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Energy-aware Broadcasting in Wireless Networks
Ioannis Papadimitriou, Leonidas Georgiadis

Abstract—In this paper we address the problem of broadcasting
in wireless networks, so that the power consumed by any node is
as small as possible. This approach is motivated by the fact that
nodes in such networks often use batteries and, hence, it is im-
portant to conserve energy individually, so that they remain op-
erational for a long time. We formulate the problem as a lexi-
cographic node power optimization one. The problem is in gen-
eral NP-complete. We provide an optimal algorithm which runs
in polynomial time in certain cases. We also provide a heuristic
algorithm whose performance relative to the optimal one is fairly
satisfactory. We next show that these algorithms can also be used
to solve the problem of broadcasting so that the remaining battery
lifetime of any node is as large as possible. Finally, we discuss the
issues of implementing the above algorithms distributively, as well
as their multicast extensions.

Index Terms—Wireless Networks, Energy Conservation, Di-
rected Spanning Tree, Lexicographic Optimization.

I. INTRODUCTION
Most wireless devices today are portable and operate on bat-

teries with finite amount of energy. Hence, it becomes impera-
tive to take the issue of power management into account when
designing a wireless network [1]. In this paper we address the
problem of energy-aware broadcasting in wireless networks. In
a wired environment, broadcasting is a well understood prob-
lem and polynomial algorithms exist for its solution [2], [3].
A common approach is to associate a cost with each link and
determine a spanning tree whose sum of link costs is minimal.
However, as indicated in [4], broadcasting in a wireless environ-
ment where omnidirectional antennas are used, must take into
account the fact that a node’s transmission can reach multiple
neighbors at the same time. Hence, the power needed to reach
a node’s set of neighbors is the maximum of the powers needed
to reach each of the neighbors separately. Since the efficient
management of battery power is sought, the objective then is to
determine a set of retransmitting nodes and their correspond-
ing transmission powers such that a measure of consumed node
power is optimized. In [4] the optimization objective was con-
sidered to be the sum of consumed node powers needed to con-
vey the information from a given source to all destination nodes.
The problem is NP-complete and heuristic algorithms were pro-
posed and studied in [4], [5], [6]. In this paper we address the
broadcast problem in wireless networks with the objective of
ensuring that no node consumes excessive power, or no node’s
battery lifetime is reduced significantly. This is a reasonable ob-
jective in an environment where each node has its own batteries
and it is important to keep every node operational for as long
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as possible. Minimizing the sum of node powers consumption
in the network does not necessarily guarantee that each retrans-
mitting node will consume a small amount of power.
Unlike much of previous work, where the wireless network

is usually modeled as an undirected graph, the graphs we con-
sider are directed. Our model does not necessarily imply the
absence of bidirectional links between two nodes (although uni-
directional links may exist in a real network [7]). It is rather
used as a more realistic modelling of the fact that the power
needed for communication between two nodes may not be the
same in both directions due to noise or other signal propagation
phenomena, and the heterogeneity in transmission hardware of
nodes in the network. We first formulate the problem as a min-
max node power optimization one, where maximum consumed
node power is sought to be minimized. Next we look at the
stronger optimization criterion where, provided that we succeed
in minimizing the ith maximum node power, we also seek to
minimize the (i + 1)th maximum. This objective is captured
by the stronger lexicographic node power optimization prob-
lem (see Section II-B). The general problem is NP-complete.
We present an optimal algorithm which is polynomial in certain
cases. The algorithm runs in reasonable time for moderate size
random networks but, as expected, its running time quickly de-
teriorates for larger networks. To deal with networks of larger
sizes, we present a heuristic that is based on the steps of the
optimal algorithm and avoids the most computing intensive op-
erations. Numerical results show that the proposed heuristic
has good running times and provides satisfactory performance
relative to the optimal algorithm.
We also address the issue of lexicographic optimization un-

der more general link cost functions. A special case of these
functions can be used when the desirable performance metric
is the node remaining lifetime. In this case it may be of in-
terest to implement broadcasting in a manner that maximizes
the minimum remaining node lifetime (max-min criterion), or
maximizes lexicographically the remaining node lifetimes. To
elucidate the difference between the two optimization criteria,
consider that broadcasting from a given source r takes place un-
til one of the nodes in the network runs out of batteries. Under
both max-min and lexicographic criteria, the first time t where
a node’s lifetime becomes zero (i.e., its battery is exhausted)
is maximized. However, under the lexicographic criterion, the
number of nodes whose lifetime is zero at time t, is also mini-
mized. Moreover, if only one node’s battery is exhausted, then
the minimum remaining lifetime of the rest of the nodes is max-
imized. Besides these two optimization criteria there are several
others that can be proposed, e.g. maximization of the sum of
node remaining lifetimes, maximization of convex combination
of them, etc. The specific criterion to be used depends on the
network requirements. An interesting issue is to determine and



classify the network environments for which each of these op-
timization criteria is appropriate (see [8] for one such compar-
ison). While we leave this issue as a subject for further study,
we note that in applications where the max-min optimization
of lifetime is important, the use of the lexicographic criterion
provides solutions with additional desirable properties.
The objective of maximizing the minimum battery lifetime

was considered in [9]. In the latter work in effect the reverse
problem to ours was considered. That is, each node needs to
transfer information to a specific gateway. The broadcast nature
of each node’s transmission was not considered. Instead, a node
was able to transmit to each of its neighbors with varying rate
and the consumed node power for each “neighbor-to-neighbor”
transmission was proportional to the transmission rate. The
Multipoint relaying algorithm, proposed in [10] and used in
[11], has also some relevance to our work. An efficient tech-
nique is proposed for flooding in wireless networks with limited
information, so that the number of nodes that retransmit the in-
formation (relay nodes) is minimized. The latter setup can be
considered as a special case of ours, by assuming that all nodes
need unit power to reach their neighbors (see Section III).
The algorithms we develop assume knowledge of network

topology and the powers needed by each node to reach its
neighbors. Hence, they can be used in networks with infrequent
topological changes and low mobility, such as computer termi-
nals in a university campus or within a company. The issue
of centralized versus distributed computation does not have a
clear-cut answer [1]. As will be discussed in Section VI, in our
setup at least partial optimization can be made in a distributed
fashion by implementing distributively a basic algorithmic sub-
routine. In any case, our algorithms can be directly applied
in network environments where at least partial information of
network topology is proactively maintained at each node, as
in OLSR [11] and ZRP [12]. Another important problem is
energy-aware multicasting. The optimal algorithms presented
in this paper can be used for the latter problem provided that
a basic algorithmic subroutine is designed for multicasting. A
simple algorithm for such a subroutine exists, but we believe
that further improvements can be made.
The rest of the paper is organized as follows. Section II pro-

vides formal definitions and formulation of the min-max and
lexicographic node power optimization problems. In Section III
we indicate that the latter problem is NP-complete and provide
an optimal algorithm which is polynomial in certain cases. We
also provide a heuristic. In Section IV we consider generalized
link cost functions and prove that the proposed algorithms can
also be used to solve the broadcast problem so that the remain-
ing battery lifetime of any node is as large as possible. Numer-
ical results are presented in Section V. In Section VI we dis-
cuss the issues of implementing our algorithms in a distributed
fashion and using them in the case of multicast communication.
Finally, Section VII summarizes the conclusions of our study.
All proofs of the lemmas are given in the Appendix.

