
HAL Id: inria-00466676
https://hal.inria.fr/inria-00466676

Submitted on 24 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolving graphs and least cost journeys in dynamic
networks

Binh-Minh Bui-Xuan, Afonso Ferreira, Aubin Jarry

To cite this version:
Binh-Minh Bui-Xuan, Afonso Ferreira, Aubin Jarry. Evolving graphs and least cost journeys in
dynamic networks. WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks,
Mar 2003, Sophia Antipolis, France. 10 p., 2003. <inria-00466676>

https://hal.inria.fr/inria-00466676
https://hal.archives-ouvertes.fr

Evolving graphs and least cost journeys

in dynamic networks ∗

B. Bui Xuan† A. Ferreira‡ A. Jarry§

Abstract

New technologies and the deployment of mobile
and nomadic services are driving the emergence
of complex communications networks, that have a
highly dynamic behavior. This naturally engenders
new route-discovery problems under changing condi-
tions over these networks. In this paper, we use and
extend a recently proposed graph theoretic model,
which helps capture the evolving characteristic of
such networks, in order to propose and formally ana-
lyze least cost journeys (the analog of paths in usual
graphs) in a class of dynamic networks, where the
changes in the topology can be predicted in advance.
Cost measures investigated here are hop count (short-
est journeys), arrival date (foremost journeys), and
time span (fastest journeys).

1 Introduction

Infrastructure-less mobile communication environ-
ments, such as mobile ad-hoc networks and low earth
orbiting (LEO) satellite systems, present a paradigm
shift from back-boned networks, such as cellular tele-
phony, in that data is transfered from node to node
via peer-to-peer interactions and not over an un-
derlying backbone of routers. Naturally, this en-
genders new problems regarding optimal routing of
data under various conditions over these dynamic
networks [21]. In this setting, the generalized case
of network routing using shortest paths or least cost
methods are complicated by the arbitrary movement
of the mobile agents, thereby leading to variations
in link costs and connectivity. This naturally moti-
vates studying the modeling of such dynamics, and
designing algorithms that take it into account [22].

∗This work was partially supported by the Color action
Dynamic and the European FET project Crescco.

†ENS-Lyon, 46, allée d'Italie, 69007 Lyon, France.
‡CNRS � i3s & inria Sophia Antipolis, 2004, Rt.

des Lucioles, 06902 Sophia Antipolis Cedex, France.
Afonso.Ferreira@sophia.inria .fr.

§i3s& inria Sophia Antipolis, 2004, Rt. des Lucioles, 06902
Sophia Antipolis Cedex, France. Aubin.Jarry@sophia.inria.fr.

Note, however, that for the case of sensor networks,
LEO satellite systems and other mobile networks
with predestined trajectories of the mobile agents,
the network dynamics are somewhat deterministic.
Therefore, since the trajectories of the satellites are
known in advance, it is possible to exploit this deter-
minism in optimizing routing strategies [8].

Another setting where the evolution of the network
is known was studied in [7]. The authors cleverly
brought the usual notion of competitive analysis ([2])
on a dynamic setting to the attention of the mobile
communications community. It is used in order to an-
alyze the quality of a protocol and its choices made
forced by the evolution of the network. At the end of
the process, the history of the network is formalized
as a sequence of graph topologies on which the ap-
plication can be solved optimally. The merit of the
protocol is then the ratio of the solution cost found
on-line over the optimal o�-line cost.

Such networks where the topology dynamics are
known at di�erent time intervals are henceforth
referred to as �xed schedule dynamic networks
(FSDN's) (see Figure 1).

Literature related to route discovery issues in dy-
namic networks started more than four decades ago,
with papers dealing with operations of transport net-
works (e.g., [5, 10, 11, 12, 13, 20]). Recent work on
time-dependent networks can be found in [9, 15, 16],
where �ow algorithms are studied in static networks
with edge traversal times that may depend on the
number of �ow units traversing it at a given moment.
If traversal times are discrete, then the approach pro-
posed in [10], namely of expanding the original graph
into layers representing the time steps (also called
space-time approach), may work for computing sev-
eral path-related problems (see [9, 15, 16] and ref-
erences therein). This approach, generalized in [19],
requires a discrete set T of time steps such that all the
edge creations and deletions occur in T , and such that
when using an edge at time t ∈ T , the arrival time
t+d (where d is the delay of the edge we used) is also
in T . This can generally not be applied if we want
T to have a reasonable (not exponential) size. For

(0) (1)

(2) (3)

Figure 1: An FSDN represented as an indexed set of
networks. The indices correspond to successive time-
steps.

instance, consider a loop (composed of three edges)
which presence interval is [0, 1000], and with delay
is 3 (1 for each edge). Then the set T should con-
tain at least 0, 3, 6, 9, 12, . . . and its size would be
exponential compared to the size of the problem.
Therefore, di�erent techniques were developed in

the literature in order to cope with the dynamics of
networks as well as with their time dependency. For
instance, in [5, 12] shortest time paths were �rst ad-
dressed and in [20], the continuous �ow problem was
discussed.
Recently, evolving graphs [6] have been proposed as

a formal abstraction for dynamic networks, and can
be suited easily to the case of FSDN's. Concisely, an
evolving graph is an indexed sequence of subgraphs
of a given graph, where the subgraph at a given in-
dex point corresponds to the network connectivity at
the time interval indicated by the index number. The
time domain is further incorporated into the model
by restricting journeys (i.e., the equivalent of paths
in usual graphs) to never move into edges which ex-
isted only in past subgraphs (cf. Figure 2 below, and
Section 2).
Notice that this model allows for arbitrary changes

between two subsequent time steps, with the possible
creation and/or deletion of any number of vertices
and edges. More interestingly and perhaps surpris-
ingly, previous work showed that, unlike usual graphs,
�nding connected components in evolving graphs is
NP-Complete [1]. Other path problems in evolving
graphs have also been studied under the merit ap-
proach [7]. Results proven include �nding a sequence

