N

N

A Seamless Extension of Components with Aspects
using Protocols
Angel Nuifez, Jacques Noyé

» To cite this version:

Angel Nunez, Jacques Noyé. A Seamless Extension of Components with Aspects using Protocols.
WCOP 2007 - Components beyond Reuse - 12th International ECOOP Workshop on Component-
Oriented Programming, Jul 2007, Berlin, Germany. inria-00467974

HAL 1d: inria-00467974
https://inria.hal.science/inria-00467974
Submitted on 29 Mar 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00467974
https://hal.archives-ouvertes.fr

A Seamless Extension of Components with Aspects
using Protocols

Angel Ndfiez, Jacques Noyé
Project OBASCO, EMN-INRIA, LINA
4 rue Alfred Kastler, 44307, Nantes, France
{angel.nunez jacques.ngy@emn.fr

Abstract—This paper shows how components and aspects canimplementation of the base components, which must also be
be seamlessly integrated using protocols. A simple compamie equipped with the proper interfaces.

model equipped with protocols is extended withaspect COMPO- g paner deals with improving on this situation by show-
nents. The protocol of an aspect component observes the service,

requests and replies of plain components, and possibly inteal INd how AOP and COP can be seamlessly integrated. We start
component actions, and react to these actions (possibly prenting ~ With a simple component model where components are defined
some base actions to happen as is standard with AOP). A as a set of (structural) interfaces describing their predidnd

nice feature of the model is that an assembly of plain and required services and a protocol, describing the behavior o
aspect components can be transformed back into an assemblythe components in terms of service requests and replies as

of components. All this is done without breaking the black-tox . . . -
nature of the components (dealing with internal actions regires Well as internal actions. We then extend this model by adding

to extend the component interface with anaction interface). aspect componentahich are also defined as a set of interfaces
and a protocol. This protocol has however a slightly diffeere
. INTRODUCTION meaning than a standard component protocol. It corresponds

to the definition of astatefulconcurrent aspect [1], [2], [3],

Aspect-Oriented Programming (AOP), initially developedhich can observe various base actions (service requests an
in the context of Object-Oriented Programming (OOP), hagplies, internal actions) and react accordingly. Thiduides
shown that classes are not enough to properly modularize i@ possibility of preventing a base action from happening,
the concerns of an application. The use of classes alone legghndard feature of AOP. In this model, weaving can be seen
to so-calledcrosscutting concernsscattered in the variousas a transformation of the initial system of plain composent
classes that build the application. AOP makes it possible gpd aspect components into a system of plain components.
collect these scattered parts of the concern in a new modusection Il gives more details on our approach. Section Il
larization construct: amspect and leave the set of classes tjescribes our simple reference model. Section IV extends
which the aspect applies, thase programfree from any code this model with aspect components. Section V shows how
for the concern. It is then the job of the compilerw@ave \weaving transforms an initial system with aspect companent
the aspect and the base progrdra, to introduce concrete jnto a system of plain components. Section VI illustrates th

connections between the aspect and the classes, usingg§groach with a small example. Section VII discusses mtlate
aspecpointcutandadvice Thepointcutis a predicate defining work. Finally, Section VIII concludes.

the join points i.e., the execution points in the base program
which should be affected by the aspect. Huwicedefines the
new behavior to be inserted at the join points, includindsdal
base program methods. An abstract way of considesiegv- As explained in the introduction we integrate the notion
ing is to see it as a transformation back to the scattered afuthss, aspectpf AOP with the notion(component, aspect
tangled code that would have been written by hand using plaiomponent)n a seamless way. For doing that, we use Ba-
OORP (in practice, however, weaving is not a source-to-souron [3], a language for programming concurrent stateful as-
transformation, but a direct transformation to lower-leade, pects in Java. This language is based on the Concurrent-Event
typically bytecode). Apart from improving the modularity o based AOP (CEAOP) approach [2] that models concurrent
the application, AOP also allows incremental programmingase programs and concurrent aspects as Finite State &sces
the base program can be developped independently from (REP). CEAOP models the weaving of aspects into the base
aspects, which can be developped at a later stage. program as FSP composition of the corresponding FSPs. Baton
The situation is not really different when moving from OOPmplements these ideas in the OOP world.
to plain Component-Oriented Programming (COP). Cross-In order to implement the integration of AOP and COP,
cutting concerns have to be dealt with. In a strict blackve evolve Baton into a language for programming aspect
box model, incremental programming is not possible. Tramponents that applies to component-based applicafidres.
crosscutting concern has to be implemented as a (collectiwraving of aspect components written in Baton into an appli-
of) component(s). Connection code has to be introducedan ttation is implemented as the generation of a plain component

Il. THE APPROACH

representing the aspect component, which is connectectto thA compound component is an assembly of subcomponents.
rest of the components of the system. Its interfaces are formed by interfacessportedfrom subcom-

For the time being, this paper just considers the capenents. An exported interface is such that it has not been
of weaving a single aspect into a component-based systdmund or it only defines provided services. The protocol of
However, we lay the foundations for the full support of tha compound component is obtained from the protocols of its
concurrent aspects modeled by CEAOP. subcomponents by performing FSP composition.

