameters Via and
Cseq are not tested by ns-2, whereas the input parameter
CallId is compared with the variable firstId (in the first In-
vite message) to check if it already is defined. The variable
firstId is simply assigned the value of the CallId parameter.
In output Response messages, these parameters can take
the value received in the first Invite message, or the value in
the just received message, corresponding to the two abstract
values FIRST INVITE and LAST.

The SIP Server does not always respond to each input mes-
sage, and sometimes responds with more than one message.
To stay within the Mealy machine formalism, we introduce
the nil input symbol which denotes the absense of input, in
order to allow sequences of outputs, and the timeout output
symbol, denoting the absence of output.

ANY
CSeq isInteger(CSeq)
V ia V ia.Address = Default;

isInteger(V ia.Branch)

FIRST LAST
CallId firstId = ⊥ ∧ mtype =

Invite ∨
isInteger(CallId)

firstId 6= ⊥ ∧ CallId =
firstId

Table 2: Mapping table for input messages of SIP
Server

Results for SIP. The inference performed by LearnLib
needed about thousand membership queries and one equiva-
lence query, and resulted in a model with 10 locations and 70
transitions. This is a minimal abstracted model. For pre-
sentation purposes, we have pruned the model as follows:
(1) removing transitions triggered by abstract symbols that



FIRST INVITE LAST OTHER
CSeq CSeq =

firstCSeq
CSeq =
lastCSeq

Other

V ia V ia = firstVia V ia = lastVia Other

FIRST LAST OTHER
CallId CallId = firstId CallId = lastId Other

Table 3: Mapping table for output messages of SIP
Server

have no corresponding concrete symbol: the Mapper will im-
mediately reject these, and react with a distinguished error
symbol, (2) removing transitions with empty input and out-
put symbol, i.e., nil/timeout, (3) removing a location which
has become unreachable after the previous steps. In Fig-
ure 2 in Appendix A, we show the abstract model resulting
with 9 locations and 48 transitions. For readability, some
transitions with same source location, output symbol and
next location (but with different input symbols) are merged:
the original input method types are listed, separated by a
bar (|). Due to space limitations, we have suppressed the
(abstract) parameter values. However, the CallId parame-
ter is shown by coloring input messages with abstract value
FIRST INVITE in blue, the remaining transitions are red.
We suppressed all other parameters in the Figure. A full ab-
stract model, showing the abstract values of other output pa-
rameters can be found at http://www.it.uu.se/research/
group/testing/sip, together with a description of the cor-
responding concrete model.

This model shows how data parameters in messages influ-
ences control flow: therefore such a model would be more
useful for thorough model-based test generation than a finite-
state model where data aspects are suppressed.

Validation. We have compared the resulting models with
the descriptions in the corresponding standard documents.
According to RFC 3261 and RFC 3262, a trace leading to an
established connection must at least contain the transitions
INVITE/100, PRACK/ 200 and ACK/timeout. As can be
seen in Figure 2 in Appendix A, this is indeed the fact for the
blue transitions representing the session being established.
Moreover no red trace leads to the CONNECTED location,
i.e. location 9, indicating that only one session can be estab-
lished at the same time. The formal description mentions
that after receiving a 100, 180 or 183 Response, no further
Invite Requests should be retransmitted, but there are no
strong constraints on noise.

Note that, having reached location 9, the Server does not re-
act to any of the input symbols that we consider. We did not
add any input message (e.g., sending some payload) to test
whether the SIP Server actually has reached a connected
location in location 9. Therefore, there are also other se-
quences that reach location 9, in which the SIP Server most
likely has not opened a connection, but which the inference
does not distinguish from a situation with an opened con-
nection.

6.2 TCP

As a second case study, we chose the ns-2 implementation
of the Transmission Control Protocol (RFC 793). TCP is
a transport layer protocol, that provides reliable and or-
dered delivery of a byte stream from one computer appli-
cation to another. It is one of the most widely used com-
munication protocols. We consider the connection estab-
lishment and termination between Client and Server, but
leave out the data transfer phase. As SUT, we consider
the Server component of the protocol. We consider Re-
quest messages, which are input to SUT, and Response mes-
sages, which are the output from SUT. Messages in TCP are
of form Request/Response(SYN,ACK,FIN,SeqNr,AckNr).
Among parameters, SYN, ACK, and FIN are flags that de-
fine what type of message is sent: SYN synchronizes se-
quences numbers, ACK acknowledges the previous SeqNr,
and FIN signals the end of the data transfer phase. SeqNr
is a number that needs to be synchronized with both sides
of the connection, and AckNr acknowledges a previous se-
quence number. Both Client and Server can send messages
with the same parameters as defined above. We distinguish
these messages by using Request for messages that are sent
to SUT and Response for messages that come from SUT.

Abstraction Mapping. To define the abstraction mapping,
we use information obtained from the standard RFC 793. For
the flags SYN, ACK, and FIN, there are four valid combi-
nations, shown in the first row of Table 4, thus defining four
abstract values SYN, SYN+ACK, ACK, and ACK+FIN.
The parameters SeqNr and AckNr are treated as sequence
numbers. In this case, they will be incremented with each
transmission round in a session. We therefore define four
state variables: last SeqNr sent and last AckNr sent are the
last values of SeqNr and AckNr, respectively, that have been
transmitted to ns-2 in a valid Request message. last SeqNr recd
and last AckNr recd are the last values of SeqNr and AckNr,
respectively, that have been received from ns-2 in a valid
Response message: they are initially ⊥. By “valid”, we un-
derstand messages that follow the protocol and increment
parameters SeqNr and AckNr appropriately. Using these
state variables, the abstraction mappings for Request and
Response messages are shown in the second and third rows of
Table 4. The main information is that in VALID messages,
each AckNr increments the previously sent SeqNr at both
sides, and that each SeqNr should be that of the previously
received AckNr.