II. DEFINITIONS AND PROBLEM FORMULATION
Consider a directed graph G = (N,L), where N is the set

of nodes and L is the set of directed links. For a node i ∈ N
we denote by LGout(i) (LGin(i)) the set of links outgoing from

(incoming to) i. A node j such that link (i, j) belongs to L is
called a one-hop neighbor of i or simply a neighbor of i. A
node j is a two-hop neighbor of i if j is not a neighbor of i and
for some k ∈ N , (i, k) ∈ L and (k, j) ∈ L. We denote by
NG
1 (i) the set of (one-hop) neighbors and by NG

2 (i) the set of
two-hop neighbors of node i.
Given a root node r ∈ N , an r-rooted tree T = (N,LT )

spanning G (spanning tree for short) is a subgraph of G having
the following properties: a) there is a directed path from node
r to every other node of G using only the links in LT , and b) T
has |N | − 1 links, where |N | is the cardinality of the set N . It
follows from the definition of T that: a) for every node n 6= r
there is exactly one link in the set LT terminating at n, b) there
is no link in LT terminating at node r, and c) there are nodes in
T that have no outgoing links in LT . The latter nodes are called
leaf nodes of T . Hence, for a leaf node i we have LTout(i) = ®.

A. Wireless Communication Model
We model the wireless network as a directed graph G =

(N,L). N is the set of nodes in the network. If node j can suc-
cessfully receive information transmitted by node i, then link
(i, j) belongs to the set L of links inG. The power needed for a
successful transmission over link l = (i, j) is denoted by cl > 0
and is also referred to as the link cost. Note that we allow for
the possibility of asymmetric channels, i.e., it is possible that
c(i,j) 6= c(j,i). Each node is equipped with an omnidirectional
antenna. Hence, the following useful property holds:
Property 1: If node i transmits with power pi, it can reach any
node j for which c(i,j) ≤ pi.
Note that during transmission, battery power is also con-

sumed by the receiver of information. For simplicity in the dis-
cussion that follows we assume that the receive power is zero.
In Section IV we indicate how to incorporate it into the model.
Suppose that node r needs to broadcast information to all

other nodes in the network. In this case, we have to determine
a set of retransmitting nodes and their corresponding transmis-
sion powers, so that eventually all nodes receive the informa-
tion. A way to achieve this, which will be useful in the sequel,
is as follows. We define an r-rooted spanning tree T = (N,LT )
with the following interpretation:
1) Node r transmits with power pTr = maxl∈LTout(r){cl}.
2) Any node n of T receiving the information, retransmits with
power pTn = maxl∈LTout(n){cl}, where maxl∈®{cl} = 0. We
refer to pTn as the power induced on node n by tree T .
3) Step 2 is repeated until all non leaf nodes retransmit the in-
formation exactly once.
Note that, depending on the link costs, the same broadcast

transmissions can be effected by more than one spanning trees.
Consider for example the network in Fig. 1 with root node A.
The spanning trees T1 and T2, with links {(A,B),(B,C),(B,D)}
and {(A,B),(A,C),(B,D)} respectively, have the same leaf
nodes. Hence, they both specify the same nodes for retrans-
mission (node B in this case). Under link power set I, the node
powers induced are the same for both trees, pT1A = pT2A = 2,
pT1B = pT2B = 4, pT1C = pT1D = pT2C = pT2D = 0. Under link
power set II, we have pT1A = 2, pT1B = 6, pT1C = pT1D = 0, and
pT2A = 4, pT2B = 3, pT2C = pT2D = 0, and, hence, the node powers
induced by the two trees are different.



Fig. 1. Example of wireless broadcasting

B. Optimal Broadcast Trees
We are interested in finding a spanning tree for which the

maximum induced node power is as small as possible. This re-
quirement is captured by the min-max node power optimization
problem defined as follows:
Problem 1: (Min-Max Node Power Optimization) Find a

spanning tree T such that, for any spanning tree T of G, it
holdsmax

n∈N
{pTn} ≤ max

n∈N
{pTn}.

Given a spanning tree T , let PT = (pTn )n∈N be the vector
of induced node powers. A solution to Problem 1 minimizes
the maximum consumed node power but does not specify how
to treat nodes that consume power smaller than the maximum.
As discussed earlier, it may be desirable to also keep the con-
sumed power of the latter nodes as small as possible, so that no
node in the network consumes excessive power. This latter re-
quirement is captured by the stronger lexicographic node power
optimization problem (referred to as min-max problem in [3])
stated below, after the following definition:
Definition 1: Given an n-dimensional real vector v=

(v1, v2, ..., vn), define by bv the n-dimensional vector whose co-
ordinates are those of v arranged in non-increasing order, i.e.,bv = (bv1, bv2, ..., bvn) = (vi1 , vi2 , ..., vin), where vi1 ≥ vi2 ≥
... ≥ vin . Vector v is called lexicographically smaller than or
equal to vector u, if either bv = bu or there exists a number l,
1 ≤ l ≤ n, such that bvi = bui for 1 ≤ i ≤ l−1 and bvl < bul. We
write v¹lexu and, if in addition bv 6= bu, v≺lexu. (For example,
the vector (3, 4, 8) is lexicographically smaller than (5, 8, 2)).
Problem 2: (Lexicographic Node Power Optimization)

Find a spanning tree T ∗ such that, for any spanning tree T
of G, it holds PT

∗ ¹lexPT .
While our main interest is in providing algorithms for Prob-

lem 2, it will be seen in the sequel that Problem 1 is instrumental
in the development of such algorithms. In the sequel, we will
need the following notation. Let epTi be the ith distinct maximal
node power induced by spanning tree T , eSTi the set of nodes
that have to transmit with power epTi , and ekTi = |eSTi |. That
is, epTi−1 > epTi , i = 2, ..., eIT , and pTn = epTi , for all n ∈ eSTi .
According to this definition, epTeIT = 0 and eSTeIT is the set of
leaf nodes of T . For example, if PT = (4, 8, 8, 0, 3, 0, 0), thenepT1 = 8, eST1 = {2, 3}, epT2 = 4, eST2 = {1}, epT3 = 3, eST3 = {5},epT4 = 0, eST4 = {4, 6, 7}. It follows from the definition that any

Fig. 2. Example of graph reduction

lexicographically optimal (with respect to node powers) tree T ∗
has the following property (to avoid special cases, we defineepT0 =∞ and ekT0 = 0):
Lemma 1: For any spanning tree T of G, if for some l <eIT∗ it holds epTi = epT∗i and ekTi = ekT∗i for all i such that 0 ≤

i ≤ l, then eIT > l. Moreover, either epT∗l+1 < epTl+1, or epT∗l+1 =epTl+1 and ekT∗l+1 ≤ ekTl+1.
It follows that all lexicographically optimal trees have the

same eIT∗ , epT∗i , and ekT∗i , that is, if T ∗ is any lexicographically
optimal tree, then eIT∗ = eI∗, epT∗i = ep∗i and ekT∗i = ek∗i , for
1 ≤ i ≤ eI∗. Finally, for the analysis in the next sections, we
need to define the following transformation of a graphG(N,L):
Definition 2: Let L0 ⊆ L and p ≥ 0 be given. Eliminate

from G all links in L − L0 with power larger than or equal to
p. Let LR be the set of remaining links after the elimination.
Modify the link powers in LR as follows: cRl = 0, if l ∈ L0,
and cRl = cl, otherwise. The resulting graph is called the “re-
duction” of G and is denoted by GR(G,L0, p).
Fig. 2 shows an example of graph reduction, given that

L0 ={(C,D),(D,E)} and p = 3 in the original graph G.
This example also shows the importance of Problem 2. As-
sume that the root node is A and consider the spanning
tree T of G with links {(A,B),(A,C),(C,D),(D,E)}. Tree
T solves Problem 1 and induces a vector of node powers,
(pTA, p

T
B, p

T
C , p

T
D, p

T
E) = (5, 0, 5, 3, 0), which is lexicographi-

cally larger than that induced by the spanning tree T ∗ with
links {(A,C),(C,D),(D,E),(E,B)}, (pT

∗
A , p

T∗
B , p

T∗
C , p

T∗
D , p

T∗
E ) =

(2, 0, 5, 3, 1).