In the following sections, we describe a simple componentComponents are connected through their interfaces. We just
model used as a reference model. Then, we present the symaixsider binary communication (one sender, one receiver).
of Baton and we describe the weaving of aspect componeghen connecting two interfaces, services are bound through

name matching. The condition is that each required senfice o
Ill. A SIMPLE COMPONENT MODEL one interface is provided by a service of the second interfac

This section describes a very simple component model withA recent approach introduces the notion @pen mod-
the basic features assumed by our aspect-component lasgualgs [4], which can be used to expose internal actions of

We consider a minimal component model, whose compa-black-box component. We extend the component interface
nents areblack boxesquipped with interfaces and a protocolwith an action interfacein order to include this notion. Then
Furthermore, the model allows the definitionmimitive and a primitive component may not only declare the standard

compoundcomponents. interface of provided and required services, but also actio
A primitive component declares its interfaces and its protinterfaces.
col with the following syntax: The action interface defines abstract internal actionsatet

made observable from outside the component and are included

Component :=conponent Id inpl enents) . . .
P Intenr?aces{ Beha\r/ri’zr } in the component protocol together with provided and resgliir
Interfaces c=1d (, 1d)* services. The syntax of an action interface is as follows:
The definition of the interfaces is done outside the compo%tﬁrfaged i ! gt e;\f "?‘CG_ Id* { ActintBody }
nent. Each interface declares provided and required ssvic ctint ody == (ExpAction;)
with the following syntax: ExpAction :=exposes Name (Params?)
Interface m=interface Id { IntBody }
IntBody == (Action ;)* IV. A LANGUAGE FOR PROGRAMMING ASPECT
Action ::= Mod Name (Params?) COMPONENTS
Mod = provides We seamlessly integrate the notion of aspect in AOP into
Mod = requires the notion of aspect component. For doing this, we present

Baton as a language for programming aspect components. This

Actionrepresents a service that can be provided or requirgg,Ctlon describes the syntax of the language.

Nameis the name of the service, arRhramsare optional A, Aspect components

parameters de_clared by the service (parameters are used f%n aspect component, as the name implies, is an aspect

message passing purposes). . . with a component flavor. Like a component, it is defined using
The protocol defines the behavioral mterfac_e of the COMPL et of interfaces and a protocol. Its protocol has however a

nent using an FSP. We assume a protocol with the fOIIOW'%ﬂghtly different meaning than a standard component aito

syntax: It corresponds to the definition of a stateful concurreneasp
Behavior == ProcDef (, ProcDef)* . The concrete syntax of an aspect component (see below) is
ProcDef .= Procld = Body very similar to the syntax of a plain component, the differsn
Body = (Prefix (| Prefix)*) are in the definition of the interfaces and the protocol.
Prefix = (ActLabel - >)* Procld Component = aspect Id i npl ement s
ActLabel = Name (Params?) " :
Interfaces{ Behavior }
Interfaces m=ld(, Id)*

The label of each transitiorA¢tLabe) consists of the name An interface is defined by the following syntax, which is

of a service declared in some interfabaMmég and its optional verv similar to the svntax of a plain-component interface:
parametersRaramg. We say that the transitiorefersto the y y P P '

service. The semantics of each transition depends on tlee typnterface ::= interface Id { IntBody }
of service the transition refers. If a transition refers to alntBody ::= (Action ;)*

provided service, then the semantics of the transition & th Action = Mod Name (Params?)

the component receives a request for the service. If a transi Mod = event

ski ppabl e event
action

refers to a required service, then the semantics of theitiams Mod
is that the component sends a request for the service. Mod

interface of the base components. The syntax of a connector

. . . is as follows:
Whereas a plain-component interface declares required angl

provided services, an aspect-component interface daclar€onnector connector { Connection*}
abstract actions representing base-program actionsorscti Connection :’= connect s Action t o Pattern ;
denoted with the keywor@gvent represent actions that the

aspect component observes in the base program. Actions
P P prog ictmn is an action declared in the interface of an aspect

denoted with the keywordski ppabl e event represent .
. yw PP P componentPattern corresponds to a pattern that permits to
actions that the aspect component observes and can ma . ; ;
:) . atch actions declared in the interface of a component.
the base program skip. Actions denoted with the keywor

act i on represent actions that the aspect component requires V. WEAVING
to implement its advices. . .
.Weaving an aspect component into a component-based

The syntax of the aspect-component protocol is as follows: . . .
system corresponds to generating a system with plain com-

Behavior == ProcDef (, ProcDef)* . ponents. This is done by transforming the aspect component
ProcDef = Procld = Body into aplain aspect componePAC) and connecting it to the
Body n= (Prefix (| Prefix)*) rest of the components of the system.

