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Abstract

Tracking scents and locating odor sources is a major clggdlenrobotics.
The odor plume is not a continuous cloud but consists of nnitéent odor
patches dispersed by the wind. Far from the source, the Ipitiipaof en-
countering one of these patches vanishes. In such dilutgitaors, a good
strategy is to first ‘explore’ the environment and gatheotinfation, then ‘ex-
ploit’ current knowledge and direct toward the estimatedrse location. In-
fotactic navigation has been recently proposed to strikebtilance between
exploration and exploitation. Infotaxis was tested in datian and produced
trajectories similar to those observed in the flight of mattisacted by a sex-
ual pheromone. In this paper, we assess the performancétiis in dilute
conditions by combining robotic experiments and simutatio Our results
indicate that infotaxis is both effective (seven detedion average were suf-
ficient to reach the source) and robust (the source is fouptesence oinac-
curate modelindy the searcher). The biomimetic characteristic of infigtax
is also preserved when searching with a robot in a real emviemt.
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1 Introduction

Olfactory cues are employed by many forms of life to locataifor find mates with
a high degree of precision. Moths and bacteria are the mastrétive and well
documented examples of navigation strategies under reéd wonditions. The lat-
ters rely on local concentration gradients to direct towhelsource of a nutrient
[Berg, 1975]. Male moths on the other hand are guided by phenal cues to lo-
cate their female [Baker et al., 1985, Birch et al., 1990, isldieto and Carde, 1994].
Upon sensing an odor signal, they surge upwind, since a geiodade of the source
direction is provided by the direction of the flow. When odoformation van-
ishes, they exhibit an extended cross-wind casting to parfolocal search until
the plume is reacquired. Considerable research has ba@doaut in an attempt to
unravel the biological mechanisms that control some ofgtiehaviors and apply
them to robotics [Murlis et al., 1992, Vickers, 2000].

Computer or robot-based implementations of biomimetetsgies are relevant
not only for testing hypotheses about animal behavior [Bgt# and Arbas, 1998],
but also for tackling practical problems for which pure eregiring solutions are still
missing, e.g. finding dangerous substances such as exgdamivdrugs, or explor-
ing inhospitable environments. Previous robotic attenpige been mainly based
on plume tracking —performing a local search within the pdanor chemotaxis —
climbing a concentration gradient— [Kowadlo and Russ&08&. However, these
strategies are effective in dense conditions only, i.eseko the source where the
odor plume can be considered as a continuous cloud. Far fiensdurce, odor
dispersal occurs mainly through advection and turbulerareidates. The local
concentration gradient hence fluctuates constantly in matgand direction and
does not always point to the source. The fine-scale struciutiee chemical dis-
tribution consists of sparse, dispersed and sporadic esizhodors surrounded by
wide voids, and the probability of encountering one of thestehes decays expo-
nentially with distancgSchraiman and Siggia, 20Q0[racking scents and locating
odor sources in such dilute conditions is a major challengriirent robotics.

Recently, Vergassola et al. proposed a strategy, namextaxit’, for searching
in turbulent environments [Vergassola et al., 2007]. lakwx relies on Bayesian in-
ference to maximize information gain, and exploits the @taof odor encounters.
It involves a period of exploration during which the agertb@t) builds a prob-
abilistic map of the source location, in a similar way[Rang and Farrell, 2006]
As the agent accumulates information, the map becomeseshangl its entropy
—which reflects the uncertainty about the location of there®u decreases. Be-
cause the expected search time is determined by the umtgrtdithe belief, the
robot navigates to maximize the expected reduction in egirand therefore the
rate of information acquisition. Maximizing informatiomig entails a competition
between two conflicting terms. The exploitative term drities robot toward lo-
cations where the probability of finding the source is higline Explorative term
favours motion to regions with lower probabilitities of soe discovery but high



