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Slotted Aloha as a stochastic game with partial information

Eitan Altman? Rachid El Azouzi* and Tania Jiménez'

Abstract

This paper studies distributed choice of retrans-
mission probabilities in slotted ALOHA. Both the
cooperative team problem as well as the noncoop-
erative game problem are considered. Unlike some
previous work, we assume that mobiles do not know
the number of backlogged packets at other nodes.
A Markov chain analysis is used to obtain opti-
mal and equilibrium retransmission probabilities
and throughput. We then investigate the impact
of adding retransmission costs (which may repre-
sent the disutility for power consumption) on the
equilibrium and show how this pricing can be used
to make the equilibrium throughput coincide with
the optimal team throughput.

1 Introduction

Aloha [4] and slotted Aloha [12] have long been
used as random distributed medium access proto-
cols for radio channels. They are in use in both
satellite as well as cellular telephone networks for
the sporadic transfer of data packets. In these pro-
tocols, packets are transmitted sporadically by var-
ious users. If packets are sent simultaneously by
more than one user then they collide. After the
end of the transmission of a packet, the transmit-
ter receives the information on whether there has
been a collision (and retransmission is needed) or
whether it was well received. All packets involved
in a collision are assumed to be corrupted and are
retransmitted after some random time. We focus
in this paper on the slotted Aloha (which is known
to have a better achievable throughput than the
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unslotted version, [5]) in which time is divided into
units. At each time unit a packet may be transmit-
ted, and at the end of the time interval, the sources
get the feedback on whether there was zero, one or
more transmissions (collision) during the time slot.
A packet that arrives at a source is immediately
transmitted. Packets that are involved in a colli-
sion are backlogged and are scheduled for retrans-
mission after a random time.

The determination of the above random
time can be considered as a stochastic control prob-
lem. The information structure, however, is not a
classical one: sources do not have full state infor-
mation as they do not know how many packets are
backlogged. Nor do they know how many packets
have been involved in a collision.

We study this control problem in two differ-
ent frameworks:
1. as a team problem, i.e. where there is a common
goal to all nodes in the network (such as maximiz-
ing the system throughput).
2. as a problem in a noncooperative framework:
each node wishes to maximize its own throughput.
This gives rise to a game theoretical formulation.

Our main finding is that as the workload
increases (i.e. as the packet arrival rate increases),
sources become more aggressive at equilibrium in
the game setting (in comparison with the team
problem) and this results in a dramatic decrease in
the total system’s throughput. To avoid this col-
lapse of system’s throughput, we study the effect
of adding a cost for transmissions and retransmis-
sions (which can, in particular, represent the bat-
tery power cost). We show that this additional cost
improves the system’s performance and that an ap-
propriate pricing can be chosen that yields an equi-
librium performance that coincides with the team
one. We finally propose and study a distributed
stochastic algorithm for dynamically adjusting the



retransmission probabilities according to the con-
gestion at the network.

Previous game formulations of the slotted
ALOHA have been proposed in [11, 9]. In the first
reference, a full information game is considered,
in which each user knows how many backlogged
packets there are. Moreover, it is assumed in [11]
that a packet that is to be transmitted for the first
time waits for a random time in the same way as a
backlogged packet. Our goal is to study the slotted
Aloha in the way it is actually deployed thus avoid-
ing these two assumptions. In [9] it is assumed that
nodes have always packets to send. Thus there is
only one trivial state in the system (all nodes are
backlogged) which is known to all users.

For more background on the use of stochas-
tic control and of game theory in communication
networks, see [1, 2, 3]. We note that the game for-
mulation of our problem is similar to game formu-
lation of retrial queues, in which customers retry to
make a call after some random time if they find the
line busy [6, 8]. The difference is, however, that in
retrial queues there are no collisions.

The structure of the paper is as follows. We
begin by introducing in Section 2 the general model
and formulate the team and the game problems.
We provide a Markov analysis for both the team
and the game problem. This analysis is used in
Section 3 to numerically study and compare the
properties of the team and the game solutions. The
model with pricing is then introduced in Section 4
and is investigated numerically in Section 5. The
stochastic algorithm is presented in Section 6.