III. OPTIMIZATION ALGORITHMS
To avoid cluttering the discussion, in the following we make

the assumption that there is an r-rooted spanning tree. There
are well known algorithms that test for the existence of such
a tree in a given network (see e.g. [13]). Let us first address
Problem 1. We have

max
n∈N

{pTn} = max
n∈N

{ max
l∈LTout(n)

{cl}} = max
l∈LT

{cl}. (1)

Hence, finding the spanning tree that minimizes the maximum
induced node power is equivalent to finding the tree that mini-
mizes the maximum link power. For the latter problem, known



also as bottleneck optimization problem, polynomial time algo-
rithms exist [14], [15], [16]. Note that since any lexicographi-
cally optimal tree T ∗ solves Problem 1, the value of any solu-
tion to Problem 1 is epT∗1 = ep∗1.
We now address Problem 2. A special case of this problem

is NP-complete. To see this, assume that all link costs of G are
equal, that is, cl = c > 0, for any l ∈ L. Then, since each node
has power either c or 0, it follows from the definition of the lex-
icographically optimal point that the solution to the problem is
a spanning tree T ∗ with the following property; the number of
non zero elements of the induced vector of node powers PT

∗

(i.e., the number of non leaf nodes of T ∗) is minimized. Hence,
finding T ∗ is equivalent to finding the smallest set of nodes that
will serve as relays to pass the information from the root node r
to all other network nodes. This set is referred to as the optimal
MultiPoint Relay (MPR) set in [10]. Consider now a graph G
consisting of a node r ∈ N , the set NG

1 (r) (one-hop neighbors
of r), the setNG

2 (r) (two-hop neighbors of r) and with bidirec-
tional links. It is proved in [10] that for this graph, finding an
optimal MPR set for node r is NP-complete.
According to the discussion above, an efficient algorithm for

Problem 2 is very unlikely to exist. In the following, we first
provide an optimal polynomial time algorithm under the con-
dition that different nodes need different powers to reach their
one-hop neighbors (see Condition 1 below for the exact state-
ment). Next we will extend this algorithm to provide an optimal
solution for the general case. In the latter case, as expected, the
worst case running time of the algorithm is exponential in the
size of the network. As will be seen in Section V, the derived
algorithm has reasonable running times for moderate size ran-
dom networks, where it can be employed to test the efficiency of
proposed heuristics. Moreover, as will be discussed in Section
III-C, this algorithm can be used as a basis for various heuristic
algorithms that can be employed in larger networks.

A. Optimal Algorithm for a Special Case
We start with the optimal polynomial time algorithm. As-

sume that the following condition holds in the network:
Condition 1: The powers of links outgoing from different

nodes are different. That is, c(i,n1) 6= c(j,n2), for all i, j ∈ N ,
i 6= j, n1 ∈ NG

1 (i), n2 ∈ NG
1 (j).

Note that we allow for the possibility that links outgoing
from the same node have equal power. As discussed above, ep∗1
can be obtained in polynomial time for any network. Accord-
ing to Condition 1, there is a single node that needs power ep∗1 to
reach some of its neighbors and can therefore be identified. In
general, assume that we know ep∗i for 1 ≤ i ≤ m < eI∗ − 1,
which, according to Condition 1, implies that we know eS∗i ,
1 ≤ i ≤ m. Note that each eS∗i contains a single node. We
are interested in finding ep∗m+1. Let eLi be the set of links whose
power is less than or equal to ep∗i and emanate from the node ineS∗i . Define also eLm = ∪mi=1eLi and eSm = ∪mi=1 eS∗i . The search
for ep∗m+1 is based on the following lemma:
Lemma 2: Consider the solution to Problem 1 on the re-

duction of G, graph Gm+1 = GR(G, eLm, ep∗m). The value of
this solution is ep∗m+1 and the min-max optimal tree Tm+1 hasepTm+1

i = ep∗i for 1 ≤ i ≤ m+ 1.

Algorithm 1:
1. m = 0,Gm = G, eLm = ®, ep∗m =∞.
2. Form the reduction ofGm,Gm+1 = GR(Gm, eLm, ep∗m).
3. Solve the min-max optimization problem on Gm+1 and let
T
m+1

be this solution. The maximum induced node power of
T
m+1

inGm+1 is ep∗m+1.
4. If ep∗m+1 = 0, then Return Tm+1 (T ∗ is equal to Tm+1).
5. Else, identify the node in Gm+1 that has at least one outgoing
link with power ep∗m+1. Let eLm+1 be the set of links whose power
is less than or equal to ep∗m+1 and emanate from this node.
6. eLm+1 = eLm ∪ eLm+1,m = m+ 1. Go to step 2.

Fig. 3. Optimal Algorithm for a Special Case

It follows from Lemma 2 that, if we know ep∗i for 1 ≤ i ≤
m < eI∗−1, we can find ep∗m+1 by solving Problem 1 onGm+1.
At the same time, this solution provides a tree Tm+1 for which
we have pT

m+1

n = pT
∗

n for n ∈ eSm. If we find that ep∗m+1 = 0,
then we know that Tm+1 = T ∗. Otherwise, we can repeat the
procedure to find ep∗m+2. Also note that, as follows from the
definitions, we have Gm+1 = GR(Gm, eLm, ep∗m). Hence, we
have the algorithm of Fig. 3 for finding T ∗, under Condition 1.
Complexity of Algorithm 1: Problem 1 at step 3 of the al-

gorithm can be solved in O(|N | log |N | + |L|) time (see e.g.
[15]). The other steps take time O(|L|) for one iteration and,
since all steps of Algorithm 1 are invoked at most |N | times, its
worst case running time is O(|N |2 log |N |+ |N ||L|).

B. Optimal Algorithm for the General Case
Let us now remove Condition 1. According to (1), we can

still solve Problem 1 and find the value ep∗1. Since in general
there may be many nodes that can reach others with power ep∗1,
we must now identify a set of nodes that will transmit with
power ep∗1 when a lexicographically optimal tree T ∗ is imple-
mented. Note that there may be multiple optimal trees and,
therefore, multiple optimal node sets. However, according to
Lemma 1, the number of nodes in all these sets will be the same,
i.e., ek∗1 . The search for ek∗1 and the candidate optimal node sets
is based on the two lemmas that follow. We denote by T∗ the
set of all lexicographically optimal trees. Lemma 3 part 1 pro-
vides a method for testing whether a given node set is not equal
to eST∗1 for any T ∗ ∈ T∗. Lemma 3 part 2 provides a method
for finding an upper bound for ek∗1 . Lemma 4 provides a method
for testing whether a given node set S, such that |S| = ek∗1 , is
not equal to eST∗1 for any T ∗ ∈ T∗.
Lemma 3: Let S be a set of nodes with the property that

each node in S has at least one outgoing link with power ep∗1.
Let LS be the set of links emanating from some node in S and
having power less than or equal to ep∗1, i.e., LS = {l ∈ L :
l ∈ LGout(n), n ∈ S, cl ≤ ep∗1}. Consider the reduced graph
G1 = GR(G,LS , ep∗1).
1) If there is no spanning tree of G1, then S 6= eST∗1 for all
T ∗ ∈ T∗.
2) Else, the value of the solution T 1 to Problem 1 on G1 is
strictly smaller than ep∗1, epT11 = ep∗1 and ek∗1 ≤ |S|.