Prefix = (ActLabel Advice?- >)* Procld

A. The aspect component as a plain component

This section describes how an aspect component is

implemented as a plain component. In the remainder we
As we can see, the syntax of the aspect-component protogol . . :

: . scribe the generation of the interfaces and the protdtol o
is almost the same as the syntax of the plain-compon

protocol, except that the former allows the definition ;HIS component.

advisedtransitions (i.e. transitions including an aspect advice, . .
represented by the non-termifedvice. For both, advised and . 1) Generation of the protocolThe protocol of the PAC

non-advised transitiongActLabel corresponds to an abstract® the restuItA of trarlsfolrmlng lthe dpr?rt]ocol of tthe aspectt
action declared in the interface, more precisely, it cqroesls component. AS previously expiained, the aspect componen

to an action declared with the keywosdi ppabl e event observes actions of the component-based application,ighis

for advised transitions, and to an action declared with tﬁl@plemeqted_ in the PAC as the reception and s_endmg of
keyword event for non-advised ones. The semantics of Eynchronlzatlon events (equivalent to the ev_ents intreduc
non-advised transition is that the aspect changes its st Yethe CEAOP model). These events are implemented as

with the occurrence of the corresponding base action. Tﬁ%mppnent Services. We obtain t_he protocol of the PAC by
semantics of aradvisedtransition is that, in the context of applying the following transformations:

the corresponding base action, the aspect may executeeadvicT(name(params) > P) =

and may prevent the action from happening. The syntax of event B_name(params) > event E_name()-> P
Adviceis as follows:

ActLabel = Name (Params?)

Advice :=> Before PS After T(name(params)> before ps after -> P) =
Before = (ActLabel;)* event B_name(params) > before - >

After =(; ActLabel)* psB_name() - > psEname() - > after - >

PS := skip | proceed event E_name()-> P

Advices Before After) are sequences of abstract actions. The first transformation describes that taking into account
Each of these abstract actions is an action declared withbase program actioname(params)s implemented as the
the keywordact i on in the aspect-component interface. Theeception of an evergvent B_name(paramsindicating that
semantics of each action is that the aspect component sendlseaaction is about to be executed (tBen event B is for
request for the corresponding service in some componenthafgin) followed by the reception of an eventent E_name()
the system. indicating that the action has been executed Bl event E

The parametersParamg declared in the syntax of theis for end).
aspect component are used for passing information from theThe second transformation describes that a transition that
base program to the aspect component. These parametersrareduces advices, and can make the base program skip an

available in the scope of each transitideréfix. action name(params)is programmed through the following
communication between the PAC and a base component:
B. Connectors i. The PAC receives the evemvent B_name(params)

A connector binds abstract actions declared in the interfac ~ from a base component when the action is about to be
of an aspect component with concrete actions declared in the executed.

ii. Then, it executes the sequence of actions denoted Which base component should be connected to the PAC, more
before and emits either the everstki pB_name()or precisely, which concrete actions from the base components
the eventpr oceedB_name()to indicate to the base should be connected to which abstract actions of the aspect
component whether the action has to be skipped or nobmponent.

ii. The base component receives the last event, skipA Baton connector matches services and internal actions
the action or proceed, and emits either the evedeclared in the interface of a base component. If a ser-
ski pB_name()or the eventpr oceedB_name()indi- vice or internal actions(params)is matched, then there
cating whether the action has just been skipped or n@s. an association with an abstract action used by the as-

iv. The PAC receives the last event, executes the ggect component (to simplify things, we suppose that for
guence of actions denoted layter and emits the event each abstract action only one service or internal action
event E_name()to indicate to the base component thats matched in all the component hierarchy). If the ab-
this base component can continue with its computatiostract action has been declaredeasent name(paramspr

v. The base component receives this event and continue&i ppabl e event name(params)then the PAC imple-

ments an interfac8yncA_name A complementary interface,

2) Generation of the interfacesthe interfaces of the PAC NamelySyncB_nameis introduced in the component to make
are derived from the interfaces of the aspect componeni THBE connection. Furthermore, the necessary modifications i
basically consist of the declaration of the synchronizatidghe protocol of the base component are performed.
events used in the PAC protocol. We define two transformations to the base-component pro-