Request SYN SYN+ACK ACK ACK+FIN
Type SYN = 1 SYN = 1 ∧

ACK = 1
ACK = 1 ACK = 1 ∧

FIN = 1

Request VALID INVALID
SeqNr SeqNr = last AckNr recd SeqNr 6= last AckNr recd
AckNr AckNr =

last SeqNr recd + 1
AckNr 6=
last SeqNr recd + 1

Response VALID INVALID

SeqNr
last SeqNr recd = ⊥

∨SeqNr = last SeqNr recd
last SeqNr recd 6= ⊥

∧SeqNr 6= last SeqNr recd
AckNr AckNr =

last SeqNr sent + 1
AckNr 6=
last SeqNr sent + 1

Table 4: Abstraction of parameters in input and
output messages of TCP



Results. After inference, LearnLib produced a model with
12 locations and 204 transitions. In order to display the
model in this paper, we suppressed transitions with input
symbols that have INVALID abstract parameter values are
suppressed, and removed transitions labeled by nil/timeout,
resulting in 11 locations and 33 transitions, shown in Figure
3 of Appendix B. The model is displayed in a shorthand
symbolic representation for readability reasons.

Validation. To validate the learned TCP model, we com-
pared it to a reference model2. Our setup differs from this
one, in that we do not explicitly use triggers, like CON-
NECT, SEND, LISTEN, CLOSE, and that we do not model
a RST message. Furthermore, our learned model reflects
only setup and closing of connections which are initiated by
the Client communicating with the Server. To include setup
and closing initiated by the learned Server, we should also
have included the above triggers in the set of input symbols
of membership queries. We therefore compare our learned
model with the paths in the reference model that correspond
to behavior triggered by the Client. We observe the follow-
ing differences and similarities.

• Connection establishment corresponds between the two
models.

• The reference model responds to FIN messages when
closing a connection, but the learned model does not
respond at all to FIN messages, only to FIN+ACK.
This is a choice made by the implementors of the mod-
ule in ns-2: it is our impression that this is a common
practice in TCP implementations.

• In the ns-2 implementation, there are several ways to
close connections, which are not represented in the ref-
erence model, e.g., by a transition with
ACK(VALID,VALID)/timeout from location 9 to 11.

7. CONCLUSIONS AND FUTURE WORK
We have presented an approach to infer models of entities
in communication protocols, which also handles message pa-
rameters. The approach adapts abstraction, as used in for-
mal verification, to the black-box inference setting. This
necessitates to define an abstraction together with the lo-
cal state needed to define it. This makes finding suitable
abstractions more challenging, but we have presented tech-
niques for systematically deriving abstractions under restric-
tions on what operations the component may perform on
data. We have shown the feasability of the approach towards
inference of realistic communication protocols, by feasibility
studies on SIP and TCP, as implemented in the protocol sim-
ulator ns-2. The work shows how regular inference can infer
the influence of data parameters on control flow, and how
data parameters are produced. Thus, models generated us-
ing our extension are more useful for thorough model-based
test generation, than are finite-state models where data as-
pects are suppressed. In future work, we plan to supply a
library of different inference techniques specialized towards
different data domains that are commonly used in commu-
nication protocols.

2http://en.wikipedia.org/wiki/File:Tcp_state_
diagram_fixed.svg
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A.4 Inferring Compact Models of Communication Protocol Entities

This paper contains a worked-out presentation of techniques, mentioned in Section 3.3, for restructuring
the representation of an unstructured finite-state machine, in order make it more compact, possibly as a
means to abstract less important details. In the paper, we report on an evaluation of this technique by
applying it to the Mobile Arts Advanced Mobile Location Center (A-MLC) protocol, which is a commercially
available middleware protocol that allows mobile network operators to provide presence information from
the GSM/UMTS network.
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I. I NTRODUCTION

Model-based techniques for verification, testing, and
validation of commmunication protocols, including model
checking and model-based testing [1], have witnessed drastic
advances in the last decades. They require access to a
formal model that specifies the behavior of protocol enti-
ties, which ideally should be developed during specification
and design. However, the construction of models typically
requires significant manual effort, implying that in many
cases no such model is available, or becomes outdated as the
system evolves over time. It is therefore important to develop
automated techniques that support the task of producing
models, e.g., models that reflect the behavior of an existing
protocol implementation. Such techniques would be highly

useful for producing models of standardized protocols, for
introducing model based testing techniques to replace man-
ual testing of an existing product, for regression testing,etc.
A potential approach is to use program analysis to construct
models from source code (e.g., [2], [3]). However, many
system components, such as library modules, or third-party
components, often do not allow analysis of source code. We
will therefore focus on techniques for constructing models
from observations of their external behavior.

The construction of models from observations of com-
ponent behavior can be performed using regular inference
(aka automata learning) techniques [4], [5], [6], [7]. This
class of techniques has recently started to get attention in
the testing and verification community, e.g., for regression
testing of telecommunication systems [8], [9], for integration
testing [10], [10], [11], and for combining conformance
testing and model checking [12], [13]. In regular inference,
a finite-state machine (or a regular language) is constructed
from the answers to a set ofmembership queries, each of
which observes the component’s output in response to a
certain input string. Given “enough” membership queries,
the constructed automaton will be a correct model of the
observed component.

Our overall goal is to construct models of entities in
communication protocols, which can be readily understood
and maintained by protocol designers and test engineers.
Manually constructed models of protocol behavior facilitate
understanding by describing messages as consisting of a
message type with a number of parameters, by representing
the internal states of the entity in terms of control loca-
tions and state variables, and by describing the reaction to
incoming messages by a change of location and variable
transformation in some suitable language. This style of
modeling is supported by several formalisms, such as UML
state diagrams [14].