Lemma 4: Let S1, S2 be sets of nodes with the property that
each node in Si, i = 1, 2, has at least one outgoing link with
power ep∗1. Let LSi be the set of links emanating from some
node in Si and having power less than or equal to ep∗1. Consider
the reductions of G, graphs G1i = GR(G,LSi , ep∗1), i = 1, 2.
Assume that there is at least one spanning tree of G1i and let
vi be the value of the solution to Problem 1 on G1i . If |S1| =
|S2| = ek∗1 and v1 < v2 < ep∗1, then S2 6= eST∗1 for all T ∗ ∈ T∗.
Let us now describe how we can search for candidate optimal

node sets based on the previous lemmas, once we have obtainedep∗1. We test successively sets with cardinality 1 first, then 2, 3
and so on, as follows. We pick a set S such that each node in
S has at least one outgoing link with power ep∗1 and generate
the reduced graph GR(G,LS , ep∗1). If the latter has no spanning
tree, then we know, from Lemma 3 part 1, that S 6= eST∗1 for all
T ∗ ∈ T∗ and, therefore, S can be removed from further con-
sideration. Else, from Lemma 3 part 2, we know that ek∗1 ≤ |S|.
Since we already know that there can be no optimal set with
|S|− 1 nodes, we have ek∗1 = |S|. Hence, at this point we knowek∗1 . However, we still have to identify the candidate optimal
node sets. For this, we proceed as follows. We examine the sets
with cardinality ek∗1 and keep only those whose value of the so-
lution to Problem 1 on the reduced graph is the smallest. From
Lemma 4, it follows that only the latter sets are candidates for
being equal to eST∗1 for some T ∗ ∈ T∗. Moreover, the smallest
value obtained should be equal to ep∗2. Hence, at the end of this
process we have the values of ep∗1, ek∗1 , ep∗2, and a set of candidate
optimal node sets S1= {S1,1, ..., S1,s1} that may be equal toeST∗1 for some T ∗ ∈ T∗.
Unfortunately, with the information at hand we do not

have any way to further isolate one of the sets in S1 as be-
longing to one of the lexicographically optimal trees. How-
ever, the process described above can be generalized to al-
low further refinement of the search, that results in the itera-
tive determination of sequences of candidate optimal node sets
(S1,m1 , S2,m2 , ..., Si,mi) with the following property:
Property 2: It is possible that (S1,m1 , S2,m2 , ..., Si,mi) =

(eST∗1 , eST∗2 , ..., eST∗i ) for some T ∗ ∈ T∗, 1 ≤ i < eIT∗ .
The refinement process is based on direct generalization of

Lemmas 3 and 4 and can be achieved as follows. At iteration
i we have a candidacy tree, whose levels and nodes have the
following interpretation:
1) Level 0 is associated with ep∗1, obtained from the solution to
Problem 1 on graph G. The root node at level 0 is associated
with the empty set of nodes, ®.
2) Level j, j = 1, ..., i, is associated with the values ek∗j , ep∗j+1
already obtained. Each node m at level j is associated with a
candidate set Sj,m. The cardinality of each of the sets at level
j is ek∗j ; each node in Sj,m will transmit with power ep∗j if in-
deed Sj,m = eST∗j for some T ∗ ∈ T∗ and the broadcast trans-
missions induced by T ∗ are eventually chosen. We denote by
Sj=

©
Sj,1, ..., Sj,sj

ª
the set of candidate optimal node sets at

level j.
3) A path (S1,m1 , S2,m2 , ..., Si,mi) in the candidacy tree de-
notes a sequence of candidate sets that may satisfy Property 2.
Leaf nodes are located only at the highest level.

Algorithm 2:
1. For a candidate sequence (path from the root to a node at level
i) Si = (S1,m1 , S2,m2 , ..., Si,mi), let LSi = ∪ij=1LSj,mj

and
NSi = ∪ij=1Sj,mj .
2. Test successively sets with cardinality 1 first, then 2, 3 and so on,
as follows. Pick a set S such that each node in S has at least one
outgoing link with power ep∗i+1 and S ⊆ N −NSi .
3. Generate the reduced graph GR(G,LS ∪ LSi , ep∗i+1). If the
latter has no spanning tree, then S is removed from further consid-
eration. Else, it is known that ek∗i+1 = |S|.
4. The set S corresponds to a node at level i+1 if the value v of the
solution to Problem 1 on the reduced graph is the smallest among
the sets with cardinality ek∗i+1. In this case, the node corresponding
to S at level i + 1 is connected to the node corresponding to set
Si,mi at level i.
5. At the end of this procedure, there may be leaves in the candi-
dacy tree that are located at level lower than i + 1. The path that
starts from the root and ends at one of these leaves corresponds to
a sequence of node sets that cannot be a candidate satisfying Prop-
erty 2 and should, therefore, be excluded from further considera-
tion. Hence, we repeatedly eliminate all leaves that are not at level
i+1 of the candidacy tree, so that only leaves at level i+1 remain.

Fig. 4. Optimal Algorithm for the General Case

When we are at level i, ep∗i+1 is known. If ep∗i+1 = 0, then
any spanning tree corresponding to a candidate path up to level
i is a lexicographically optimal tree. Else, level i + 1 is cre-
ated by adding and removing nodes in the candidacy tree as de-
scribed in the algorithm of Fig. 4. Upon completion, Algorithm
2 provides all lexicographically optimal trees and, therefore, all
lexicographically optimal (with respect to node powers) sets of
broadcast transmissions. Note that the number of nodes in the
candidacy tree does not necessarily increase as the algorithm
proceeds, since at step 5 the tree may be “pruned”.
Fig. 5 shows an example of candidacy tree for a graph G

with root node A. After creation of level 3, we observe that
there is a node at level 2 of the candidacy tree, associated with
node C of G, which is a leaf node at level lower than 3 and
can, therefore, be eliminated. Then, the node at level 1, as-
sociated with node A of G, becomes such a leaf and is also
eliminated. At level 4, we find that ep∗5 = 0 and the algo-
rithm stops. In this example there are two optimal trees, T ∗1 ,T ∗2 ,
with links {(A,B),(A,F),(A,G),(B,C),(B,D),(C,E),(F,H),(G,I)}
and {(A,B),(A,F),(A,G),(B,C),(B,D),(C,E),(F,H),(H,I)} respec-
tively. T ∗1 corresponds to the path B→C→{F,G}→A
of the candidacy tree and T ∗2 corresponds to the path
B→C→{F,H}→A. The sets of node powers, corresponding to
the trees, are easily derived by inspecting the candidacy tree.
For example, the power induced on node H by T ∗2 is found as
follows. T ∗2 corresponds to path B→C→{F,H}→A. For this
path, node H is located at level 3 and, hence, its retransmission
power should be ep∗3 = 3. The (lexicographically equal) node
power vectors induced by the two trees are shown in Table I.
Algorithm 2 requires exponential number of computations in

|N | in the worst case. In a wireless network however, where
nodes are placed at irregular locations, the cardinality of the
set of nodes that have at least one outgoing link with power ep∗i



Fig. 5. Example of candidacy tree

TABLE I
NODE POWERS INDUCED BY THE OPTIMAL TREES

A B C D E F G H I
T ∗1 2 5 4 0 0 3 3 0 0
T ∗2 2 5 4 0 0 3 0 3 0

may not be very large. Moreover, in such an environment, the
condition for a branching to occur in the candidacy tree does
not seem very likely. Note also that, even if a branching does
occur, it is likely to be eliminated in the next few iterations, ac-
cording to step 5 of the algorithm. Hence, for moderate size
random networks, Algorithm 2 may not require many compu-
tations. However, as the simulation results show, its running
time rapidly deteriorates as the number of nodes increases. In
the next subsection we provide a heuristic that can be used for
larger networks as well. As we will see, the various steps of
Algorithm 2 are useful for the development of the heuristic.