2 Model and problem formula-
tion

We use a Markovian model based on [5, Sec. 4.2.2].
We assume that there are a finite number of sources
without buffers. The arrival flow of packets to
source ¢ follows a Bernoulli process with param-
eter g, (i.e. at each time slot, there is a probability
qq of a new arrival at a source, and all arrivals are
independent). As long as there is a packet at a
source (i.e. as long as it is not successfully trans-
mitted) new packets to that source are blocked and

lost.! The arrival processes to different sources are
independent. A backlogged packet at source 7 is re-
transmitted with probability g.. We shall restrict
in our control and game problems to simple policies
in which ¢ does not change in time. Since sources
are symmetric, we shall further restrict to finding a
symmetric optimal solution, that is retransmission

probabilities ¢’. that do not depend on i.

Remark 1. Other models for ALOHA have been
also studied in the literature. A commonly used
model is one with infinite many sources [5] with
no buffers, in which the process of total number of
(non-blocked) arrivals at a time slot is Poisson with
parameter A and the process of combined transmis-
sions and retransmissions attempts forms a Pois-
son process with parameter G. Analysis of this
model shows that it has two quasi-stable operation
modes (as long as A < exp(—1)), one correspond-
ing to a congested system (in which there are many
backlogged packets and many retransmissions) and
one corresponding to an uncongested system (with
small amount of backlogged packets). The weak-
ness of this model is that both operation points
turn out to have the same throughput. Our model
also has two quasi-stable operation modes but the
throughput during congestion periods is lower than
in the noncongested periods [5], which seems more
realistic. We also note that in the case of infinitely
many nodes, retransmissions with a fixed positive
probability renders the system unstable [7].

Remark 2. Quite frequently one uses the ALOHA
protocol for sporadic transmissions of signaling
packets such as packets for making reservation for
a dedicated channel for other transmissions (that
do not use ALOHA), see e.g. the description of
the SPADE on demand transmission protocol for
satellite communications in [13]. In the context of
signaling, it is natural to assume that a source does
not start generating a new signaling packet (e.g. a
new reservation) as long as the current signaling
packet is not transmitted. In that case, the pro-
cess of attempts to retransmit a new packet from
a source after the previous packet has been suc-

'In considering the number of packets in the system, this
assumption is equivalent to saying that a source does not
generate new packets as long as a previous packet is not
successfully transmitted.



cessfully transmitted coincides with our no buffer
model.

(0,1], we ob-
tain a Markov chain that contains a single ergodic
chain (and possibly transient states as well). Let
m(q) be the corresponding steady state probabili-
ties. We shall use as the state of the system the
number of backlogged packets at the beginning of
a slot, and denote it frequently with n.

For any choice of values g% €

We introduce further notation. Assume that
there are n backlogged packets, and all use the
same value ¢, as retransmission probability. Let
Q:(i,n) be the probability that i out of the n back-
logged packets retransmit at the slot. Then

Qr(i,n) = (1) (1 —a)" 'lar]'- (1)

Assume that m is the number of nodes and let
Qo(i,n) be the probability that i unbacklogged
nodes transmit packets in a given slot (i.e. that
1 arrivals occurred at nodes without backlogged
packets). Then

Qu(i,n) = ("7") (1= @)™ " 'lga]"

And let Q,(1,0) = 0 and Q,(1,m) = 0.

In case all nodes use the same value of g, the tran-
sition probabilities of the Markov chain are given
by [5, eq. 4.3]:

(2)

P, n+z(Q)

Qa(i,n), 2<i<m-—mn,
Qa(1,n)[1 — @ (0,n)], i=1,
Qa(L,1)Qr(0,1) + Qa i =0,
Qa(0,n)Q

(0,n)[1 — Qr(1,n)],
r(1,n), g

The system throughput (defined as the sample av-
erage of the number of packets that are successfully
transmitted) is given almost surely by the constant

Zﬂ'n

=1,

7

thp(q (D[ Prn-1(9) + Qa(1,7)Qr(0,n)]

+70(q)Qa(1,0) = gq Z mn(q)(m

—n).

Note: the first equality follows from the fact that if
the state at the beginning of the slot is n > 0 then

there is a departure of a backlogged packet during
that slot with probability P, ,—1(g), and of a new
arriving packet with probability Q4(1,7)Q;(0,n);
Moreover, if the state is 0 then there is a departure
with probability Q,(1,0). The second equality sim-
ply expresses the expected number of arrivals at a
time slot (which actually enter the system), which
should equal to the expected number of departures
(and thus the throughput) at stationary regime.