A serious obstacle to constructing structured models from
observations is that existing regular inference techniques
produce “flat” state machines, in which neither states nor
transitions have any structure. In this paper, we therefore
present techniques for restructuring the representation of an
unstructured finite-state machine, in order to make it readily
understandable by humans. Since there are many ways to
restructure state-machine descriptions, and since most likely



there is no unique optimal restructuring, our techniques will
need some light guidance by a user or expert, giving general
principles for forming state variables and control locations.
Based on such principles, our transformation first equips
the “flat” state machine with state variables. Thereafter
it groups states with similar control behavior into control
locations. Finally, the “flat” description of the reaction to
received messages is transformed into a compact description
in the chosen coding language; we have chosen the intuitive
formalism of decision trees, which can be generated by well-
developed tools.

We evaluate our techniques by applying them to the
Mobile Arts Advanced Mobile Location Center (A-MLC)
protocol, which is a commercially available middleware
protocol that allows mobile network operators to provide
presence information from the GSM/UMTS network. We
have access to an executable specification of A-MLC, which
is structured for human readability by developers and testers
of the protocol. This makes it a suitable object for evaluation,
since we can both observe its reaction to a large number
of input sequences, as well as compare the results of our
restructuring to the structure of the executable specification.
We present the results our comparison.

In summary, the main contributions of this paper are:

• A novel approach to construct structured state ma-
chine models of communication protocol entities from
observations, based on regular inference techniques.
techniques

• The construction of a model of a large industrial
protocol by regular inference techniques: our model has
1560 different messages and44 states.

Related Work:Regular inference techniques have been
used for verification and test generation, e.g., to create
models of environment constraints with respect to which
a component should be verified [15], for regression testing
to create a specification and a test suite [8], [9], to perform
model checking without access to source code or formal
models [13], [12], for program analysis [16], and for formal
specification and verification [15]. Groz, Li, and Shahbaz
extend regular inference to Mealy machines with a finite
subset of input and output symbols from the possible infinite
set of symbols [10], [17], [11]. Mariani and Pezzé use
inference in integration testing of commercial off the shelf
components [18]. They infer two separate models, which
are not connected: one for the finite-state control, and the
others being a relation on the parameters in each interaction.
They use different inference techniques for each type of
model. In previous work [19], we presented an optimization
of regular inference to cope with models where the domains
of the parameters are booleans. We have also presented an
approach using regular inference, in which systems have
input parameters from a potentially infinite domain and
parameters may be stored in state variables for later use [20].

Organization of Paper: In next section, we review
Mealy machines and a formalism for structured representa-
tion of Mealy machine models. In Section III we review reg-
ular inference algorithm for Mealy machines by Niese [21],
and in Section III-B we present our transformation for
generating a structured description of a Mealy machine. In
Section IV we describe how we implemented our techniques,
and in Section V we describe their application so the A-MLC
protocol, which is evaluated in Section VI. Conclusions and
proposed future work is in Section VII.

II. M EALY MACHINES

A. Flat Mealy Machines

We model communication protocols as Mealy machines.
A Mealy machineis a tupleM = 〈ΣI , ΣO, Q, q0, δ, λ〉
whereΣI is a nonempty set ofinput symbols, ΣO is a finite
nonempty set ofoutput symbols, Q is a nonempty set of
states, q0 ∈ Q is the initial state, δ : Q × ΣI → Q is the
transition function, and λ : Q × ΣI → ΣO is the output
function. Elements ofΣ∗I and Σ∗O are calledinput strings
andoutput strings, respectively.

An intuitive interpretation of a Mealy machine is as
follows. The machine interacts with its environment by
receiving input symbols and producing output symbols. At
any point in time, the machine is in some stateq ∈ Q. When
the machine receives an input symbola ∈ ΣI , it responds
by producing an output symbolλ(q, a) and moving to a

new stateδ(q, a). We let q
a/b−→ q′ denote thatδ(q, a) = q′

and λ(q, a) = b. We call q
a/b−→ q′ a transition of M.

For the implementation and experiments in Sections IV
and V, we have slightly generalized Mealy machines to
allow production of asequenceof output symbols in each
transition. This generalization is straightforward: to keep the
presentation simple, we here assume one output symbol per
transition.

We extend the transition and output functions from input
symbols to input strings in the standard way, by defining:

δ(q, ε) = q λ(q, ε) = ε
δ(q, ua) = δ(δ(q, u), a) λ(q, ua) = λ(q, u)λ(δ(q, u), a)

We defineλM(u) : ΣI → ΣO by λM(u) = λ(q0, u), for
u ∈ Σ∗I . Two Mealy machinesM andM′ with the same
input alphabets areequivalentif λM = λM′ .

Note that the Mealy machines that we consider are
completely specified, meaning that at every state the machine
has a defined reaction to every input symbol inΣI , i.e., δ
and λ are total. They are alsodeterministic, meaning that
for each stateq and inputa exactly one next stateδ(q, a)
and output symbolλ(q, a) is possible.

B. Symbolic Representation

In order to be understandable, Mealy machine models of
realistic protocols must be structured. Structure is typically



imposed by letting messages consist of a message type with
a number of parameters, by describing the internal states of
the entity in terms of control locations and state variables,
and by describing the reaction to incoming messages as a
combination of a change of location and a transformation
on state variables.

Structuring of input and output symbols will be achieved
by assuming finite sets,I andO, of (input and output)action
types. Each action typeα has a certainarity, which is a
tuple of finite domainsDα,1, . . . ,Dα,n (where n depends
on α), each of which contains the possible values of the
corresponding parameter. We will used, d1, d2, etc. to range
over data values. The setΣI of input symbols is now the
set of terms of formα(d1, . . . , dn), where eachdi ∈ Dα,i

is in the appropriate domain. The set ofoutput symbolsΣO

is defined analogously. We will useβ to range over output
action types. We writed for d1, . . . , dn.