C. Heuristic Algorithm
The main causes of explosion in the number of computations

of Algorithm 2 are the following:
1) The cardinality of the set Ai, the set of nodes in the graph
that have at least one outgoing link with power ep∗i . In general,
subsets of these nodes have to be tested to create the nodes of
the candidacy tree at level i and, hence, the worst case number
of computations required is proportional to 2|Ai|.
2) The branchings of the candidacy tree. A branching will occur
if two or more of the node sets being tested result in the smallest
value of the solution to Problem 1 on the corresponding reduced
networks.
Simulation results show that branchings do not occur very

frequently. On the other hand, as will be seen in Section V,
|Ai| does increase as the number of nodes within the same geo-
graphical area increases. Therefore, in order to reduce the com-
putations required to obtain a good tree, we must develop effi-
cient algorithms for selecting “good” subsets eSTi . Motivated by
these observations, we modify Algorithm 2 as follows.

We solve Problem 1 on G. Let pH1 = ep∗1 be the value of
this solution and AH1 the set of nodes in G with at least one
outgoing link with power pH1 . According to Algorithm 2, we
have to select a subset SH1 ⊆ AH1 of minimal cardinality, such
that the reduced graph GR(G,LSH1 , p

H
1 ), where LSH1 = {l ∈

L : l ∈ LGout(n), n ∈ SH1 , cl ≤ pH1 }, has at least one spanning
tree, and solve Problem 1 on that graph.
To avoid excessive computations, we pick SH1 as follows. We

eliminate from G all links with power larger than pH1 . Let G0
be the resulting graph. For each node n ∈ AH1 we form the
vector vn = (cl)l∈LG0out(n). The maximal element of vn is by
definition of G0 equal to pH1 , but the rest of its elements may
have any values smaller than or equal to pH1 . Any node n ∈ SH1
will have to transmit with power pH1 and, according to Prop-
erty 1, will also transfer the required information to all nodes
in NG0

1 (n). Hence, it is preferable to include nodes in SH1 with
large values of elements in vn and exclude those with small
values. To achieve this, we arrange the nodes in AH1 in non-
decreasing lexicographic order of the vectors vn. Starting from
the first node n in the lexicographic order, we test whether by
eliminating from G0 the outgoing links of n with power pH1 , G0
still has at least one spanning tree. If this is the case, we elimi-
nate fromG0 all outgoing links of nwith power equal to pH1 and
examine the next node in the lexicographic order. Else, we add
node n to SH1 and consider the next node in the lexicographic
order. Note that, according to the selection procedure above,
a node with lexicographically small vector vn is not included
in SH1 , unless it is necessary to maintain network connectivity.
Hence, SH1 will generally contain nodes with lexicographically
large vectors vn.
At the end of this procedure, the reduced graph G1 =

GR(G,LSH1 , p
H
1 ) is formed and Problem 1 is solved on that

graph to obtain pH2 . Note that pH2 may not be equal to ep∗2. All
steps above are then applied to G1, instead of G, and the pro-
cess is repeated until pHi = 0 for some i > 1. The last spanning
tree obtained is returned as the solution TH of the algorithm.
The node power vector (pT

H

n )n∈N , induced by TH in the orig-
inal graph G, defines the set of broadcast transmissions of the
proposed heuristic.
Note that in the previous algorithm, branchings in the candi-

dacy tree are eliminated. In effect, we now have a single path
at each step of the iteration. Some further optimization can be
performed by observing that if a node n ∈ AH1 contains a link
l = (n,m) such that cl = pH1 , and l is the only incoming link
to node m in graph G0, then node n must transmit with power
pH1 and, therefore, is included in the set SH1 . The final heuristic
algorithm is presented in Fig. 6.
As an example, we apply the heuristic algorithm to graph G

of Fig. 5. Since pH1 = 5, we have that AH1 = {A,B,C} and
SH1 = {B}. After solving Problem 1 on the reduced graph
GR(G,L{B}, 5) we obtain pH2 = 4, AH2 = SH2 = {C} and,
consecutively, pH3 = 3, AH3 = {F,G,H}, SH3 = {F,H}, pH4 =
2, AH4 = SH4 = {A} and pH5 = 0. The last spanning tree
obtained is the solution TH of the algorithm. For this particular
graph, TH = T ∗2 , where T ∗2 is one of the two lexicographically
optimal trees of G found in the previous subsection.
Complexity of Algorithm 3: We will first provide the



Algorithm 3:
1. i = 0,Gi = G.
2. Let pHi+1 be the value of the solution T

i+1
to Problem 1 onGi.

3. If pHi+1 = 0, then Return T
i+1

(TH is equal to T
i+1
). Else,

set SHi+1 = ® and identifyAHi+1, the set of nodes with at least one
outgoing link with power pHi+1 inG

i.
4. Eliminate fromGi all links with power larger than pHi+1 and let
G0 be the resulting graph.
5. For each node n ∈ AHi+1, if there is a link l = (n,m) such that
cl = p

H
i+1, and l is the only incoming link to nodem in graphG0,

then add n to SHi+1.
6. If the reduced graph GR(Gi, LSHi+1 , p

H
i+1) has at least one

spanning tree, then go to step 9. Else, for each node n ∈ AHi+1 −
SHi+1 form the vector vn = (cl)l∈LG0out(n) and arrange these nodes
in non-decreasing lexicographic order of the vectors vn.
7. Starting from the first node n in the lexicographic order, test
whether by eliminating fromG0 the outgoing links of n with power
pHi+1,G

0 still has at least one spanning tree.
8. If this is the case, eliminate fromG0 all outgoing links of n with
power equal to pHi+1 and examine the next node in the lexicographic
order. Else, add node n to SHi+1 and consider the next node in the
lexicographic order.
9. Gi+1 = GR(Gi, LSHi+1 , p

H
i+1), i = i+ 1. Go to step 2.