rewards in terms of information gain. Interestingly, aligb animal patterns such
as ‘casting’ or ‘zigzagging’ are not pre-programmed or isgab through explicit
rules of movement, these behaviors do actually emergeaigtinom the trade-off
between exploration and exploitation at the core of the mijddartinez, 2007].
Promising results were achieved with infotaxis in simaagieven for environ-
mental conditions that consider turbulence. Neverthehaasching the complexity
of the world in simulation has been shown to be extremelyaiffi\Webb, 2000].
A formal description of the instantaneous structure of theme in a turbulent
flow may for instance require simplifications or assumptitmmake the problem
tractable. The use of a robot, on the contrary, compels tgidenand confront
all factors in the environment, yielding complete resul8e present hereafter a
successful solution for implementing infotaxis within alreobotic system, and
we assess its performance in terms of effectiveness andtriiss under turbu-
lent conditions. This framework is employed as a testbedsser@ complete and
rigorous evaluations under real conditionig. addition, we confront infotaxis in
simulation to time-varying environments such as the oned usbiological exper-
iments, and thereby further evaluate the biomimetic charestics pointed out by
[Vergassola et al., 2007]. Our evaluation is twofold, andsists of both quantita-
tive analyses of the agent’s propensity to surge upwind @agt cross-wind, and
gualitative interpretations of what compels him to exhgnith behaviors

2 Materialsand Methods

Although infotaxis is fully described in [Vergassola et 2007], for the sake of
completion the algorithm is sketched in the appendix. bofat relies on the capac-
ity to exploit the finest characteristics of the turbulentdmen, i.e. discontinuous
odor cues dispersed by the flow. A pre-requisite is that odoes’ are detected.
They may refer either to brief and discrete odor patches odtw flaments with
extended spatiotemporal characteristics.

We tested extensively several gas sensors that are conathegsiailable and
none of them suited our needs in terms of response time amsitigiy They sat-
urate at medium concentrations and require a long-lastiag of degasing before
they can react again. To circumvent the problem, we used pasture sensor
that reacts quickly and does not saturate easily. Note li@gatransport model of
heat is identical to the one of smell in environments whereation clearly dom-
inates over diffusion (high Peclet numbe[Schraiman and Siggia, 2008p that
the statistical model of the turbulent medium (only the tiaveraged concentration
is used) described in [Vergassola et al., 2007] may be usedbfitating the source
distribution map. Such a model considers independent i@swmver time, regard-
less of previous events. Yet in reality an odor patch or filahwvers a certain
volume and generates correlated hits as it passes in frameo$ensor. In order
to ensure that consecutive detections are not overcoutegosterior probability



distribution of the source is derived from a modified modetwbulent medium
which accounts for correlated hits (see Appendix). The rhisdwuilt from the time
intervals of no-detection and from the transitions fromdstection to detection.
In our implementation, the transitions occur whenever #mser signal exceeds
an adaptive threshold, whose role is to filter noisy osaife due to wind or sen-
sor fluctuations. The threshold is derived by averaging@ereadings over two
time-steps (40 samples), and adding a constant term estatllempirically in the
absence of stimuli (set to 25 under our environmental cardit- Fig. 1, bottom).
Note nevertheless that since the duration of the detecamst taken into account,
all the patches are equally considered, irrespective of $ihee.

Robot infotactic experiments were done with a Koala robstgieed by K-Team
SA, Switzerland and equipped with an on-board low-level G&Unotion control.
The sensor output is sampled at 10Hz, amplified (Amplifier LBM62 from Na-
tional Semiconductor) and quantized with the analog totaligonverter available
on the robot (10 bits of resolution, 5 volts of dynamic range)e heat source had
a power of 2000 watts and a fan created a wind speedsoh/2. The wind is as-
sumed to be constant and in the same direction at any timéoca& wind speed
and direction needed not to be measured by the robot. In todienit corruption of
the temperature sensor by the additional airflow created free movement of the
robot, the motion was implemented as consecutive discteps &ind sensor read-
ings were taken while the robot staying still. Steps of 20 ceremused so as to
minimize the effect of discontinuities. The navigation exments were performed
in an arena of 5 meters long by 4 meters large resulting incalgased model of the
environment of 2520 points. In order to obtain statistically comparable results,
all trials reported hereafter are initialized with the robmcated at (1(02) and the
source at (24) . At every step, the agent updates its belief (probability wighe
source distribution) according to the history of detectom non-detection events
and chooses the best strategy in terms of entropy miniroizatinong the five pos-
sible actions, i.e. making a move to one of the four neighingosteps or staying
still. The robot is assumed to have reached its goal at opdrsten the source.