To structure the representation of states, we will use a
finite setL of locations, one of which is theinitial location,
and a tuplev1, . . . , vk of state variables, each of which
ranges over a finite domain and has a unique initial value.
The set of states of a mealy machine is now the set of tuples
〈l,v1, . . . ,vk〉, where l ∈ L is a location, andv1, . . . ,vk

is a tuple of values of the state variablesv1, . . . , vk. In
the following, we will write v for v1, . . . , vk and v for
v1, . . . ,vk

To provide a structured representation of the transition
and output functions, we must employ a suitable formalism
to express transformation of state variables and generation
of output symbols. We will here use a simple formalism
with constructs for selection, assignment, and output. We
will use a finite set offormal parameters, ranged over by
p1, p2, . . ., which will serve as local variables to which
values of parameters in input symbols are bound. Let an
expressionbe either a formal parameter, a state variable or
a data value. Let anaction expressionbe an expression of
one of the following forms.

• output β(d1, . . . , dm); nextloc l;
produces the output symbolβ(d1, . . . , dm) and changes
the current location tol.

• v1, . . . , vk := e1, . . . , ek ; actexp
simultaneously assigns the values of the expressions
ei to the variablesvi for i = 1, . . . , k, and thereafter
carries out whatever the action expressionactexpdoes.

• casee of d1 : actexp1 · · · dk : actexpk
evaluates the expressione, and if the result isdi for
somei in 1, . . . , k, it carries out whatever the action
expressionactexpi does. It is assume thatd1, . . . , dk are
distinct, and cover the possible values ofe. Sometimes
we useif e then actexp1 elseactexp2 instead of
casee of true : actexp1 false : actexp2

The reaction to input symbols can now be described by
providing for each locationl ∈ L and each input action

type α ∈ I an expression of form

in location l when α(p1, . . . , pm) actexp

where actexp is an action expression which may use the
formal parametersp1, . . . , pm. For each input symbolα(d),
the action expression will follow exactly one branch leading
to an action expression of formoutput β(d

′
) ; nextloc l′;

this implies that for the transition and output functions we
have

• δ(〈l,v1, . . . ,vk〉, α(d)) = 〈l′,v′1, . . . ,v′k〉, and
• λ(〈l,v1, . . . ,vk〉, α(d)) = β(d

′
),

for all tuples v′1, . . . ,v
′
k of values of v1, . . . , vk, where

v1, . . . ,v′k is the result of performing the assignment state-
ments on that branch.

To summarize, a Mealy machines can be presented sym-
bolically by providing finite setsI of input action types,
O of output action types, and L of locations, an initial
location l0 ∈ L, a tuplev1, . . . , vk of state variables, and
an expression of form

in location l when α(p1, . . . , pm) actexp

for each locationl ∈ L and each input action typeα ∈ I.
In Figure 1, we show a possible action expression, from

an idealized version of the receiver in the alternating bit
protocol, in which we have action typesData and Ack,
each of which has a bit (either0 ot 1) as a sequence number.

in location rec
when Data(sn)

case(sn) of
0 : output Ack(0); nextloc rec
1 : output Ack(1); nextloc rec

end

Figure 1. Example syntax defining part of reciever in alternating bit
protocol.

III. I NFERENCE OFSYMBOLIC MEALY MACHINES

In this section, we present our approach for inferring
a symbolic representation of a Mealy machine model of
the behavior of an entity in a communication protocol, by
observing its responses to selected input strings. We will
hereafter refer to the given protocol entity as the System
Under Test (SUT). We assume that the SUT can be modeled
as a Mealy machine, and that its input and output action
types as well as their arities, are known.

The problem of inferring a model of the SUT naturally
decomposed into two subproblems:

• inferring a flat Mealy machineM which models the
behavior of SUT, and

• generating a symbolic representation ofM.



For the first subproblem we use an adaptation of theL∗

algorithm [4] to Mealy machines, due to Niese [21]. For
the second subproblem, we have developed a technique for
transforming a Mealy machine into an equivalent symbolic
description by introducing state variables, control locations,
and action expressions. Each subproblem is described in
more detail in the following subsections.

A. Inference of Mealy Machines

In this subsection, we review theL∗ algorithm [4], which
was originally formulated for inferring regular languages, in
the form of its adaptation for Mealy machines [21]. TheL∗

algorithm initially knows nothing about the Mealy machine
M except its input and output alphabets. It infers a Mealy
machine model ofM by asking a sequence of queries. There
are two kinds of queries.

• A membership queryconsists in asking what isM’s
output in response to an input stringu ∈ (ΣI)∗.

• An equivalence queryconsists in asking whether a
hypothesized Mealy machineH supplied, in the query,
is correct, i.e., whetherH is equivalent toM. The
query will be answered by answeryes if H is correct, or
else by acounterexample, which is a stringu ∈ (ΣI)∗

such thatλM(u) 6= λH(u).

The typical behavior of theL∗ algorithm is to ask a
sequence of membership queries until it can build a “stable”
hypothesisH from the answers. It then makes an equivalence
query to find out whetherH is equivalent toM. If the
result is successful, the algorithm has succeeded, otherwise
it uses the returned counterexample to perform subsequent
membership queries until converging at a new hypothesized
Mealy machine, which is supplied in an equivalence query,
and so on. The algorithm is guaranteed to terminate after at
mostn such equivalence queries, wheren is the number of
states ofM, having posed in totalO(m|ΣI |n2) membership
queries, wherem is the length of the longest counterexample
returned in some equivalence query [4].