The team problem is therefore given as the
solution of the optimisation problem:

m(q) = m(q)P(q),
max thp(q) s.t. ¢ m(q) >0,n=0,....,m
! Ym0 mn(g) = 1.
A solution to the team problem can be obtained
by computing recursively the steady state proba-
bilities, as in Problem 4.1 in [5], and thus obtain
an explicit expression for thp(q) as a function of g.

Singularity at ¢ = 0 The only point where P
does not have a single stationary distribution is at
q = 0, where it has two absorbing states: n = m
and n = m — 1. All other states are transient (for
any g, > 0), and the probability to end at one of the
absorbing states depend on the initial distribution
of the Markov chain. We note that if the state m—1
is reached then the throughput is g, w.p.1, where
as if the state m is reached then the throughput
equals 0. It is thus a deadlock state. For ¢, > 0 and
qr = 0, the deadlock state is reached with positive
probability from any initial state other than m — 1.
We shall therefore exclude ¢, = 0 and optimize only
on the range € < ¢, < 1. We choose throughout the

paper € = 1074

Existence of a solution The steady state prob-
abilities 7(g) are continuous over 0 < ¢ < 1. Since
this is not a close interval, a solution need not ex-
ist. However, as we restrict to the closed interval
q € [e,1] where € > 0, an optimal solution indeed
exists. Note also that the limit lim,_,o w(q) exists
since m(q) is a rational function of ¢ at the neigh-
borhood of zero. Therefore for any § > 0, there ex-
ists some ¢ > 0 which is J-optimal. (¢* > 0 is said



to be d-optimal if it satisfies thp(q*) > thp(q) — ¢
for all g € (0,1].)

Next, we formulate the game problem. For
a given policy vector q, of retransmission proba-
bilities for all users (whose jth entry is qZ), define
([ar] 7%, 4) to be a retransmission policy where user
j retransmits at a slot with probability qﬁ' for all
j # 1 and where user ¢ retransmits with proba-
bility (jﬁ'. Each user i seeks to maximize his own
throughput thp;. The problem we are interested
in is then to find a symmetric equilibrium policy
ar = (¢r,qr, --, ¢r) such that for any user 7 and any

retransmission probability ¢ for that user,

(3)

Since we restrict to symmetric qf, we shall also

thpi(q@*) > thpi([Qf] %, qb).

identify it (with some abused of notation) with the
actual transmission probability (which is the same
for all users). Next we show how to obtain an equi-
librium policy. We first note that due to symmetry,
to see whether q} is an equilibrium it suffices to
check (3) for a single player. We shall thus assume
that there are m + 1 users all together, and that
the first m users retransmit with a given probabil-

ity g~ = (¢°, .., ¢°) and user m+ 1 retransmits

with probability q,(~m+1). Define the set

Q™1 (q°) = argmax (thpmﬂ([qg]—(mﬂ), q§m+1)))’

where q2 denotes (with some abuse of notation)
the policy where all users retransmit with proba-
bility g7, and where the maximization is taken with

respect to q7(nm+1)

rium if

. Then g} is a symmetric equilib-
g € 97 (q)).

To compute thpm,i1([a]™?,¢t), we intro-
duce again a Markov chain with a two dimensional
state. The first state component corresponds to
the number of backlogged packets among the users
1,...,m, and the second component is the number
of backlogged packets (either 1 or 0) of user m + 1.
The transition probabilities are given by

Py (nsh ) (@2 g™ ) =

( Qa(kan)a i :] =1
Qa(k;n)(1 = o), i =35 =0

Qa(kan)qqa 1=0,7=1
Qa(1,m)[1 = Qr(0,m)(1 — g™ 1))
i=j=1
Qa(lan)[l - QT(O,TL)](]. - Qa) k=1
1=35=0
Qa(1,7)qa, 1=0,7=1
(1= ™) Z + ¢,(1 = Q(0,1))Qu(0,m) ]
. i=j=1
(1= ¢)Z + ¢uQa(0,n)Q-(0,n),
i=j=0 (
2aQa(0,n)[1 — Q- (0,n)], i=0,7=1
q$m+1)Qa(0,n)Qr(O.n), i=1,7=0
k=0

k=-1
L 0 otherwise
where Z = (Qq.(1,2)Q,(0,n) + Qu(0,n)[1 —

Q-(1,n)] and where @, and @, are given in (1)
and (2), respectively (with ¢? replacing ¢, ).