Fig. 6. Heuristic Algorithm

complexity for one iteration of the algorithm. Step 2 takes
O(|N | log |N | + |L|) time. Steps 3-5 take O(|L|) time. Step
6 requires the arrangement of at most |N | nodes in non-
decreasing lexicographic order of the vectors vn. We can as-
sume that the coordinates of these vectors are already sorted
in non-increasing order (this can be made during initializa-
tion in O(

P
n∈N xn log xn) = O(|L| log |L|) time, where xn

is the number of elements in vn). To evaluate the complex-
ity of the above arrangement, let us assume that we imple-
ment bubble sort [13] - as will be seen, because of step 7,
more efficient sorting does not improve worst-case complex-
ity. Lexicographic comparison of vectors vn and vn+1 takes
time O(min{xn, xn+1}) and a single pass of the vectors vn,
n ∈ N , takes time O(

P|N |−1
n=1 min{xn, xn+1}), which is at

most O(
P|N |
n=1 xn) = O(|L|). Since at most |N | passes of the

vectors vn, n ∈ N , can occur, the complexity of the above ar-
rangement with bubble sort is O(|N ||L|). A spanning tree can
be obtained in O(|L|) time [13] and, therefore, step 7 of the al-
gorithm requires O(|N ||L|) time in the worst case. Hence, one
iteration of steps 1-9 of the algorithm requires O(|N ||L|) time
and, since at most |N | such iterations may occur, the worst case
running time of Algorithm 3 is O(|N |2|L|).

IV. MORE GENERAL COST FUNCTIONS
Assume that with each node n ∈ N there is a cost function

fn(p), which expresses the cost incurred at node n if it trans-
mits with power p. We assume that fn(p) is strictly increasing
in p and nonnegative. For reasons that will become apparent in
the sequel, we allow for the possibility fn(0) > 0. As in Sec-
tion II-A, given an r-rooted spanning tree T , we define for any

node n ∈ N , φTn = maxl∈LTout(n){fn(cl)}, if LTout(n) 6= ∅,
and φTn = fn(0), if LTout(n) = ∅. The objective now is to
find the spanning tree for which the vector (φTn )n∈N is lexi-
cographically minimal. The case fn(p) = p for all n ∈ N
corresponds to the problem studied in Section II. In fact, if we
use the quantities fn(cl) as link cost functions, then the main
difference between the current setup and the one examined up
to now, is that the “power φTn” of a leaf node nmay be non zero
in the general case. However, we will show that the same algo-
rithms can be used in this case as well, by modifying G(N,L)
to a new network G(N,L) as follows. G contains all nodes
and links of G. For each node n ∈ N , a new node n is added
to the set N of nodes in G and a new link (n, n) is added to
the set L of links in G. The link powers in L are defined as
c(n,m) = fn(c(n,m)), ifm 6= n, and c(n,n) = fn(0). The node
powers for a tree T inG are defined as θTn = maxl∈LTout(n)

{cl},
if LTout(n) 6= ∅, and θTn = 0, if L

T

out(n) = ∅. Note that for all
outgoing links of node n, the same function fn is used to deter-
mine the corresponding generalized link costs. Since fn(p) is
strictly increasing in p, Property 1 holds in network G as well
(by replacing “power p” with “power fn(p)”) and the problem
of minimizing lexicographically the vector (θTn )n∈N in G can
be solved using the previously presented algorithms. According
to the above definition, each spanning tree T of G corresponds
to a spanning tree T of G and vice versa. Tree T is obtained
from T by eliminating every link (n, n) ∈ L. Based on this
observation, the following lemma holds:
Lemma 5: Let T ∗ be a tree that minimizes lexicographically

the vector (θTn )n∈N in G. Then, the corresponding tree T
∗ in

G, minimizes lexicographically the vector (φTn )n∈N .
Application I: Taking Into Account Node Receive Power

Consumption.
Assume that node n consumes power qn during the reception

of information. Since all nodes in a broadcast tree T receive
the information transmitted by the root node r, the total power
consumed by node n 6= r is now pTn + qn. Therefore, if we are
interested in minimizing lexicographically the total consumed
node power, we can set fn(p) = p+qn if n 6= r, and fr(p) = p.
Note that in this case we have fn(0) 6= 0 if n 6= r.
Application II: Maximizing Lexicographically the Mini-

mum Remaining Node Battery Lifetime.
Assume we know the duration of the broadcast transmission,

t, and the energy En of the battery at node n ∈ N at the be-
ginning of the transmission, which we call “battery lifetime”.
Assume also for simplicity that the receive power qn is zero.
Then, if node n transmits with power p, at the end of the broad-
cast transmission, its remaining battery lifetime will beEn−pt.
In an environment where spare batteries are not easily avail-

able, it is reasonable to attempt to maintain the remaining bat-
tery lifetime at each node as high as possible. Given an r-rooted
spanning tree T , the broadcast transmissions defined by T re-
sult in remaining battery lifetime at node n ∈ N ,
ETn = En − pTn t = En − max

l∈LTout(n)
{cl}t

= − max
l∈LTout(n)

{clt−En+E}+E, where E = max
n∈N

{En}.



An appropriate optimization criterion in this case is to at-
tempt to maximize lexicographically the vector (ETn )n∈N or,
equivalently, minimize lexicographically the vector (FTn )n∈N ,
where FTn = maxl∈LTout(n){clt − En + E}. The latter prob-
lem is a special case of the one considered in this section, with
fn(p) = pt−En+E. This function is nonnegative by the def-
inition of E and strictly increasing in p. Also, fn(0) = E−En
which in general can be nonzero.
Application III: Taking Into Account Node Criticality.
The approach above can be generalized. In practice some

nodes may be more critical than others for the operation of the
network as a whole, for example keeping the root node alive is
such a case. Hence, it is natural to associate different cost func-
tions to different nodes, according to their remaining lifetime.
More specifically the cost associated with node n, whose re-
maining lifetime is En, is gn(En), where gn is strictly decreas-
ing in En > 0 and nonnegative. An appropriate optimization
criterion in this case is to minimize lexicographically the vector
(gn(E

T
n ))n∈N = (fn(p

T
n ))n∈N , where fn(p) = gn(En − pt)

is strictly increasing in p and nonnegative. By eliminating from
the graph all links (n, j) such thatEn−c(n,j)t ≤ 0 (since trans-
mission over these links exhausts node’s n battery), we can en-
sure that fn(p) is well defined. Therefore, we can apply the
previously developed methods to solve this generalized prob-
lem as well. If, as above, the maximization of node remaining
lifetime is sought, we set gn(En) = −En +E.

V. NUMERICAL RESULTS
In this section we compare numerically the performance of

the three algorithms presented in Section III, namely: 1) the
algorithm that solves Problem 1 (“Min-Max” algorithm for
short), 2) the lexicographically optimal Algorithm 2 (“Lex-
Opt” algorithm), and 3) the proposed heuristic Algorithm 3
(“Heuristic” algorithm).
We generate random networks with a specified number of

nodes (20,40,...,120) as follows. We fix a rectangular grid of
100×100 points. A number of these points is randomly selected
with uniform probability to represent the network nodes. One
of the nodes is randomly chosen to be the origin of the broad-
cast information. The power needed for a successful transmis-
sion over link (i, j) depends on the distance d(i,j) between the
two nodes and is given by c(i,j) = d2(i,j). For each network in-
stance there is a constraint on the maximum transmitted power,
cmax, which is defined as the smallest value that guarantees the
connectivity of the network, that is, the existence of a directed
path from the root to every other node of the network. A link l
belongs to the set L of links in the network if cl ≤ cmax. The
constraint cmax does not impose any limitation on the possible
networks, since any links with power larger than cmax are re-
moved from further consideration after the first iteration by any
of the three algorithms we consider.
The main performance metric of interest is the vector of node