When transforming the conceptual framework of theL∗

algorithm to a practical setting, some issues need to be
considered. In order to perform a sequence of membership
queries, one must be able to reliably reset the SUT to an
initial state between each query. A perfect realization of
an equivalence query must involve analysis of the source
code, or equivalent, of the SUT. In a black-box setting,
where source code is not available, there is in general no
perfect implementation of equivalence queries. In the case
that there is a known upper bound on the number of states
of M is known, (typically large) conformance test suites
(as described in, e.g., [22], [23]) can conclusively settle
equivalence queries. In practice, equivalence queries are
often approximated by large random test suites and/or by
monitoring the SUT under a long period of time.

B. Generating Symbolic Representation of Mealy Machines

We have developed a transformation that transforms a
Mealy machineM into a symbolic representation, as de-
scribed in Section II-B, in order that the model be readily
understood by human designers or testers. Our transforma-
tion must

• represent the states ofM in terms of control locations
and state variables, and

• represent the transition and output function ofM in
terms of action expressions.

A given “flat” Mealy machine has several equivalent sym-
bolic representation, among which there is probably no
unique “most intuitive” one. Therefore, our tranformation
needs user-supplied guidance, which typically require a
certain amount of understanding of the protocol, but not
at all a complete knowledge about its behavior. Let us
first describe how we transform states, thereafter how we
generate action expressions.

1) Transforming the Representation of States:Intuitively,
our transformation will construct state variables that record
information in received parameters of input symbols that
may influence future behavior, and control locations that
capture “high level control” aspects of behavior. The trans-
formation is based on some user-supplied guidance, as
follows

• The user must supply a setv = v1, . . . , vk of state vari-
ables. To describe the information captured by the state
variables, the user should also, for each variablevi ∈ v
and input action typeα, supply an expressionevi,α

which describes how the variablev is updated when
input symbols of formα(p1, . . . , pn) are received.
Typically, the user need not provide this information
in detail; instead it can be derived automatically from
a user-supplied general principle, e.g., to store, for each
input action typeα, the most recent values of the
parameters of an input symbol of formα(d1, . . . , dn).
With this principle, the Alternating bit protocol in
Figure 1 would have a variable for the parameter of
the action typeData (called, sayvData.sn), which is
assigned the parameter valuesn in action expressions
triggered by the action typeData, and not updated in
other action expressions.

• The user should supply a criterion for merging states
with the “same control behavior” into control locations.
We will here use the criterion that all states that may
be reached by a particular sequence of input and output
action types should be in the same location. (* Explain
this principle and supply an example *)

Define anextended stateas a pair〈q,v〉, whereq ∈ Q is
a state ofM andv is a tuple of values of the variablesv.
For each stateq of M, there are in general several reachable
extended states of form〈q,v〉: differences inv correspond to
different input strings that causeq to be reached. Define an



extended transitionas a transition between extended states of

form 〈q,v〉 α(d)/β(d
′
)−→ 〈q′,v′〉, such thatM has a transition

q
α(d)/β(d

′
)−→ q′ and v′ is obtained fromv and α(d) by

appropriately updating state variables.
We can now form control locations as sets of extended

states with “same control behavior”. Thie procedure will
differ, depending on how “same control behavior” is defined.
Let us consider the case that extended states that may be
reached by the same sequence of input and output action
types should be in the same location. We must then construct
a setLocs of locations, each of which is a set of extended
states. For each locationl in Locs , and each pairα, β of
input and output action types,Locs should contain a suc-
cessor location containing the targets〈q′, v′〉 of all extended

transitions〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉 from l with action types

α, β. We record this structure by generating a set of edges

of form l
α/β−→ l′ between locations. The locations and edges

can be constructed by a technique similar to the subset
construction for nondeterministic finite automata: starting
from an initial location, successors of already constructed
locations are created based on the pair of input-output action
types that reach them. Such an algorithm is described in
Algorithm 1.

The algorithm maintains two sets of locations;Locs
accumulates the set of formed locations, whereasTempLocs
is a set of locations whose successor locations remain
to be constructed, and a setEdges of generated edges.
Algorithm 1 starts by forming the initial locationl0 ∈ L,
containing the extended state formed from the initial state
q0 and initial valuesv0 of variables. The algorithm then
iteratively picks some locationl from TempLocs ; for each
pair α, β of input and output action types it constructs
a new location as containing the targets of all transitions

〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉 with the same source location, input,

and output action types, and adds it toTempLocs , and also

addsl
α/β−→ l′ to Edges . The process of forming locations

continues iteratively until all locations inTempLocs have
been used for forming successor locations. The process is
guaranteed to terminate since the set of extended states is
finite.

During Algorithm 1, we additionally merge locations
which are “similar”, in the sense that they share an extended
state, since presumably their future behavior is rather similar.
Such new formed locations are added toTempLocs to
properly generate their successors. However, we must not
merge locations if as a result they will contain two extended
states〈q, v〉 and 〈q′, v〉 with the same variable values but
different control state, since action expressions (which can
only test values of variables) will not be able to distinguish
the difference in future behavior betweenq andq′.

2) Generating Action Expressions:It remains to generate
an action expression for each locationl and input action

Algorithm 1 MAKELOCATIONS

1: Locs := ∅;
2: Edges := ∅;
3: TempLocs := {〈q0, v0〉};
4: while TempLocs 6= ∅ do
5: choosel ∈ TempLocs ;
6: for all pairsα, β do
7: l′ := {〈q′, v′〉 : ∃〈q, v〉 ∈ l , ∃d, d

′
.