0,1,2,3

30,1,2,3

1,2,3

1

0,2,3

0,3

0

1,2,3
0,1,2

0,1,30,1,2

0,1,3

0,1

0,1,2,3

A

B

C

D

E

F

0

2,3

Figure 2: Evolving graph corresponding to FSDN in
Figure 1. Edges are labeled with corresponding time-
steps. Observe that CBF is not a valid journey since
BF exists only in the past with respect to CB.

of paths between a given pair of nodes to connect
them throughout every time step, and such that the
global routing plus re-routing cost is minimized.

In this paper we use and extend evolving graphs in
order to propose and formally analyze least cost jour-
neys in FSDNs. Cost measures investigated here are
arrival date (foremost journeys), hop-count (short-
est journeys), and time span (fastest journeys). It
is interesting to notice that foremost journeys have
been previously investigated in several dynamic net-
works [9, 15, 16, 17]. The two other optimization
problems have not yet been solved e�ciently. They
have been studied both for discrete models [19] where
the di�culty is skipped by expanding the size of
the problem, and for the continuous model, which
is closer to our model but where complexity issues
cannot be properly dealt with [18].

This paper is organized as follows. The formal def-
initions of evolving graphs and of some of their main
parameters are revised in the next section. Then,
algorithms for computing foremost (earliest arrival
date) journeys, shortest (minimum hop count) jour-
neys and fastest (minimum time) journeys, are given
and analyzed in the subsequent sections. Since these
questions in untimed evolving graphs can be solved
through the time-expansion approach, our algorithms
are all designed for timed evolving graphs. We close
the paper with concluding remarks and ways for fur-
ther research.

2 Graph Theoretic Model

A dynamic network can be seen as a − poten-
tially in�nite − sequenceN = . . . ,Nt−1,Nt,Nt+1, . . .
of networks over time. The dynamic networks con-
sidered here are FSDNs, i.e., they have predictable
changes in their topologies. We show here a corre-
sponding graph theoretic model.

De�nition 1 (Evolving Graphs) Let be given a
graph G(V,E) and an ordered sequence of its sub-
graphs, SG = G1, G2, . . . , GT such that

⋃T
i=1 Gi = G.

Then, the system G = (G,SG) is called an evolving
graph.

Let EG =
⋃

Ei, and VG =
⋃

Vi. We denote
M = |EG | and N = |VG |. Two vertices are said to
be adjacent in G if and only if they are adjacent in
some Gi. The degree of a vertex in G is de�ned as its
degree in EG . Like usual graphs, evolving graphs can
be weighted, the weights on the edges representing
traversal distance, traversal cost, etc. On the other
hand, weights can also belong to the time domain
(in this paper, we denote it T = R+

⋃
{∞}). In this

case, we shall speak of timed evolving graphs because
the weights on the edges will represent their traversal
time. Let I = [t1, tT +1[⊂ T be a time interval, where
Gi is the subgraph in place during [ti, ti+1[.
Throughout this text we shall consider packet net-

works. Hence, transmitting one piece of information
means transmitting one packet over one edge. The
duration of transmitting one packet over a link in a
FSDN is given as a function ζ representing the links'
traversal times.

Journeys We call route in G a path R =
e1, e2, . . . , ek with ei ∈ EG in G. Let Rσ =
σ1, σ2, . . . , σk with σi ∈ T be a time schedule indicat-
ing when each edge of the route R is to be traversed.
We de�ne a journey J = (R,Rσ) if and only if Rσ is
in accordance with R, ζ, G and I, i.e., J allows for
a traversal from u to v in G. Note, for instance, that
journeys cannot go to the past.
A round journey is a journey J = (R,Rσ) in G,

where R is a cycle in G. It is the analogous to a
usual circuit in a graph, with the di�erence that once
the round journey ends back in u ∈ Gk, for some k,
nothing implies the existence of another time schedule
allowing to use the same route again.

Distances The de�nitions above give rise to at
least three di�erent quality measures of journeys,
namely hop-count or length, arrival date, and journey
time, two of which are in the time domain.

Let J = (R,Rσ) be a journey where R =
e1, e2, . . . , ek and Rσ = σ1, σ2, . . . , σk. Then, The
hop-count or length of J is de�ned as |J |h = |R| = k.
It is also denoted h(J). The distance in G be-
tween two vertices u and v is de�ned as d(u, v) =
min{|J |h}, taken over all journeys in G between u
and v. We shall say that one such journey is the
shortest.

The arrival date of J is de�ned as |J |a = σk +
ζ(ek), i.e., the scheduled time for the traversal of the
last edge in J , plus its traversal time. It is also de-
noted a(J). The earliest arrival date in G between
two vertices u and v is given by the �rst journey ar-
riving at v from u, denoted a(u, v). We shall say that
one such journey is the foremost. If there is no jour-
ney in G between u and v, we say that a(u, v) =∞.