The throughput of user m + 1 is given by

thpm1([q2] "™ FY, gty
= q0 Y mno([g7™ D, g™ ). ()
n=0

3 Numerical investigation

In this section we shall obtain the retransmission
probabilities which solve the team and the game
problem. We investigate their dependence and the
dependence of the throughput that they imply on
the arrival probabilities g, and on the number of
nodes.

Figures 1 and 2 provide the total throughput
and optimal retransmission probabilities g, for m =
2, m = 3 and m = 4 for the team problem, as a
function of the arrival probability ¢,.



Figure 3 shows both the retransmission
probability and total throughput (obtained by mul-
tiplying the expression in eq. (4) by the number of
mobiles) as function of the arrival probability for
the game scenario.

Comparing the two figures, we see in par-
ticular that the game solution is very ineflicient
for large arrival probabilities: the total through-
put converges to zero as the arrival probability
increases, where as in the team case, the total
throughput increases with ¢, and attains more
than 0.55 (for m = 2,3,4).
seen also through the optimal retransmission pol-
icy: as the system becomes more congested (larger

The inefficiency is

arrival probabilities) the retransmission probability
decreases in the team case so as to counter expected
collisions. The game scenario gives rise, in contrast,
to an equilibrium that becomes more and more ag-
gressive as the arrival probabilities increase: the
equilibrium retransmission probability is seen to
increase with g, (for g, > 0.2) which explains the
dramatic decrease in the system’s throughput. In
particular, as ¢, approaches 1, so does ¢, at equi-
librium!
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Figure 1: Optimal throughput for the team
case as a function of the arrival probabilities
g for m=2,3,4
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Figure 2: The optimal retransmission proba-
bilities in the team case as a function of the
arrival probabilities g, for m = 2, 3, 4.
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Figure 3: The equilibrium retransmission probabil-
ities in the game case as a function of the arrival
probabilities g,.

4 Adding costs for retransmis-
sions

In this section we consider the problem where there
is an extra cost 0 per each transmission and retrans-
mission. This can represent the disutility for the
consumption of battery energy, which is a scarce
resource. For a given symmetric ¢ for all users, the
steady-state retransmission cost is 0g > 1" 7, (g)n,
where as the transmission cost of arriving packets



(i.e. packets that enter the system and are not re-
jected) is Othp(q).
number of arrival packets equals to the expected
number of departing packets at steady-state, and
each time a packet arrives at the system it is im-
mediately transmitted.)

(This is because the expected

Thus the new team problem is

max {thP(CI)(l —0)—06g) Wn(q)n} :
n=0

q

For the non-cooperative problem, the re-
transmission cost for a symmetric retransmission
policy ¢? of users 1,...,m and a retransmission prob-

(m+1)

ability gr of user m + 1 is:

0™ " a([gf] MY, ™).

n=0
User m + 1 is thus faced with the problem:

1
max Jm+1(q$, £m+ ))
gt

where

Tm+1(q2, g™ )

= thpmi(lgr] ™, g™ V) (1 - 0)
m
—0g™ > " w1 ([g) 7Y, gl Y).
n=0
Define as we did before
Q" (g7) = argmaz (Jmsr (g7 "D, gfm D) ).
Then we seek for the value g; of retransmission

probability that satisfies

—m+1

9 (q),

which is the Nash equilibrium for the game prob-
lem.

q €

5 Numerical investigation

In this section we shall obtain the retransmission
probabilities which solve the team are the game

problems with the extra transmission costs. We
shall investigate the dependence of the solution on
the value 6.

In Figures 4 and 5 we depict the through-
put obtained at the optimal solution and the op-
timal retransmission probabilities, respectively, as
a function of the arrival probability, for the team
problem with m = 2, for various values of 8. We
see that both the throughput as well as the retrans-
mission probabilities are monotone decreasing in
the cost. This can be expected since retransmis-
sions become more costly with increasing 6. An
interesting feature is that for any fixed 6 # 0, the
retransmission probabilities first increase in the ar-
rival probability and then decrease. For 6 = 0,
in contrast, the optimal retransmission probability
decreases in the arrival probability (which is nat-
ural since congestion in the system increases as ¢,

increases).
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Figure 4: Throughput at optimal ¢, for

the team case as a function of the ar-
rival probabilities g, for m = 2 and 6 =
0,0.2,0.4,0.6,0.8.
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Figure 5: The optimal retransmission prob-
abilities in the team case as a function of
the arrival probabilities ¢, for m = 2 and
#=0,0.2,04,0.6,0.8.