8: 〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉};

9: if (l′ 6= ∅ ∧ l′ 6∈ (Locs ∪TempLocs)) then
10: TempLocs := TempLocs ∪ l′;
11: Edges := Edges ∪ l

α/β−→ l′;
12: end if
13: end for
14: TempLocs := TempLocs \ l;
15: Locs := Locs ∪ l;
16: end while

type α, which distinguish between the (slightly) different
behaviors of different extended states in tha location. Our
transformation generates action expressions as decision tree
structures ofcase expressions, each of which tests some
input parameters inp1, . . . , pn or state variable inv, reaching
appropriate leaves of form

v1, . . . , vk := ev1,α, . . . , evk,α ; output β(d
′
) ; nextloc l′ .

Herev1, . . . , vk := ev1,α, . . . , evk,α is a multiple assignment
statement that updates eachvi by the appropriate user-
supplied expressionevi,α, β(d

′
) is an output symbol, and

wherel′ is a next location.
The decision tree structure of thecaseexpressions in the

action expression of locationl and input action typeα should
be constructed so that whenever is is presented with values
d of input parametersp and valuesv of state variablesv,
such that

〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉

is an extended transition from some〈q, v〉 ∈ l to some

〈q′, v′〉 ∈ l′ with l
α/β−→ l′ ∈ Edges , then the decision

tree should reach the output symbolβ(d
′
) and locationl′.

There are well-developed algorithms to generate decision
trees from a set of such constraints, among the most well-
known being ID3 [24], [25]. The ID3 algorithm generates a
minimal decision tree from a given set of examples (in our
case generated from extended transitions as above).

The generated decision tree structures are typically much
more compact than the set of “flat” Meay machine tran-
sitions that they cover, in particular if the input alphabet
is large. The generated action expression can be further
optimized by simple transformations. For instance, the in-
sertion of a multiple assignment statement at each leaf of
the structure ofcase expressions may blow up its size.



This size can mostly be reduced by standard code motion
transformations that move assignments towards the root
of the tree structure while merging them and removing
unnecessary assignments.

IV. I MPLEMENTATION

We have implemented the technique for generation of
symbolic representation of Mealy machines described in
Section III-B. Our implementation gets a description of a
“flat” Mealy machine together with user-supplied criteria for
forming state variables and control locations, and generates
a symbolic representation of the Mealy machine.

Algorithm 1 forms locations as sets of extended states
that may be reached by the same sequence of input and
output action types, implying that the set of targets〈q′, v′〉 of

extended transitions〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉 from a formed

location with a particular pairα, β of input and output action
types should be in the same successor location. In addition
to this criterion for forming successor control locations,
our implementation also accepts the criterion that sucessor

locations of extended transitions〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉

with the same output action typeβ should be in the same
location, as well as the criterion that extende transitions
with the same output symbolβ(d

′
) should be in the same

location. For these criteria, Algorithm 1 and the generation
of action expressions are change accordingly. Users can
try these alternative criteria to see whether the resulting
structure better suits their purpose.

In our tool we use an implementation of ID3 provided
by Weka (Waikato Environment for Knowledge Analysis)
a data mining tool developed at the University of Waikato,
New Zealand, and distributed under the Gnu Public Licence.
It includes a wide variety of state-of-the-art algorithms of
data mining and machine learning which are implemented
in Java [26].

V. EXPERIMENTS

In this section, we described the use of our implemented
technique for generating a model of the Mobile Arts Ad-
vanced Mobile Location Center (A-MLC) protocol. We have
chosen A-MLC because we have access to an executable
specification, which has been created to be understood by
developers and testers. This makes A-MLC suitable for our
experimentation since we can both execute large numbers of
membership queries and can compare our resulting model
with the provided one.

A. The A-MLC Protocol and its Executable Specification

The A-MLC protocol is a middle-ware product that allows
Mobile Network Operators to provide presence information
from the GSM/UMTS network. The supported presence in-
formation includes details about the location, present status,
and capabilities of mobile devices. For example, a taxi

switchboard application may want to know where a calling
customer is located to send the closest available taxi car
to the customer. A-MLC is commercially available and has
been deployed at several Telecom operators within Europe.

Applications using the A-MLC communicate with A-
MLC via the Mobile Location Protocol (MLP), a standard
XML-based application-level protocol for obtaining the po-
sition of mobile devices utilizing HTTP over IP. On a request
from an application to A-MLC to provide presence informa-
tion, A-MLC uses the Mobile Application Part (MAP) layer
in the global standard for telecommunications (SS7) protocol
stack to communicate with the GSM/UMTS network, from
which the information is retrieved.

The implementation of A-MLC was made mainly in Er-
lang, utilizing Erlang Open Telecom Platform [27] - a large
collection of libraries for Erlang. It consists of approximately
130,000 lines of Erlang code and 5,500 lines of C code.

The originators of the A-MLC protocol have written a
functional specification of the protocol in order to generate
high-quality test suites [28]. The specification essentially
has the form of a symbolically represented Mealy machine,
and captures all traffic sequences through A-MLC via the
MLP protocol towards an application, and all relevant MAP
operations towards the GSM network. Lower level protocols
in the IP and SS7 stacks are not part of the specification.
Likewise, no operation and maintenance interface (counters,
alarms, GUI etc.) are part of the specification. The specifica-
tion models the behavior of an individual protocol request.
Moreover, does not model the reception of “illegal” or traffic
sequences that should not be provided by the environment
of the modeled A-MLC protocol. The interaction between
concurrent requests is also not modeled, since it is minimal,
and since Erlang’s light-weight threads make it easy to
reliably handle large numbers of concurrent requests.

We have used an executable version of this specification,
implemented using the Erlang behavior modulegen fsm
(Generic Finite State Machine Behavior), as the SUT. This
executable specification will simply crash, if an “illegal”
input string, which should not be provided by the protocol
environment, is received.
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Figure 2. Part 1 of executable specification’s structure related to inferred
Mealy machine shown in figure 5.
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Figure 3. Part 2 of executable specification’s structure related to inferred
Mealy machine shown in figure 5.
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Figure 4. Part 3 of executable specification’s structure related to inferred
Mealy machine shown in figure 5.