The journey time of J is de�ned as the elapsed
time between the departure and the arrival, i.e.
|J |t = |J |a − σ1. It is also denoted t(J). The de-
lay in G between two vertices u and v is de�ned as
delay(u, v) = min{|J |t}, taken over all journeys in G
between u and v. We shall say that one such journey
is the fastest. If there is no journey in G between u
and v, we say that delay(u, v) =∞.

Dynamics Corresponding to each edge e in EG
(respectively, node v in VG) we can de�ne an edge
presence schedule PE(e) (respectively, node presence
schedule PV (v)) as a set of intervals indicating the
subgraphs in which they are present, and possibly
some of its parameters during each interval. Thus,
we may alternatively de�ne an evolving graph as
G = (VG , EG), where each node and edge has a sched-
ule de�ned for it. An edge e and a schedule σ are valid
in a journey, if and only if e is present at least in the
interval [σ;σ + ζ(e)]. To simplify our computations,
it is safe to assume that the intervals of presence of
an edge e are closed and that they are longer than
ζ(e).

With the help of these edge and node schedules,
we can now introduce ways to measure how much an
evolving graph changes its topology during the time
interval I. First, we de�ne the activity of a vertex
v as δV (v) = |PV (v)|, and the activity of an edge e
as δE(e) = |PV (e)|. We then de�ne the node activity
of an evolving graph as δV = max {δV (v), v ∈ VG},
and the edge activity as δE = max {δE(e), e ∈ EG}.
The activity of an evolving graph is de�ned as δ =
max(δV , δE). And the dynamics of an evolving graph
is de�ned as (δ−1)

T . As a consequence, since usual
graphs have δ = 1, they have dynamics zero.

Coding In this paper, we assume that the input G
is given as linked adjacency lists, with the sorted edge
schedule attached to each neighbor, given as time in-
tervals indicating when that edge is alive. The traver-
sal time of that edge is also attached to the corre-
sponding neighbor. The head of each list is a vertex
with its own sorted node schedule list attached, also
given as time intervals (see Figure 3).

node schedule list

arc schedule list arc schedule list

traversal time traversal time

An other
neighborA node A neighbor ... etc

I1 I2 δV(u)I

δV(u)vv1 v2

(u,v)1ζ

(u,v)1δE
JJ2J1

u

...

...

...

...

Figure 3: The data structure for coding a �xed-
schedule dynamic network modeled by an evolving
graph.

Thus, for each vertex v, and each edge e, the cor-
responding PV (v) and PE(e) are de�ned as sets of
time intervals. This data structure is especially useful
when considering networks with low dynamics, mean-
ing there are few activations/desactivations on nodes
and edges.

A Very Useful Function Below we give a stan-
dard function on timed evolving graphs which will
be used in the remainder of this paper. Let con-
sider an edge (u, v) ∈ EG and a time instant t. We
call f((u, v), t) the function which gives, for each edge
(u, v), and each time instant t, the earliest moment
after t where node u can transmit a message to v. If
such a moment does not exist, f returns ∞.
Notice that our data structure allows for a quick

computation of the function f . Indeed, with a binary
search, this computation can be done in O(log δE).

3 Foremost Journeys

In this section we show how to compute foremost
journeys from a source node s to all other nodes,

problem already studied several times in the lit-
erature, as shortest (time) path in time-dependent
(transport) networks, e.g. in [5, 11, 13, 23]. Remind
that, in order to compute shortest paths, the usual
Dijkstra's algorithm [4] proceeds by building a set C
of closed vertices, for which the shortest paths have
already been computed, then choosing a vertex u not
in C whose shortest path estimate, d(u), is minimum,
and adding u to C, i.e., closing u. At this point, all
arcs from u to V −C are opened, i.e., they are exam-
ined and the respective shortest path estimate, d, is
updated for all end-points. In order to have quick ac-
cess to the best shortest path estimate, the algorithm
keeps a min-heap priority queue Q with all vertices
in V −C, with key d. Note that d is initialized to ∞
for all vertices but for s, which has d = 0.
The theorem below shows that there exist foremost

journeys with pre�x property in a timed evolving
graph. Further below, Property 1 shows how such
journeys help computing earliest journeys in a timed
evolving graph.

Proposition 1 (Ubiquitous earliest journey)
Let s and v be two vertices in a given timed evolving
graph G. If there is a journey in G linking s to v,
then, among all journeys linking s to v, there exists
at least one foremost journey such that all its pre�x
journeys are themselves foremost journeys. Such a
journey is called ubiquitous foremost journey (ufj).

Proof
Let J = (e1, . . . , ek, σ1, . . . , σk) be a journey from s
to v. If the hop-count |J |h = k of J is greater than
N×δV +1, then there are two integers i < j, a vertex
u and a time interval [t1, t2] such that both ei and ej

start from u, and both σi and σj are in [t1, t2]. In this
case, we can produce R′ = e1, . . . , ei−1, ej , . . . , ek and
R′

σ = σ1, . . . , σi−1, σj , . . . , σk, so that J ′ = (R′, R′
σ)

is a journey from s to v with |J ′|h < |J |h and |J ′|a =
|J |a. Observe that if J was an ufj, then so is J ′.
This means that the only relevant journeys for our
problem contain at most N × δV edges, and that if
there is a ufj, then there is an ufj with less than
N × δV edges.
Now, let J = (e1, . . . , ek, σ1, . . . , σk) and J ′ =

(e′1, . . . , e
′
k′ , σ

′
1, . . . , σ

′
k′) be two journeys from s to v.