powers provided by each algorithm. Since, however, this metric
becomes too cumbersome to present for network sizes of inter-
est, we introduce a closely related measure that indicates how
far the obtained solution is from the optimal one. This is defined
as follows. The coordinates of the node power vectors are first
arranged in non increasing order. For a given network size, |N |,

and for each individual network instance, let (bpX1 , bpX2 , ..., bpX|N|)
be the vector of the arranged coordinates, obtained using algo-
rithm X . Let lX , 1 ≤ lX ≤ |N |, be the number for which
it holds bpXi = bpLex−Opti for all i, 1 ≤ i ≤ lX . Note that,
since all algorithms solve Problem 1 in the first iteration, we
have bpX1 = bpLex−Opt1 and thus lX is well defined. We next
define R = lX

|N | . This metric provides a measure of how close
each algorithm comes to providing the optimal (lexicographi-
cally smallest) vector of node powers. Obviously for any net-
work, 0 < R ≤ 1, and when R = 1 the obtained solution is
identical lexicographically to the one provided by the Lex-Opt
algorithm.
Table II summarizes the performance of the Heuristic algo-

rithm for various network sizes. Each row of the table rep-
resents the summary of results obtained from 100 randomly
generated networks. The second column is the average of the
obtained ratio R. In columns 3-6 the quantity Q(R > p),
0 ≤ p < 1, corresponds to the percentage of network instances
for which lHeuristic > p · |N |. We observe that the proposed
heuristic generally provides fairly satisfactory results. For 40-
node networks for example, it provides the optimal solution in
98% of the performed experiments. For 120-node networks,
this percentage falls to 61%. However, the percentage of the
experiments for which at least the first 30 (0.25 × 120) max-
imal node powers are the same as those obtained by the opti-
mal algorithm, is 96%. Table III provides similar results for
the Min-Max algorithm. We observe that the performance of
this algorithm deteriorates rapidly as the network size increases.
This is to be expected since it ensures only the minimization of
the maximum consumed node power but does not specify how
to treat nodes that consume power smaller than the maximum.
Table IV shows the average and standard deviation of the

running times of the algorithms. The results were obtained us-
ing a Pentium4 PC, 1.7 GHz, with 256 MB RAM. As expected,
the Min-Max algorithm has the shortest running times and Lex-
Opt the largest. For network sizes no more than 80, the running
time of Lex-Opt algorithm is reasonable, but rapidly deterio-
rates for larger networks. The Heuristic algorithm has satisfac-
tory running times for all network sizes. It is also worth noting
by observing the standard deviations, that the running times of
the Heuristic are concentrated around their mean, while for the
Lex-Opt they are widely dispersed, especially for larger net-
works. Combined with the results in Table II, we conclude that
the Heuristic algorithm presents a good compromise between
performance and running times.
The behavior of the Lex-Opt and Heuristic algorithms can

be further elucidated by the results in Table V. Each row of
the table provides the average over the 100 randomly generated
network instances of the quantities

k =
P eI∗−1

i=1 |Ai|eI∗−1 , k
∗
=

P eI∗−1
i=1

ek∗ieI∗−1 .

Note that, when ep∗eI∗ = 0 is found, the Lex-Opt algorithm stops
and no further computations are necessary to determine AeI∗
and ek∗eI∗ . As the network size increases, the density of nodes
(number of nodes per unit area) increases as well. This is in-
dicated in Table V by the fact that k increases. However, k∗

remains relatively small. Hence, in many cases the search per-



TABLE II
COMPARISON OF HEURISTIC ALGORITHM VS. LEX-OPT

|N| R-Mean Q(R>0.25) Q(R>0.5) Q(R>0.75) Q(R=1)
20 0.9925 99% 99% 99% 99%
40 0.9898 100% 99% 98% 98%
60 0.9303 97% 93% 88% 88%
80 0.8901 95% 87% 81% 81%
100 0.8572 93% 84% 77% 77%
120 0.7694 96% 72% 61% 61%

TABLE III
COMPARISON OF MIN-MAX ALGORITHM VS. LEX-OPT

|N| R-Mean Q(R>0.25) Q(R>0.5) Q(R>0.75) Q(R=1)
20 0.4510 70% 28% 17% 17%
40 0.2908 50% 10% 1% 1%
60 0.2212 37% 2% 0% 0%
80 0.2018 28% 1% 0% 0%
100 0.1995 30% 1% 0% 0%
120 0.1787 29% 0% 0% 0%

formed by the Lex-Opt algorithm when trying to find the setseST∗i does not take significant amount of time. However, the oc-
casional existence of a pair {|Ai|,ek∗i } with values much larger
than the corresponding averages is enough to increase dramati-
cally the running time of the Lex-Opt algorithm. This explains
the large standard deviation of the running time of the Lex-Opt
algorithm, observed for large networks. Regarding the Heuris-
tic algorithm, its running time is not very sensitive to an in-
crease in k, however, this increase makes it more difficult to
determine the correct sets eSTHi and, thus, its performance dete-
riorates as the node density increases.

VI. EXTENSIONS - ISSUES FOR FURTHER STUDY

Distributed Implementation: The algorithms presented in this
paper require knowledge of the network topology. Distributed
implementation of the algorithms depends on the knowledge
that each node has about the network topology in its neighbor-
hood. If each node has knowledge of its one, two, ..., k-hop
neighbors, then the proposed algorithms can be applied locally
in a manner similar to the one proposed in [10], where all links
were assumed to have the same power requirements. In general
they can be applied in network environments where at least par-
tial information of network topology is proactively maintained
at each node, as in OLSR [11] and ZRP [12]. Of course, in this
case optimization based on partial information does not guar-
antee global optimization as well, and further study is currently
underway to evaluate the benefits of the approach. Let us con-
sider next the case where each node knows only the powers
needed to reach its one-hop neighbors. Instrumental to the al-
gorithms proposed in this paper is the solution to Problem 1. As
shown in [16], there is an optimal algorithm for this problem,
which follows the same steps as Edmond’s algorithm for find-
ing a minimum-sum spanning tree in a directed graph [17], with
the exception that the sum operation is replaced with the maxi-

TABLE IV
RUNNING TIME PERFORMANCE OF THE ALGORITHMS (MEAN AND

STANDARD DEVIATION IN SECONDS)

Min-Max Heuristic Lex-Opt
|N| Mean ; St.D. Mean ; St.D. Mean ; St.D.
20 0.004 ; 0.005 0.038 ; 0.013 0.047 ; 0.015
40 0.020 ; 0.009 0.290 ; 0.113 0.365 ; 0.134
60 0.051 ; 0.019 0.969 ; 0.307 1.441 ; 0.557
80 0.088 ; 0.031 2.163 ; 0.787 5.652 ; 9.368
100 0.146 ; 0.040 3.856 ; 1.120 20.649 ; 20.281
120 0.194 ; 0.061 5.563 ; 1.884 786.228 ; 2,436.465

TABLE V
MEAN OF k AND k∗ FOR THE LEX-OPT ALGORITHM

|N| k - Mean k
∗
- Mean

20 2.155097 1.023994
40 2.939660 1.115641
60 4.207257 1.249700
80 5.855358 1.402980
100 7.925565 1.653131
120 10.533443 1.918101

mum operation. A distributed implementation of Edmond’s al-
gorithm has been proposed in [18]. The latter algorithm can be
modified to implement in a distributed manner the algorithm for
solving Problem 1 proposed in [16]. More substantial modifi-
cations are needed, however, to optimize the second, third, and
so on, minimum. This effort would require power consumption
which must be weighted against the power savings that will be
obtained during the broadcast transmission. As an intermediate
alternative, optimization of only a given number of successive
minima may be performed.
Multicast Extensions: Multicasting of information from a

source to a subset V of the nodes is an important mechanism.
The optimal algorithms proposed in this paper can be applied in
this case as well, provided that Problem 1 is replaced with the
problem of finding a bottleneck tree connecting the source to all
nodes in V . For an undirected graph, an algorithm for the bot-
tleneck tree problem with O(|L|) running time is proposed in
[19]. For directed graphs, if node powers are integers that take
values in [0, C], then it is easy to construct anO(|L| logC) run-
ning time algorithm. Work is underway to provide improved-
performance algorithms for the bottleneck tree problem, that
can also be implemented distributively. In addition, we note
that for the multicast problem new heuristics must be devel-
oped in order to take into account peculiarities that arise due
to the fact that in general not all nodes participate in the multi-
cast tree. Regarding multicasting, another important issue with
potential significant energy savings is the development of al-
gorithms with the same optimization criteria, when directional
antennas are used [20].