Complementary infotactic simulations were performed ithBy. Continuous
and pulsed sources were considered (see Appendix). Foptiiggous case, the
parameters are: diffusivit = 1, life-time of particler = 1.5 and emission rate of
the sourceR = 2, expressed in arbitrary unitdVind speed is set td = —2.5 m/s
and the size of the sensoras= 1 cm. These parameter values were established
empirically to match the real robotic environment. For thiéspd case, the same
values of parameters were used and the source frequencettadls? Hz for slow
pulses (pulse duration=0.2 sec, air gap between pulses set)3and 0.67 Hz for
fast pulses (pulse duration=0.2 sec, air gap = 4.8 sec).
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Figure 1: Robot infotaxis in actionTop: Snapshot of the robot at particular times during its path.
Middle: Corresponding source distribution maps (belief functjomie blue (resp. red) color code
corresponds to low (resp. high) probabilities. The pathhef tobot from start to current time is
superimposed to the map as consecutive red dots when theoedistection, a green dot indicating
a detection. Wind blows downwards. The source is at locat@@4), the robot starting point is
(10,2). Bottom: Detection procedure. The sensor signal, recorded at 10 Hagdilne robot path,

is shown in red. An adaptive detection threshold, in bludgisved from the smoothing average, in
green. The five detected patches are indicated as black dots.
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Figure 2: Robot vs simulated infotaxid. eft: Cumulative distributions of the number of detections
for robot infotaxis (plain curve) and for simulated infoimXdashed curve)Right: Cumulative
distributions of the number of steps (search time) for rabfattaxis (plain curve) and for simulated
infotaxis (dashed curve).
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Figure 3: Left: Examples of robot trajectories. The source is continuouslacated at(9, 24).
The robot starting point i$§10,2). Wind blows downwardsRight: track angle histogram. Track
angles were computed as movement vectors with respect twitftedirection. A peak at zero
degrees indicates a tendency to move upwind, as compareav@ments perpendicular to the wind
direction &-90°).



3 Results

To test the effectiveness of robot infotaxis for searchimgliute conditions, we
performed 21 robot runs (see one example in Fig. 1) and cadghem with 150
simulations of Infotaxis. For 20 trials out of 21, the robaasvable to reach the
source within a reasonable time limit of 150 steps, aboveclwkie robot is con-
sidered to be lost. This case occurred in one trial only,duwhich too many
detections persuaded the agent that the source was alreadg, fi.e. exploita-
tion was predominantly compelling the robot to stay in itsreat location rather
than exploring further and gather information. For the sgstul runs, the number
of detections was low (33+ 6.42, mear:s.d.), reflecting the dilution condition
of the experiments. The cumulative distribution of the nembf detections for
robot infotaxis, plotted in Fig. 2 (left), is not statistiyedifferent from the one ob-
tained with simulated infotaxis (B9+ 5.85, meass.d.; two-sample Kolmogorov-
Smirnov test p=0.26). The search time cumulative distidng between simulated
and robot infotaxis were also not different (Fig. 2 rightpteample Kolmogorov-
Smirnov test p=0.73). The search time distribution is webaibed by a gamma
distribution with shape and scale parameters 8.5 and 7pecésgely. From Fig. 3
(left), we note that robot trajectories are similar to thostained in simulations, e.g.
biomimetic patterns such as ‘extended crosswind castin&gigzagging upwind’
typical of moth flight emerge naturally from the trade-oftlween exploration and
exploitation [Vergassola et al., 2007]. The track anglédgsam of robot infotaxis
shown in Fig 3 (right) presents a peak at zero degrees (pE0RMD’s circular test
of non-uniformity), indicating a predominance of the robmmove upwind. Uni-
modal track angle histograms with mode at zero are also septative of moths
flying upwind in turbulent plumes [Mafra-Neto and Carde, 499:i et al., 2009].
Infotactic simulations and robotic experiments descriledve were done with
a continuous source. Females of several moth species hoareMenown to rythmi-
cally extrude their pheromone glands [Baker et al., 1985]agsess theapacity of
infotaxis to cope with real conditions such as those facdaalogy, we considered
simulations with a pulsed source model that rythmicallgasks odor patches in
the environment. Note that there is a mismatch between tlsegsource genera-
tor and the continuous source model used to update the ahteghiefs in Infotaxis.
We performed 60 repeated simulation runs, 30 with fast gudsel 30 with slow
pulses. For all trials, the agent was able to reach the sautben a time limit of
200 steps. Typical infotactic trajectories under fast dod pulsed conditions are
shown in Fig. 4 (left) and the percentage of wind-orientedemeents per trajectory
in the two regimes in Fig. 4 (right). Percentages of downwimayements were low
and not significantly different in both conditions, reflegtithe high success rate of
the searcher. We found however that the searcher movesymgwind in the fast
pulsed condition and crosswind in the slow pulsed conditidre further investi-
gated this behavioral difference by looking at the updatekebeliefs under both
conditions. With fast pulses (Fig 5A), intervals of no-dzien between pulses are
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Figure 4: Left: Examples of simulated infotactic trajectories with in@mtr modelling by the
searcher. The searcher considers a continous source mbéetas the actual source is pulsed
(fast and slow pulsed conditions). Source location indidats a black dot i€20,49). The searcher
initial location is(6, 3). Detections are marked as red dots. Wind blows downw#&itht: Percent
wind-oriented movements under the fast and slow pulsedittons. Movements having no letters in