We say that J ≤ubiquituous J ′ if and only if:

1. |J |a < |J ′|a or

2. |J |a = |J ′|a and σk < σ′k or

3. |J |a = |J ′|a, there is i such that ∀j > i, σj = σ′j
and σi < σ′i.

4. |J |a = |J ′|a, ∀j, σj = σ′j .

Notice that ≤ubiquituous de�nes a total pre-order re-
lation1 over all the journeys from s to v. The space
of relevant journeys from s to v is bounded in time
and in space (N × δV) and closed (we consider closed
intervals of presence), so it has a minimum. Observe
that such a minimum is an UFJ, so this proves the
existence of an UFJ from s to v. 2

We now point out how earliest arrival dates in an
ufj can be easily computed thanks to the function
f(e, t), which gives, for each edge e = (u, v), and each
time instant t, the earliest moment after t where node
u can retransmit a message to its neighbor v.

Property 1 (Earliest arrival dates in an ufj)
Let s and v be two distinct vertices in G, and
J be an ufj from s to v, with k = |J |h ≥ 1.
Let u be the vertex which immediately pre-
cedes v in J = (R(u), (u, v), Rσ(u), σk). Then
a(s, v) = f((u, v), a(s, u)) + ζ(u, v).

3.1 Computing ufjs

Below, we give an e�cient algorithm to compute
the single-source ufjs in evolving graphs.

Algorithm 1 (ufjs)
Input : An evolving graph G, a vertex s ∈ VG
Output : An array tEAD[v] ∈ T which gives for each
vertex v ∈ VG the Earliest Arrival Date from s; and
an array father[v] ∈ VG which gives for each vertex
v 6= s ∈ VG its father in the ubiquitous foremost jour-
ney tree.
Variables : A min-heap Q of vertices, sorted by the
array tEAD. The array tEAD will be updated.

1. Initialize tEAD[s] ← 0; and for all v 6= s ∈ VG,
tEAD[v] ← ∞. Initialize Q with only s in the
root.

2. While Q 6= ∅ do:

(a) Extract u, the vertex at root(Q), and close
it.

(b) Delete root(Q).

(c) Traverse the adjacency list of u, and for
each open neighbor v do:

i. Let t = f((u, v), tEAD[u]).
ii. If t + ζ(u, v) < tEAD[v] then

Update tEAD[v]← t + ζ(u, v),
Update father[v]← u and
insert v in the Q if it was not there
already.

1I.e., transitive and re�exive.

(d) Update Q.

The foremost journey is found by backtracking the
variable father. In case two successive time-labels
di�er by more than the corresponding ζ, this implies
that the foremost journey yields a forced stay of the
information in that vertex for a number of steps, until
the connection is established to its successor.
The algorithm termination is clear. In each step of

Loop 2, one vertex is closed and we never re-insert
a closed vertex into the heap Q. Thus the loop is
repeated at most N times, and the algorithm ends.
The validity of the algorithm will be proved through
the following lemma.

Lemma 1 For all vertices u in VG, tEAD[u] =
a(s, u) when u is closed.

Proof
By induction on the set C of closed vertices. At the
beginning, C = {s} and tEAD[s] = 0 = a(s, s). The
property holds.
Suppose that at some moment the algorithm has

correctly computed C, and a vertex v is to be closed,
i.e., the algorithm is at the moment just before closing
v. Thus v has been inserted in the heap Q, so s and
v are connected. Let J be an ufj from s to v. This
journey links the vertex s inside of C to the vertex
v outside of C. Let now v′ be the �rst vertex in J
which is not in C, and u be the vertex which precedes
immediately v′ in J (see Figure 3.1).

J
s

x y

u

C

Figure 4: Validity of Algorithm 1: earliest arrival
dates.

Since C has been correctly computed, then
tEAD[u] = a(s, u). When u was closed, v′ was in-
serted in the Q, and since v′ is before v in the jour-
ney J , tEAD[v′] ≤ tEAD[v] and clearly v′ = v. Fur-
thermore, Property 1 states that a(s, v) = f((u, v),
a(s, u)), hence tEAD[v] = a(s, v). 2

For each closed vertex, the algorithm per-
forms O(log δE + log N) operations per neighbor.
Hence, the total number of operations is at most

O(
∑

v∈VG
[|Γ(v)|(log δE + log N)]) = O(M(log δE +

log N)). A consequence of the above results is the
following theorem.

Theorem 1 Algorithm 1 correctly computes ufjs
from a source node s to all others nodes in
O(M(log δE + log N)) time.

4 Shortest Journeys

In this section, we focus on the hop-count of jour-
neys, which we want to minimize. We will again use
an approach close to Dijkstra's algorithm [4], com-
puting all the shortest journeys from a single vertex
s to all the other vertices.
The di�culty stems from the edge traversal times,

which again make that pre�x of shortest journeys are
not necessarily shortest (see Figure 5).

[1] [1][1−2] [1−2][1−3] [1−3][1−4]

[3]
[1] [2]

S

[4]

Figure 5: The shortest journey from s to its antipode
takes 8 hops at time step 1, whereas there is a short-
cut a time step 4 to the fourth point.