An overview of the executable specification is shown in
Figures 2, 3 and 4. In these figures, we show the control
locations, and for each locationl′ which can be reached
from location l by receiving an input action typeα and
producing and output action typeβ, we display an edge

l
α/β−→ l′, i.e., the figures show the graph corresponding to

the setEdges generated by Algorithm 1. We have divided
the overview of the specification into three sub-figures for
readability. The specification consists of13 control states,
13 state variables, and10 input action types with different
arities. In addition, there are10 variables that are assigned
only when configuring a session. We model these by adding
10 extra parameters to an initial input symbol, which are
used to assign values to these variables. This causes number
of state variables to become23.

B. Creating a Model of A-MLC by Regular Inference

For the inference experiment, we defined small domains
for the values of parameters in input symbols, in order to be
able to carry out enough membership queries to complete the
inference process. For most parameters, these domains were

already small in the original specification (typically2−−4
values), and for others, we could choose a representive
sample that would allow coverage of the entire specification.
In one case, however, this reduction made a part of the
model unreachable (as described in Section VI): for input
parameterstatus of atir action type which can assume
valuesnot_reachable, reachable andundefined,
we only used the valuenot_reachable. In all, this
resulted in an input alphabet of1560 input symbols.

To construct a Mealy machine model of the executable
specification of the A-MLC protocol by regular inference,
we use the LearnLib tool [29], developed at the University of
Dortmund, which has an efficient implementation of theL∗

algorithm. This tool provides several different realizations
of equivalence queries, including conformance tests suite
generated by the Vasilevsky-Chow algorithm[22], [23]), and
random test suites of user-controlled size.

To enable communication between LearnLib and the
executable specification, we implemented an intermediate
layer, between LearnLib and the executable specification,
which monitors the executable specification and capture
the occasions when it crashes on illegal input strings. The
intermediate layer simply forwards messages from LearnLib
to the executable specification, and vice versa, unless it is
notified that the executable specification crashed, which it
models to LearnLib by means of an introduced error output
symbol.

To generate a symbolic representation, we then applied
our implementation of the transformation in III-B to the flat
Mealy machine generated by LearnLib.

VI. RESULTS

In this section we describe the results of our experiment,
ans evaluate the results by comparing the model we obtained
with the original executable specification.

Applying LearnLib to the executable specification resulted
in a Mealy machine with44 states. It took about43 hours to
complete the inference, during which LearnLib asked about
175 million membership queries. As equivalence oracle,
LearnLib used a test suite of1000 randomly generated tests
of length10. The Mealy machine model passed the test suite
in the first (and only) equivalence query, meaning that the
randomly generated test suite found no deviation, and the
inference algorithm halted.

The generated “flat” Mealy machine exhibits59 different
sequences of symbols on its transitions, formed from11
distinct sequences of output action types. A part of the
Mealy machine is shown in Figure 5 as an example (the
complete Mealy machine can not been shown because of
space limitation). In the figure statesq0 till q8 can be seen
with some of their transitions, which we have labeled by
pairs of input-output action types, e.g., the dashed transition
from stateq0 to stateq1, shown in Figure 5, containsslir
input action type andslia andati output action types.



Later in this section in table I we correlate the states of this
figure with control states of executable specification.

q1
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slir/ati
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srir/sliaq8

srir/fsmTimer

srir/sliasrir/write_cache,slia srir/sliasrir/write_cache,slia

Figure 5. The inferred Mealy machine, statesq0− q8.

Most of the transitions of the Mealy machine output the
error symbol (representing that the corresponding input sym-
bol is “illegal”). Before generating a symbolic representation
using our tool, we removed these, since we are interested
in being equivalent with respect to the legal input strings.
The structure of control locations and edges generated by
our transformation is shown in Figure 6, where we show
the edges in the setEdges of Algorithm 1. We used the
same criterion for forming control locations as used in
Algorithm 1.
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Figure 6. The inferred Mealy machine.

In Figure 6, boxes represent locations. Each location is
labeled with the set of states of that “flat” Mealy machine
that occured in forming this location; e.g., the location with
label [q4-q7] contains extended states with statesq4, q5, q6,
q7 of the “flat” Mealy machine, since, as can be seen in
Figure 5, they can all be reached from stateq0 by the pair
slir/sri of input and output action types

A. Evaluation

To evaluate our transformation we compare

• coverage: how many of the control locations and edges
in the executable specification are captured in our
symbolic representation,

• similarity: of the locations in our symbolic representa-
tion and of those in the executable specification,

• readability of the action expressions of our symbolic
representation, as compared with those in the exe-
cutable specification.
Coverage: 12 of the 13 control locations of the ex-

ecutable specification have been reached in our symbolic
representation. The control location LASTNETPARAM in
Figure 2 could not be reached, since we had reduced the
range of parameterstatus, as described in the beginning
of Section V-B.

The executable specification has60 edges. The described
reduction of the parameter range ofstatus causes20
of these to become unreachable. Of the remaining40, our
model captured26. The missing14 edges are all missing for
the same reason, namely that LearnLib incorrectly merged
two particular states in the flat Mealy machine. Let us
explain how. The stateq5 in Figure 5 is reached by (among
others)slir messages with both the valuespsi andati
of one particular parameter. The effect of these parameters
is not externally observable immediately in the behavior of
the SUT, but shows up only two transitions later. How-
ever, theL∗ algorithm sees that the message following the
slir message with parameter valuepsi triggers the same
output as the message following theslir message with
parameter valueati. L∗ then assumes that all the replies
to all following messages does not depend on whether the
parameter valuepsi or ati was supplied with theslir
message. It then continues to explore continued behavior of
the SUT only for longer input strings that start with theati
value. This problem can be avoided by having more powerful
test suites in equivalence oracles. Our equivalence test used
only 1000 randomly chosen input strings; we conjecture
that a larger equivalence test would discover the differences
between the two parameter values.