comon are significantly different &< 0.05 (Kruskal-Wallis test followed by paiwise comparisons,
n=30 trials per condition).

short enough to keep the searcher on exploitation. Eachi@gtiarpens the poste-
rior distribution. The high probability bump emerging irettvind direction induces
the agent to move upwind. With slow pulses (Fig 5B), unexgegébng periods of
time with no odor encounter broaden the posterior distidoythence compelling
the agent to counterturn and explore the environment irelapiyals.

Three videos are appended as supplementary material agttalie these eval-
uations. They cover the foundations of infotaxis, its rebohplementation and its
efficiency when confronted to a pulsed source (infotaxi®gypobotinfotaxis.mpeg,
pulsedinfotaxis.mpeg).

4 Discussion

The fundamental aspect of infotaxis is to exploit the findsdracteristics of the
turbulent medium, i.e. discontinuous odor patches digueoy the flow. A require-
ment is thus to be capable of resolving single cues and tmixpem to guide the
search. Output neurons in the pheromonal system of the navéhlbeen shown to
respond to pulses of pheromone delivered at a rate up to 10MHen their capacity
to follow pheromone pulses is pharmacologically disruptedths do not navigate
successfully toward the source [Lei et al., 2009]. Likewrsdot infotaxis did not
succeed in the seach for odor sources because the trarss@onse of gas sen-
sors is too slow to track individual odor patches above 1 Higdhot shown). As
the diffusion model of heat is identical to the one of smek, wsed instead a fast
temperature sensor and a heat source. In our experimeiatisyxis led to effective
searching and did not require fine tuning of parameters t&wothe real environ-
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Figure5: Navigation patterns observed when infotaxis is confrotesipulsed source (fast pulses
in A, slow pulses in B). Top rows represent snapshots of thrulsited environment at different
times (pulsed source locatedrip = (25,2), wind blows downwards) and bottom rows are for the
corresponding source distribution (belief function).deablue and red colors correspond to low and
high probabilities, respectively. The path of the robotuperimposed to the map as consecutive
red dots when there is no detection, and green dots for dmtecFig. A: High-frequency pulsed
patches provoke new detections before the robot startalisigjr High probabilities are frequently
updated and assigned to upwind locations (at titpgs andts) hence pushing the agent forward.
Fig. B: Between pulses, long intervals of clean air —during whicldatections arise— compel the
agent to explore regions where previous detections wemded. Probabilities updates take the
form of concentric ellipses that spread as the robot naegmatound them, as clearly seen at times
t5, t5 andty. (Note that such behavior —although with much smaller mdimay also be recorded for
the fast-pulsed case when the agent is close to the souredg dun excessive amount of detections
that push him to switch to exploitation mode).



ment. Seven detections on average and as few as three in nasyere sufficient
to reach the source, reflecting the dilute condition of theeexnents. The num-
ber of detections as well as the search time were not stalistdifferent between
simulated and robot infotaxis (see Fig. 2).