Nevertheless, we note that if the last edge, say
(u, v), of a shortest journey between vertex s and ver-
tex v arrives at time t, then the pre�x journey (going
from s to u) is shorter than all the journeys from s
to u ending before t. Therefore, we will consider cer-
tain pairs (u, t) ∈ VG × T and compute the shortest
journeys from s to vertex u arriving before time t. In
this manner, the pre�x property is respected, that is,
a pre�x of a shortest journey will be shortest, under
the condition that it arrives before some time step
t′. Using this property, we will build a tree of jour-
neys between s and pairs (u, t), in which each vertex
u appears at least once (see Figure 6).

(S,0)

(A,1)

(B,2)

(C,3)

(D,4)

(B,1) (C,1) (D,1) (E,1) (F,1) (G,1) (H,1)

(C,2) (D,2) (E,2) (G,2)(F,2)

(D,3) (E,3) (F,3)

(E,4)

Figure 6: Tree of shortest paths.

In order to proceed, we introduce Algorithm 2, be-
low. Given an array tLBD (indexed on u ∈ VG) of
Lower Bound on Departure times tLBD[u] ∈ T, it
computes an array emin and an array tmin (indexed
on v ∈ VG) of edges emin[v] ∈ EG and schedules
tmin[v] ∈ T such that e[v] = (u, v) exists during the
whole [tmin[v], tmin[v]+ζ(emin[v])] time interval; and
such that tLBD[u] ≤ tmin[v]. Moreover, the couple
(emin[v], tmin[v]) is chosen so that tmin[v]+ζ(emin[v])
is minimal over all possible couples, and we add the
condition that tmin[v] + ζ(emin[v]) ≤ tLBD[v]. If no
such couple exist, the default one is (nil,∞).

Algorithm 2 (Edge and schedule selection)
Input: A timed evolving graph G and an array

tLBD[u] ∈ T which gives for each u ∈ VG a Lower
Bound on Departure time.
Output : Two arrays emin[v] ∈ EG and tmin[v] ∈ T
which give for each v ∈ VG an edge emin[v] = (u, v)
along with a schedule tmin[v] for this edge.
Variable : An array tarrival[v] ∈ T which gives
the arrival date of the former edge(tarrival = tmin +
ζ(emin)). The output array will vary.

1. For all v ∈ VG initialize emin[v] ← nil;
tmin[v]←∞ and
tarrival[v]← tLBD[v].

2. For all (u, v) in EG do:

(a) Let t = f((u, v), tLBD[u]).

(b) If (t + ζ(u, v)) < tarrival[v] then

i. Let emin[v]← (u, v).
ii. Let tmin[v]← t.

iii. Let tarrival[v]← t + ζ(u, v).

Now, observe that given a shortest journey with
hop-count k, all its pre�xes have a hop-count smaller
than k−1. Our algorithm will compute all the arrival
dates with hop-count k−1, and then proceed for hop-
count k. The algorithm stops when all vertices have
an arrival date smaller than ∞, and keeps track of
the �rst time when a vertex was encountered and its
shortest path from s. The number of iterations in our
algorithm is of course the eccentricity of G.

Algorithm 3 (Shortest journeys)
Input: A timed evolving graph G, a vertex s ∈ VG.
Output: An array Jshortest[v] ∈ {set of all journeys}
which gives for each v ∈ VG a shortest journey from
s to v.
Variables: An array J [v] ∈ {set of all journeys}
which gives for each v ∈ VG a journey from s to
v; an array tLBD[u] ∈ T which gives for each u ∈

VG a Lower Bound on Departure time; two arrays
emin[v] ∈ EG and tmin[v] ∈ T which give for each
v ∈ VG an edge emin[v] = (u, v) along with a schedule
tmin[v] for this edge; and a number of hops k ∈ N.

1. Initialize tLBD[s] ← 0, J [s] ← () and de�ne
Jshortest[s] = (); for all v 6= s tLBD[v]←∞ and
J [v]← (); k ← 0.

2. While there is v ∈ VG such that tLBD(v) = ∞
and
While k < N do:

(a) k ← k + 1

(b) Call Algorithm 2 with input (G, tLBD), and
store the results in the arrays emin and
tmin.

(c) For each vertex v ∈ VG do:
If emin[v] 6= nil then

i. Let emin[v] = (u, v).
ii. Let (R,Rσ) = J [u].
iii. Update J [v] ←

(R, emin[v], Rσ, tmin[v]).
iv. If tLBD[v] = ∞ then de�ne
Jshortest[v] = J [v].

v. Update tLBD[v]← tmin[v]+ζ(emin[v]).

Proposition 2 The algorithm above computes
shortest journeys from a single source s to all
the vertices in G, if such journeys exist. If G is
connected, then the complexity of the algorithm is
O(Md logδE), where d is the eccentricity of s. If G
is not connected the complexity of the algorithm is
O(NM log δE)

Proof
For each k, all the edges are processed, and the re-
trieval of arrival dates takes O(logδE), so the over-
all complexity for a value of k is O(M logδE). We
will prove by induction that for each k, the ear-
liest arrival date with k hops is computed for the
couple (s, v),∀v ∈ VG . So the overall complexity is
O(Md logδE), where d is the eccentricity of s, if G is
connected. In case G is not connected, the algorithm
will stop because k > N at step 2. In this case, the
overall complexity is O(NM log δE). 2