Similarity: Table I shows how the locations of our
symbolic representation correspond to those of the exe-
cutable specification The locations NOTYET UPDATED
and WAIT FSM RESP are not distinguished in our sym-
bolic representation, since they are reached by the same
sequence of input-output action types. Also, locations [q2]
and [q3] correspond to location LASTPOS, which can be
reached by two different pairs of input-output action types.

Readability: Since we cannot compare the two mod-
els in their entirety, we have chosen to compare two
typical action expressions, representing the same be-
havior to each other. Figure 8 shows a part of our
generated action expression from the initial location
when a message of formSlir with formal parameters
(msis,loct,maxage,netp,epsi) is received, and Fig-
ure 7 shows the corresponding part of the executable spec-



Location Control State
[q0] IDLE
[q1] DONE
[q2] LAST POS
[q3] LAST POS
[q4-q7] ACCESS NETPARAM
[q8] FORCE UPDATE
[q9] TIMER TRIGGERED
[q11-q15] NOT YET UPDATED,

WAIT FSM RESP
[q16] MAYBE UPDATED
[q17] WAIT POS RESP
[q10,q18-q41] UPDATED
[q42] TERMINATE MMS

Table I
CORRESPONDENCE BETWEEN LOCATIONS IN OUR SYMBOLIC

REPRESENTATION AND IN THE EXECUTABLE SPECIFICATION

1)
in location IDLE

2) when Slir(msis, loct, netp, epsi, frc, lra)
3) if(epsi)
4) if(frc)or((!frc)and((lra)and(loct==last)))
5) case(netp) of
6) false → output Psi(netpar);nextloc LAST POS;
7) true → output Sri(msis); nextloc ACCESS NETPARAM;
8) endcase
9) else if((!frc)and(!lra)){ output Slia(netp, msis);

nextloc DONE; }
10) else{ output ErrMsg;nextloc ErrLoc;}
11) ...
12) MSIS=msis;LOCT=loct;NETP=netp;EPSI=epsi;FRC=frc; LRA=lra;
13) end

Figure 7. Small extract of executable specification

ification. In the figures, the values of input parameters are
assigned to state variables, shown by upper-case letters, in
line 12. To simplify the comparison between the action
expression and executable specification we have replaced the
parameter values of output symbols by the parameters’ name
of received input symbol. For this we carefully matched the
values of the parameters in output symbols with the input
action type’s parameter names and found the corresponding
parameter name for each parameter value.

(* the last 7 lines above should be fixed *)
We see that the action expression is more compact in the

executable specification. One reason is that it uses complex
boolean expressions (e.g., Figure 7 line 4), whereas our
representation only uses a simple decision tree structure
which tests one parameter or variable at a time. This makes
the executable specification smaller than our representation,
but sometimes more difficult to understand.

Another difference is that our representation does not
explicitly return an error message on illegal input. This
allows our action expressions to sometimes omit distinctions.
In this example, theloct parameter is tested in Figure 7
line 4, but not in Figure 8.

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented an approach using regular inference
to infer models of communication protocol entities. We

1)
in location IDLE

2) when Slir(msis, loct, netp, epsi, frc, lra)
3) if(epsi)
4) casenetp of
5) false→
6) if(!frc)
7) if(!lra){output Slia(netp, msis);nextloc DONE;}
8) else if(lra) { output Psi(netp);nextloc LAST POS;}
9) else if(frc) { output Psi(netp);nextloc LAST POS;}
10) true →
11) if(!frc) {
12) if(!lra) {output Slia(netp, msis);nextloc DONE;}
13) else if(lra){output Sri(msis);

nextloc ACCESS NETPARAM;}
14) else if(frc){output Sri(msis);nextloc ACCESS NETPARAM;}
15) endcase
16) ...
17) MSIS=msis;LOCT=loct;NETP=netp;EPSI=epsi;FRC=frc;LRA=lra;
18) end

Figure 8. Small extract of action expression related to specification part
in Figure 7

recognize that communication protocols tend to have their
behavior structured into control states. Furthermore, our
approach aims to infer a model with locations that are similar
to control states in the protocol. Our technique consists of
two phases; in the first phase we apply existing regular
inference techniques to construct a Mealy machine model
of the protocol, and in the second phase we fold this model
into a Symbolic Mealy machine.

We have applied our approach to an executable specifi-
cation of the A-MLC protocol developed by Mobile Arts.
We used LearnLib to generate a flat Mealy machine, which
was then transformed into a symbolic representation by our
implementation, and evaluated the result by comparing it to
the original executable specification.

(* say something about the size of the generated model
*) The two models had many similarities, but differed in
some respects. Our model did not cover all the locations
and transitions of the SUT, due to an incorrect merging of
two states by theL∗ algorithm, which caused a part of the
behavior to be unexplored. We conjecture that this problem
would go away if we would have used a larger test suite for
checking the generated model; at the time of the experiment
our time and space resources did not allow this. Our structure
of locations was surprisingly similar to that of the manually
generated executable specification. Our action expressions
has a rather simple form, and thus they become longer than
corresponding hand-generated ones. This suggests to look
at more advanced ways to generate action expressions in
a richer syntax, and to employ code transformations that
reduce redundancies.

We would like to apply the approach to other communi-
cation protocols in order to further evaluate the approach.
This would hopefully also give us more insights of how to
create structures in terms of locations.
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