We found however that the search was influenced by the fregusrwhich the
source was pulsed. The searcher moved mainly upwind in ggotdsed condition
and crosswind in the slow-pulsed case (Fig. 4, right). Suttbquency modulated
behavior is in agreement with biological observations. étkpents with a puffing
device revealed that upwind flights of moths were sustaeabfast but not slow
pulsed plumes [Mafra-Neto and Carde, 1994, Vickers and Bak&4]. It has been
emphasized that a tempo of cues above a certain frequenegded to ensure odor
encounters before the moth undertakes a counter-turniogsping behavior.

Our infotactic evaluations illustrate that the behaviottd searcher not only
depends on the detections made in the past, but also on tleetakpns derived
from his internal belief. Note from Fig. 5A that every singletection updates the
agent’s belief in a way that pushes him forward as a first ¢pen the information
provided by the cues cannot be further exploited to driveingwspiraling becomes
a better strategy (as in Fig. 5B) unless a new cue is detedteel.correlation be-
tween both the external detection rate and the internalatapens leads to efficient
trajectories. Fast frequencies in Fig. 5A for instancedriew cues with a tempo
that matches better the searcher’s internal expectatienséfore he switches to
exploration mode), and iteratively updates his belief s the behavior is targeted
toward the goal. Resulting trajectories are mainly striadgid upwind, except close
to the source where too many detections persuade the agerihéhsource is al-
ready found, hence producing short-length zigzags andleesglized spirals. On
the contrary, in the slow-pulsed condition, unexpected) lbme-periods without
odor encountersesult from a mismatch which compels the agent to counter-tu
and explore in large spirals as the probability map getsd®oead In both cases, a
continuous belief model is assumed.

The question of whether moths do actually employ infotastiategies as de-
scribed is yet of a more delicate nature. The assumptiorthiBaigent constructs a
detailed grid-based map of his environment is very compurtatly expensive, and
requires the robot to be acquainted with the size and shathe @irena. Biological
experiments have reported however that similar principlasount for navigation
strategies in rats. These mammals employ internal spatipkrthat combine both
a topographical description of the environment (encodetyjbg cells’) and loca-
tion specific information (‘place cells’) [Hafting et al.p@5], in a similar way to
the grid-model of the arena used in Infotaxis which gets tgitlas localized cues
are detected. Yet simpler descriptions of the environmeuldcalso be considered,
for which infotactic strategies may prove equally efficient



5 Conclusion

Previous experiments from the same laboratory revealddatbancentration gra-
dient can be extracted from a turbulent plume in dense congitvhen the robot
moves slowly (2.5 cm/sec) and near to the source (searchfear), see e.g. fig.

4 left in [Martinez et al., 2006]. To move the robot in the wity of the source,

previous works considered the possibility of exploring #myironment by using

vision, in addition to olfaction, e.g. [Martinez and Peain2002]. The main lim-

itation is that odor source candidates need to be idengfitbin visual features.
Here we tackled the more difficult problem of searching iutdilconditions, for

which only the information released by the source and wimdation were used.
We implemented infotaxis on a real robot and consideredgetasearch area (20
m?) and faster robot speed (14 cm/sec) than in our previousiexeets.

The robustness of infotaxis was evaluated with respectaocirate modeling
by the agentThe parameters employed internally to guide the search matriene-
tuned or adapted over time, and could differ from the insta@bus characteristics
of the surroundingDespite this discrepancy, the robot was able to reach theesou
within a reasonable time limit and produced very few dowrdvimovements (Fig. 4,
right). This emphasized the capability of the model to cofik the unpredictability
imposed by real environments. Additional analyses with lagalisource pointed
out that frequencies at which cues are encountered acomuthief efficiency of the
strategy followed, just as reported in the case of mothsghviiepends on how well
detection rates match the internal map used by the searcher.

The extension of Infotaxis to cope with stereo sensing déipes, just as in
the case of insects, may prove beneficial in terms of effentigs and ought to be
considered as future work. Two sensors, employed in patallgpdate the prob-
ability map, may indeed increase directionality. Furthgplecations of Infotaxis
to collective search have also been reported recently byg$blaet al., 2009] with
impressive gains in search times.
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Appendix: Infotaxis

Infotaxis is fully described in [Vergassola et al., 2007pr Eompletion, we detail
its core modules in terms of probabilistic robotics [Thramale, 2005] as employed
in our robot implementation. The model combines a beliecfiom —the robot
internal knowledge about his environment, updated as aeesreountered— along
with decision-making —execution of an action that maxiraiageward—.