5 Fastest Journeys

In this section, we are interested in the journey
time measure, and we will compute fastest journeys
from s to all the other vertices. This problem is much
more complex than the two former ones, because a

faster journey may appear well ahead in time, or
can be really long compared to the shortest journeys.
Moreover, the speed of a journey pre�x is almost ir-
relevant regarding the speed of the whole journey. In-
deed, a fast pre�x may well imply a long waiting time,
o�setting the apparent gain in speed. On the other
hand, some pre�x journeys are too slow and hence
useless to our computations. The remaining pre�xes
will be grouped within classes of relevant journeys.
As in Section 4, we will proceed hop by hop,

since the number of hops in a fastest journey is also
bounded by N . For each k, we will build a list of
relevant journey classes of length k starting in s, by
taking the list for hop-count k − 1 and extending its
relevant journey classes to k hops. This is done by
examining each edge of the graph, building the jour-
neys classes that can go through this edge, and then
eliminating irrelevant journey classes. After N hops,
we know that the fastest journeys are included in the
�nal relevant journey class list. Therefore it su�ces
to search for the minimum journeys in this list to ob-
tain the requested fastest journeys. The number of
relevant classes is bounded by the size of G, and thus
the complexity of our algorithm remains reasonable.
For each journey, the measure of quality (the jour-

ney time) is di�erent from the hop-count, and from
the arrival date. We will not keep track of the hop-
count, which is implicit in our algorithm. We will
however use it to stop the algorithm (after hop-count
N − 1). Regarding the two other parameters, we will
keep track at each step of several possible journeys
from the source s to some vertex v, along with the
arrival date tarrival of each journey and the journey
time tspeed of each journey. Given two journeys from
s to v with departure date tdeparture1 , tdeparture2 and
arrival dates tarrival1 , tarrival2 , observe that if we have
both tdeparture1 ≥ tdeparture2 and tarrival1 ≤ tarrival2 ,
then not only journey 1 starts after journey 2, but
journey 1 arrives before journey 2. In this case jour-
ney 2 is useless for our problem, so we will keep track
only of journey 1.

De�nition 2 (Relevance) Let ≤route be an arbi-
trary order on the routes in G. Let ≤rel be an order
on the journeys of G de�ned as follows.

1. (on speed) J1 <rel J2 if |J1|t < |J2|t or

2. (on hop-count) J1 <rel J2 if |J1|t = |J2|t and
|J1|h < |J2|h or

3. (on ≤route) J1 = (R1, Rσ1) ≤rel J2 = (R2, Rσ2)
if |J1|t = |J2|t and |J1|h = |J2|h and R1 ≤route

R2.

De�nition 3 (Relevant & Irrelevant journeys)
Let G be a timed evolving graph, and u, v ∈ VG.
Let J be a journey from u to v, with departure
time tdeparture and arrival time tarrival. If there
is another journey J ′ from u to v which starts at
t′departure and arrives at t′arrival such that J ′ ≤rel J
and [tdeparture, tarrival] ⊂ [t′departure, t

′
arrival], then J

is called irrelevant journey. Otherwise, J is called
relevant journey.

Another observation is that journeys with no wait-
ing time in any vertex may yield a whole class of
journeys with the same speed. To see this, consider
two edges (u, v) and (v, w). Let edge (u, v) have
traversal time 3 and be valid at interval [1, 8]. Let
edge (v, w) have traversal time 4 and be valid at in-
terval [5, 13]. The journey ((u, v), (v, w), 3, 6) arrives
takes 7 time steps to complete. But so do all journeys
((u, v), (v, w), [2, 5], [5, 8]), as illustrated in Figure 7.

1

8

4

5

2

3

6

7

Time

9

10

11

12

13

u 3 4v w

Journey

Journey
class

Edge
presence!
interval

Route

Figure 7: A journey and a class of similar journeys.

In order to handle this, given a journey J =
(R,Rσ) with R = e1, e2, . . . , ek and Rσ =
σ1, σ2, . . . , σk, if each edge ei is valid during interval
[σi, σi + δ + ζ(ei)] for some δ ∈ T, then we introduce
schedule intervals I(Rσ, δ) = [σ1, σ1 + δ], [σ2, σ2 +
δ], . . . , [σk, σk + δ] and we say that (R, I(Rσ, δ)) is
a class of journeys. Observe that for all ε ∈ [0, δ],
(R,Rσ +ε) is a journey. A journey class will be called
relevant journey class if it contains only relevant jour-
neys. A relevant journey class that is contained in no
other relevant journey class will be called maximal

relevant journey class. We are interested in these
maximal relevant journey classes.

Lemma 2 (Maximal relevant journey classes)
Given an evolving graph G, two vertices u, v ∈ VG
and k ∈ N, the number of maximal relevant journey
classes of k hops (or less) from u to v is bounded by
the edges of G and their activity, that is 2MδE.

Proof
Let us consider a maximal relevant journey class
(R, I(Rσ, δ)) of k hops (or less) from u to v. Let δmax

be the biggest integer, such that (R, I(Rσ, δmax))
is a journey class. If δ = δmax, then there is an
edge ei ∈ R with schedule σi ∈ Rσ, such that
σi + δ is the upper extremity of a presence inter-
val of ei. Clearly, no other relevant journey may
use ei during [σi, σi + δ]. On the other hand, if
δmax > δ, then there is a maximal relevant jour-
ney class (R′, I(R′

σ, δ′)) which is considered better
than (R, I(Rσ, δ)), that is (R′, R′

σ) <rel (R,Rσ) and
|(R′, R′

σ)|a = |(R,Rσ + δ)|a. In this case, there is an
edge e′i ∈ R′ and a schedule σ′i ∈ R′

σ such that σ′i is
the lower limit of a presence interval of e′i. Clearly, no
other relevant journey may arrive at |(R,Rσ + δ)|a.
Thus, we can assign an extremity of an edge presence
interval to each di�erent maximal relevant journey
class so that they are pairwise disjoint. Therefore,
the number of maximal relevant classes is bounded
by twice the number of edge presence intervals in EG .
2

Given an edge (u, v) and a list of journey classes
arriving on vertex u, the �rst algorithm we give below
computes a list of journey classes arriving on vertex
v, such that each journey in the new classes is formed
by an old journey plus the edge (u, v) scheduled as
early as possible.