VII. CONCLUSIONS
In this paper we addressed the problem of broadcasting in a

wireless network in a manner that guarantees that no node in



the network consumes excessive power, or no node’s battery
lifetime is unnecessarily reduced. We formulated the problem
as a lexicographic optimization problem and presented an op-
timal algorithm for it. The algorithm has exponential running
time in the worst case. Certain interesting instances of the prob-
lem have polynomial worst case running time. We also pre-
sented a heuristic algorithm which eliminates the steps of the
optimal one where computational explosions occur. Numeri-
cal results show that the optimal algorithm runs in reasonable
time for moderate size networks, but its running time rapidly
deteriorates as the network size increases. The heuristic algo-
rithm has good running times and its performance, relative to
the optimal one, is fairly satisfactory for all the network sizes
considered. Hence, this algorithm presents a good compromise
between running time and achieved performance.
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APPENDIX
We now give the proofs of the lemmas provided in the paper.

A. Proof of Lemma 2
Let T ∗ be a lexicographically optimal tree. Note that by defi-

nition the links in L−eLm with power larger than or equal to ep∗m
do not belong to T ∗. Hence, T ∗ is also a spanning tree of graph
Gm+1 and, therefore, a solution to the min-max optimization
problem on Gm+1 exists. Let cm+1l be the power of link l in
graph Gm+1. By definition of Gm+1, we have cm+1l = 0 for
all l ∈ LGm+1

out (n), n ∈ eSm. Hence, all nodes in T ∗ with power
larger than or equal to ep∗m in G, have power 0 in Gm+1. There-
fore, the maximum node power of T ∗, when T ∗ is employed in
graph Gm+1, is ep∗m+1. The tree Tm+1 in graph Gm+1 induces
node power at most ep∗m+1 (otherwise it would not be a solution
to Problem 1 onGm+1). That is, if qT

m+1

n is the power induced
on node n by Tm+1 in graph Gm+1, then

max
n∈N

{qTm+1

n } ≤ ep∗m+1. (2)

Consider the node power vector (pT
m+1

n )n∈N induced by T
m+1

in the original graph G. The only nodes whose power may
change are those in the set eSm. By the definition of link powers
cm+1l , it holds

pT
m+1

n ≤ ep∗i , n ∈ eS∗i , i = 1, ...,m, and (3)

pT
m+1

n = qT
m+1

n , n ∈ N − eSm. (4)

Equation (4) and the fact that qT
m+1

n = 0 for n ∈ eSm imply
max
n∈N

{qTm+1

n } = max{ max
n∈N−eSm{qT

m+1

n }, max
n∈eSm{qT

m+1

n }}

= max
n∈N−eSm{pT

m+1

n }.
From the latter equality and (2) we conclude that

max
n∈N−eSm{pT

m+1

n } ≤ ep∗m+1. (5)

It is easy to see now that, if at least one of the inequalities in
(3), (5) is strict, then Tm+1 is lexicographically smaller (with
respect to node powers) than T ∗. Therefore, all these inequali-
ties are actually equalitiesepTm+1

i = ep∗i , i = 1, ...,m, andepTm+1

m+1 = max
n∈N

{qTm+1

n } = max
n∈N−eSm{pT

m+1

n } = ep∗m+1.
B. Proof of Lemma 3
1) Assuming that S = eST∗1 for some T ∗ ∈ T∗, we will reach
a contradiction. From the definition of G1 and eST∗1 , it follows
that T ∗ is also a spanning tree of G1. Therefore, there is at
least one spanning tree of G1, a contradiction.
2) Let pT

1

n , qT
1

n , n ∈ N , be the node powers induced by T
1 in

graphs G, G1 respectively. From the definition of G1, qT
1

n = 0
for n ∈ S, and, therefore, we have

max
n∈N

{qT1n } = max{ max
n∈N−S

{qT1n },max
n∈S

{qT1n }}

= max
n∈N−S

{pT1n } < ep∗1. (6)



Since T 1 uses only links in LS as outgoing links from nodes in
S, we have that

pT
1

n ≤ ep∗1, n ∈ S. (7)

From definition of ep∗1, (6) and (7), we have that epT 11 = ep∗1
(otherwise T 1 would be lexicographically smaller than T ∗).
From (6) we conclude that eST11 ⊆ S and from Lemma 1ek∗1 ≤ ekT11 = |eST 11 | ≤ |S|.

C. Proof of Lemma 4
Assuming that S2 = eST∗1 for some T ∗ ∈ T∗, we will reach a

contradiction. Since T ∗ is also a spanning tree of G12 and v2 is
the value of the solution to Problem 1 on G12, we must have

v2 ≤ ep∗2. (8)

Consider now the optimal tree for Problem 1 on graph G11, T
1

1.
Let pT

1
1

n , q
T
1
1

n , n ∈ N , be the node powers induced by T 11 in
graphs G, G11 respectively. From Lemma 3 part 2, we have that

epT111 = ep∗1,epT112 = max
n∈N−S1

{pT
1
1

n } = max
n∈N

{qT
1
1

n } = v1 < v2. (9)

From (8) and (9), it follows that epT112 < ep∗2. The last inequality
contradicts Lemma 1.

D. Proof of Lemma 5
Note that for any tree T in G, each node n is a leaf node

and, hence, θTn = 0. Therefore, since T ∗ minimizes lexico-
graphically the vector (θTn )n∈N in G, we have for the vectors
(θTn )n∈N (note that for these vectors we omit all nodes n)

(θT
∗

n )n∈N ¹lex (θTn )n∈N . (10)

Consider now the tree T in G corresponding to T . If n has
no outgoing links in T , then in T node n must have only one
outgoing link (n, n). Hence,

θTn = max
l∈LTout(n)

{cl} = fn(0) = φTn . (11)

If n has at least one outgoing link in T , then

θTn = max
l∈LTout(n)

{cl}

= max{ max
l∈LTout(n),l 6=(n,n)

{fn(cl)}, fn(0)}

= max
l∈LTout(n)

{fn(cl)} = φTn , (12)

where (12) is due to the fact that fn(cl) > fn(0), since fn(p)
is strictly increasing in p. From (11) and (12), it follows that

φTn = θTn , for each node n ∈ N. (13)

From (10) and (13), we conclude that
(φT

∗
n )n∈N = (θ

T
∗

n )n∈N ¹lex (θTn )n∈N = (φTn )n∈N .