Statistical model of the odor plume and grid-based map of the
environment:

In Infotaxis, the robot is provided with a statistical degtion of the odor plume
that he uses to infer the probability that the source be éatat any point of his
internal grid-based probability map of the environmente Blatistical description
of the odor plume is derived from the resolution of the foliogvadvection-diffusion
equation

DDZU(r)+\7-DU(r)—%U(r)—Rc‘S(r—ro):O (1)

for an odor source located & and emitting ‘particles’ or patches’ at a r&eThe
particles propagate with diffusivit), have a mean lifetime described bynd are
advected by a mean current or wixd U (r) is the local concentration at location
r andd is the Dirac delta function. In such an environment, the nfesguency of
odor encounters with a spherical sensor of radaig¢dllows the Smoluchowski's
[Smoluchowski, 1917] expression

R(r) = 4nDa- U (r) (2)

This model provides a framework by which to take into consatlen the geom-
etry of the environment when navigating. It can be easilyewthrough numerical



methods and makes it possible for autonomous robots tditelsainfer knowledge
about their surrounding. In theontinuous case, the solution to Eq. 1 writes:

1 v r—rol Dt

— = oY - =

= e e 7 whereA = 3 (3)
ATD|r —ro| (1+YD)

U(riro)
For the non-continuous case, i.e. under the influence mflsed odor source
R(t) at locationrg, we derived such function by solving the non-homogeneous
diffusion-advection equation which, for the two-dimenmsbproblem with mean
vertical windVy, takes the form:

_Ir=rol
e ot

4nDt

U(r.tiro) = e 00 Ha+ i) [ . R(t)e%<1+%>t] @

Belief function:

Let us consider the tradg = {(ry,t1), (ro,t2) - (rn,tn) } of the hits (odor encoun-
ters) experienced by the searcher at locations-x, and timest; < --- <t, <t
during the path from its start to the current tilneThe belief function is given by
the posterior probability for the source to be locatedgigiven the trace

Arolry) = 2 tro) (5)

[ Z(Tt|rx)dry
where Z(Tt|ro) is the likelihood of experimenting the traEefor a source img.

In our robot implementation of infotaxis, consecutive détens are not consid-
ered as they belong to a same patch and are correlated (seediseind Methods).
We therefore employ the following likelihood function (flEQ. 13 in supple-
mentary materials of [Vergassola et al., 2007]) insteadhefane considered in the
original algorithm

" / / T
i=

inwhichT represents thigansitionsfrom no-detection to detection, i.e. new patches,
and theV;’'s are the time intervals of absence of detection. Note fram@that
the absence of correlations permits to update the probahilap without storing
the whole history. Indeed a:(ro) = R(ro).updatg;(nparticules), where ‘npartic-
ules’ is the number of detections that the searcher expmrteduring the short time
interval At. Memory requirements are therefore kept to a minimum.

Decision-M aking:

For the decision-making, the robot moves in the directiat thinimizes itdocal
uncertainty about the location of the source. The expeaddation of entropy



—reward function- for the robot moving fromto rj, consists of two terms:

AH(ri —rj) = R(rj)(0—H) (7)
+ [1-R(rj)]As (8)

The first term (7) evaluates the reduction of entropy if therse is found at
the next step. Reaching the source jroccurs with estimated probabilify and
the entropy goes froridl to 0. The second term (8) corresponds to the reduction
of entropy if the source is not found. It occurs with probapill — B and AS
represents the information gainiin coming from expected odor encounters. The
first term is seen as exploitative as it drives the searcheartb locations where
the probability of finding the source is high. The second tesrexplorative as it
compels the searcher toward regions with lower probadsliof source discovery
but high information gains.

The expected reduction of entropy in the case where the source is not found
derives from the probability sum of experiencingew detections during the move-
ment, where encounters are modeled by means of a Poisdabtdiesd random
variablep;

AS= poAS) + P1AS] + P2AS,... 9)

therefore accounting for all possible cases that new infion is detected along
the way (either 1, 2 on encounters).