Algorithm 4 (Augmenting journey classes)
Input: A timed evolving graph G; an edge (u, v) ∈

EG; and a list Lu of journey classes from s to u.
We suppose that the list is ordered by increasing de-
parture and arrival dates. Let first(Lu) be the �rst
element of the Lu. We will add and remove elements
at the beginning of the list Lu.
Output: A list Lv of journey classes from s to v.
We add elements one by one to an empty list. Ele-
ments are added to the end of the list Lv.
Variables: A departure time for (u, v): σ(u, v) ∈ T;
a maximum delay for the departure δ(u, v) ∈ T so that
a message can enter (u, v) during [σ(u, v), σ(u, v) +
δ(u, v)]; and a class of journeys (R, I(Rσ, δ)). Lu will
be emptied step by step, while Lv will be �lled.

1. Initialize Lv ← ∅.

2. While Lu is not empty, do:

(a) Let (R, I(Rσ, δ))← first(Lu) and
Remove (R, I(Rσ, δ)) from Lu.

(b) Let σ(u, v)← f((u, v), |(R,Rσ)|a) and
If σ =∞, then end the algorithm.

(c) Let [t1, t2] be the presence interval of (u, v)
such that {t1 ≤ σ(u, v) and σ(u, v) ≤ t2}
and
Let δ(u, v)← (t2 − ζ(u, v)).

(d) If (|(R,Rσ)|a + δ) ≤ σ(u, v) then

i. Rσ ← Rσ + δ.

ii. δ ← 0.
iii. Add (R, I(Rσ, δ)) to the end of the list

Lv.

iv. Go to 2.

(e) If |(R,Rσ)|a < σ(u, v) then

i. Let δsplit = σ(u, v)− |(R,Rσ)|a.
ii. Rσ ← Rσ + δsplit.

iii. δ ← δ − δsplit.

(f) If (|(R,Rσ)|a + δ) > (σ(u, v)+ δ(u, v)) then

i. Let δsplit = (σ(u, v) + δ(u, v)) −
(|(R,Rσ)|a + δ).

ii. Add the class (R, I(Rσ + δsplit, δ −
δsplit)) to the beginning of Lu.

iii. δ ← δsplit.

(g) Add (R, I(Rσ, δ)) to the end of the list Lv.

In order to proceed, we will need an algorithm that
merges arriving journey class lists arriving on the
same vertex v, while removing irrelevant journeys.
This is a classical merge of ordered lists with a re-
moval functionality, which we will denote Merge.
In the following, we give the main algorithm for

fastest journeys.

Algorithm 5 (Fastest journeys)
Input: A timed evolving graph G, a vertex s ∈ VG.
Output: An array Jfastest[v] ∈ {set of journeys}
which gives for each vertex v ∈ VG a fastest journey
from s to v.
Variables: Two vertices u and v ∈ VG; a hop-count
k; and two arrays L[v], L′[v] ∈ {set of all journey
class lists} which give for all v ∈ VG a list of journey
classes from s to v.

1. Initialize L(s) ← ((nil, I(nil,∞))) (A list with
one element, the empty journey class with possi-
ble delay ∞). And for all v 6= s, let L(v)← ∅.

2. For k from 1 to N do:

(a) For each vertex v ∈ VG do L′[v]← L[v].
(b) For each edge (u, v) ∈ EG do

i. Call Algorithm 4 with input
(G, (u, v), L[u]) and output Lv.

ii. Merge L′[v] with Lv, the output of the
call to Algorithm 4, and place the re-
sulting list in L′[v] .

(c) For each vertex u ∈ VG do L[u]← L′[u].

3. For each vertex v, let fastest(v) ← (R,Rσ),
where (R, I(Rσ, δ)) is the minimum for ≤rel of
L(v).

Proposition 3 Algorithm 5 completes in
O(NM2δE) time steps.

Proof
According to Lemma 2 the number of maximal rele-
vant journey classes is bounded by 2MδE . The calls
for Algorithm 4 on an edge (u, v) cost the activity
of (u, v) plus the size of the lists, that is O(MδE).
The calls to the Merge algorithm cost each the size
of the lists, that is O(MδE). Thus, for each vertex
v, the computation of the lists and the merge proce-
dures cost O(Γ(V)MδE), where Γ(V) is the number
of neighbors of v. Therefore, at each hop count, the
cost is O(M2δE). Since there are N hop counts, the
�nal cost is O(NM2δE) time steps. 2

6 Conclusion and Perspectives

With respect to communication networks, one of
the hypothesis used in this paper is that during the
routing procedure, if a node which have already re-
ceived the message disappears and then reappears,
then the message remains valid in its memory and
the node can again participate in the routing (this
hypothesis is somewhat analogous to parking allowed
in [20]).
However, in networks where nodes have small bat-

teries, if a node disappears and then reappears, it may
have lost the received messages. We can tackle this
case by building another evolving graph G′ with du-
plicated nodes and single presence interval vertices,
along with a node schedule P ′

V for VG which states
which are the copies of the old nodes. The complexi-
ties of Algorithms 1 and 3 for foremost journeys and
shortest journeys increase by a factor proportional to
the node activity and become O(MδV (logδE+logN))
and O(MdδV logδE), respectively, whereas the com-
plexity of Algorithm 5 for fastest journeys, which is
based on the number of edge presence intervals, in-
creases to O(NM2 δ2

V δE). For details, see [3].