Next we consider the game problem with
2 mobiles. Figure 6 shows the impact of § on
the equilibrium retransmission probability g¢,, as
a function of the arrival q,. We that increasing
the cost 0 results in decreasing the retransmission
probabilities.
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Figure 6: The equilibrium retransmission
probabilities in the game case as function of
the arrival probabilities ¢, for m = 2 (num-
ber of mobiles) and 6 = 0,0.2,0.4,0.6,0.9, 1.

Figure 7 provides the total throughput at
equilibrium as a function of the arrival probabilities
for the case of two mobiles. We see that indeed the

throughput is improved considerably by adding a
cost on retransmission, especially for large arrival
probabilities.
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Figure 7: Total throughput for the game
case as a function of the arrival probabili-
ties g, for m = 2 (number of mobiles) and
0 =0,0.2,0.4,0.6,0.9,1.

We then compute the pricing 8 that is nec-
essary for the equilibrium retransmission probabil-
ities to coincide with those obtained for the team
problem. This is the value of § that will yield the
optimal system throughput. The results are pre-
sented in Fig. 8.
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Figure 8: The retransmission cost 6 such that the
optimal retransmission in the game coincides with
that of the original team problem, as function of
the arrival probabilities g, for m = 2.



6 A stochastic adaptive algo-
rithm

The solutions of both the team as well as the game
problems have been computed by using some fixed
parameters (the arrival probabilities and number of
mobiles m) which might not be available. It is thus
of interest to study algorithms that do not need
these parameters. We thus relax the assumption of
time independent retransmission probabilities, and
allow each ¢!(t), the retransmission probability of
mobile ¢ at time slot ¢, to vary according to the
information it receives. Specifically, we propose the
following distributed algorithm:

gr(t +1) = g (t) + e(B)E(D),

where £(t) = —1 if there has been a collision at
time slot ¢ and is 1 otherwize. Note that the even
if a mobile does not transmit, a feedback is re-
ceived if there has been a collision (involving other
packets), and this information is used to infer that
€(t) are some constants. If
we assume that the systems parameters are un-

there is congestion.

known but fixed, then e(¢) are chosen so as to sat-
isfy lim; yoo€(t) = 0 and ), , €(t) = co. This
is inspired by standard stochastic approximation
theory [10].

Remark 3. (i) Note that our algorithm is not a
result of an optimization procedure.

(ii) Although the algorithm is decentralized, since
all mobiles use the same algorithm and all mobiles
receive the same feedback, ¢’(t) does not depend
on 7. We shall thus omit the superscript .

We investigate below the case of three mo-
biles with €(t) = 1/(20¢). We ran the distributed
algorithm for 10* slots. The evolution of ¢.(t) is
depicted in Figure 9. The initial value of ¢, was
taken to be 0.1111.
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Figure 9: Evolution of ¢, (t) for the case of three
mobiles using the distributed adaptive algorithm

We ran three times the same simulation and
obtained convergence of ¢, (t) in all three cases; the
final value was 0.365, 0.392 and 0.374 in the three
simulations, and the averaged value over the simu-
lations is 0.377. The total number of packets suc-
cessfully transmitted in the simulations are respec-
tively 4433, 4348 and 4462. This gives an average
throughput of 0.4414. We note that this, as well
as the limit obtained for the retransmission proba-
bilities are very close to the corresponding optimal
team values.

7 Concluding remarks

We have studied three approaches for choosing re-
transmission probabilities in a slotted Aloha sys-
tem. First, we studied the team problem, then the
non-cooperative game problem. The objective was
initially to maximize the throughput. We saw that
as the arrival probabilities increased, the behavior
of mobiles became more and more aggressive (as
compared to the team problem) which resulted in
a global deterioration of the system throughput.
This is in contrast to the team problem in which
throughput increased with the arrival probabilities.
We also considered additional costs on transmis-
sions and showed numerically that pricing could
be used to enforce an equilibrium whose through-
put corresponds to the team optimal solution. We
finally considered a distributed adaptive algorithm
for updating the retransmission probabilities that



did not require the knowledge of the system’s pa-
rameters (number of mobiles and arrival probabil-
ities). In the example we tested numerically, we
obtained rapid convergence to a value close to the
team optimal solution.
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