The fact that the evolving graphs are timed and,
further, that the edge traversal times are continuous,
turns the computation of shortest journeys more dif-
�cult than in usual graphs, and also makes the com-
putation of fastest journeys quite intricate. Only the
computation of foremost journeys can be inspired by
usual shortest paths computations, and that is prob-
ably the explanation why this problem had received
considerable attention in the literature.
Evolving graphs may trigger several new insights

in the study of wireless, optical, mobile, or �xed dy-
namic networks, opening wide new ways for further
research.

Acknowledgments

We are grateful to Balazs Kotnyek for bringing several
references to our attention. We also thank Hervé Rivano
for continuous help and motivation.

References

[1] S. Bhadra and A. Ferreira. Computing multicast
trees in dynamic networks using evolving graphs. Re-
search Report 4531, INRIA, 2002.

[2] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis. Cambridge University Press,
1998.

[3] B. Bui Xuan, A. Ferreira and A. Jarry. Comput-
ing shortest, fastest, and foremost journeys in dy-
namic networks. Research Report 4589l, INRIA,
2002. http://www.inria.fr/rrrt/rr-4589.html.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. The MIT Press, 1990.

[5] S.E. Dreyfus. An appraisal of Some Shortest-Path
Algorithms. Operations Research, 17:269�271, 1969.

[6] A. Ferreira. On models and algorithms for dy-
namic communication networks: The case for evolv-
ing graphs. In Proceedings of 4e rencontres fran-
cophones sur les Aspects Algorithmiques des Télé-
communications (ALGOTEL'2002), pages 155�161,
Mèze, France, May 2002. INRIA Press.

[7] A. Faragó and V.R. Syrotiuk. MERIT: A uni�ed
framework for routing protocol assessment in mobile
ad hoc networks. In Proc. ACM Mobicom 01 pages
53�60, 2001.

[8] A. Ferreira, J. Galtier, and P. Penna. Topological
design, routing and handover in satellite networks.
In I. Stojmenovic, editor, Handbook of Wireless Net-
works and Mobile Computing, pages 473�493. John
Wiley and Sons, 2002.

[9] L. Fleisher and Martin Skutella. The quickest multi-
commodity �ow problem. In Proc. of IPCO'02, 2002.

[10] L.R. Ford and D.R. Fulkerson. Constructing maxi-
mal dynamic �ows from static �ows. Operations Re-
search, 6:419�433, 1958.

[11] L.R. Ford and D.R. Fulkerson. Flows in Networks.
Princeton University Press, 1962.

[12] J. Halpern. Shortest route with time dependent
length of edges and limited delay possibilities in
nodes. Zeitschrift für Operations Research, 21:117�
124, 1977.

[13] J. Halpern and I. Priess. Shortest path with time
constraints on movement and parking. Networks,
4:241�253, 1974.

[14] P. Haxell, A. Rasala, G. Wilfong, and P. Winkler.
Wide-sense nonblocking WDM cross-connects. In
R. Möhring and R. Raman, editors, Proceedings of
ESA 2002, volume 2461 of LNCS, pages 538�550,
Rome, Italy, September 2002. Springer-Verlag.

[15] E. Köhler, K. Langkau, and M. Skutella. Time-
expanded graphs for �ow-dependent transit times.
In proc. ESA'02, 2002.

[16] E. Köhler and M. Skutella. Flows over time with
load-dependent transit times. In Proc. of the 13th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 174�183, 2002.

[17] A. Orda and R. Rom. Shortest-path and minimum-
delay algorithms in network with time-dependent
edge length. Journal of the ACM, 37, pages 607�
625, 1990.

[18] A. Orda and R. Rom. Minimum weight paths in
time-dependent networks. Networks, 21, pages 295�
320, 1991.

[19] S. Pallottino and M.G. Scutellà. Shortest path algo-
rithms in transportation models: classical and inno-
vative aspects. In (P. Marcotte and S. Nguyen, eds.)
Equilibrium and Advanced Transportation Modelling,
pages 245-281, 1998.

[20] A.B. Philpott. Continuous-time �ows in networks.
Mathematics of Operations Research, 4(15):640�661,
1990.

[21] C. Scheideler. Models and techniques for communica-
tion in dynamic networks. In H. Alt and A. Ferreira,
editors, Proceedings of the 19th International Sym-
posium on Theoretical Aspects of Computer Science,
volume 2285, pages 27�49. Springer-Verlag, March
2002.

[22] I. Stojmenovic, editor. Handbook of Wireless Net-
works and Mobile Computing. John Wiley & Sons,
February 2002.

[23] L. Viennot. Routage entre robots dont les déplace-
ments sont connus � Un exemple de graphe dy-
namique. Réunion TAROT, ENST, Paris, November
2001.