An action declared asvent name(paramsin the aspect- tocol:
component interface is used in non-advised trans_|t|0n$1ft T((param§ -> P) =
aspect-component protocol. It generates the followingrfate

event B nam€ paramg ->
in the PAC: - ¢p 3

S(paramg - >
i nterface SyncA _name { event E_namg) -> P
provi des event B_namdg params ;
provi des event E_namg) ; T(s(param§ -> P) =
} event B_namg paramg -> proceedB namdg) ->
S(paramg - >
In an analogous way, an action declared as PproceedE_namg) -> eventE_namg) -> P
ski ppabl e event name(params) in the aspect- |eventB_namdparamg -> skipB_namg) ->

component interface is used in advised transitions of ski pE_namd) -> eventE _namg) -> P
the aspect-component protocol. It generates the following

interface in the PAC: The first transformation applies if the abstract action

interface SyncA name{ name(paramshas been declared avent . Then the compo-
provi des event B_namé params ; nent has to generate one event before the execution of the
requi res event E_name) ; concrete action and another event after. The second trans-
requi res proceedB_namd); formation applies if the abstract action has been declased a
provi des proceedE_namd); ski ppabl e event. Then the component has to generate
requires skipB_namg); events that introduce the possibility of skipping the actfas
provi des ski pE_namé) ; seen in the generation of the PAC protocol).

} If the abstract action has been declared as

act i on name(params)then there is an interfacA name
. .) that is connected to the interface s(params)

Finally, an action de_clared act1on name(pa_\rams)n . We have introduced a language for programming aspect
the a;pect-componentmterface is u;ed in the adv!ce Ogadv'components and shown how these components can be im-
transitions and generates the following interface in th€PA plemented as plain components. Afterwards, this sectian ha
interface A name{ described the process of weaving. The next section presents

requi res name params ; an example to illustrate the approach.

}

VI. EXAMPLE

. . To illustrate the approach we use a simple example based
B. Connecting plain components on e-commerce applications. Clients connect to a websile an
Once the PAC has been generated, the second partmafst login to identify themselves, then they may browse an
the weaving process is to connect the PAC to the rest ofi-line catalog. The session ends at checkout, that is,@s so
the components of the system. The Baton connector tells asthe client has paid. In addition, an administrator of tiaps

can update the website at any time by publishing a working | checkout () -> Qut Session).
version. Consider the application has been programmedeas }th
component-based system of the following figure:
i nterface Consistencyl {
event |ogin();
event checkout ();
ski ppabl e event update();
action log();

ShopC
Client

ShopS
i This aspect initially starts in stat@ut Sessi on and waits

for al ogi n() action from the base program (other actions
WorkS are just ignored). When théogi n() action occurs, the
base program resumes by performing thegi n() , and the
aspect proceeds to stateSessi on in which it waits for
either anupdat e() or acheckout () action (other actions
Trace being ignored). Ifupdat e() occurs first, the associated
Logger adviceski p; 1 og() causes the base program to skip the
updat e() action and thd og() action is performed. Then

the base program resumes and the aspect returns to state
I nSessi on. If checkout () occurs first, the aspect returns

to stateQut Sessi on. Sinceupdat e() actions are ignored

)) . . . in state Qut Sessi on, updates occurring out of a session
nent that implements a logging functionality. The inteefsc : : - .
are performed, while those occurring within sessions €stat

C i ent. ShopC and Cat al og. ShopS declare a service | nSessi on) are skipped.

get |l tems(), which is used by the client to browse the .

catalog, and a servigeay(Li st itens), used to make a In or_der to weave th&onsi st ency aspe_ct cqmponent,
a mer,lt The interfaced i ent ConnCar;dAut h Conns € define the following Baton connector, which binds the ab-

Se?:llare .a servicd ogi n(Cr eaent ial cr eder;t i al) stract actions declared in the interface of @ensi st ency

which is used by the client to identify itself. The interfe;ceaSpeCt component with concrete actions declared in the sys-

Admi n. Wor kC and Cat al og. Wr kS declare a service

addltem(Itemitemn, which is used by the administrator connect or Connect or {

Catalog

The application consists of five componer@ki ent repre-
sent a clientAdmi n an administratorAut h an authorization
entity, Cat al og the on-line catalog, andogger a compo-

to update the catalog. connects login() to *.x.login(..);
As an example we show the definition of the component connects checkout() to *.=*.pay(..);
Admi n: connects update() to *.x.addlten(..);

conponent Adrmin i npl ements Vr kC { connects log() to Logger. Trace. |l og();

Begin = (addltenm{Itemitem) -> Begin). }
} In the weaving of the aspect component into the application,
the PAC is generated and connected to the corresponding com-
ponents of the system. The code below shows the definition

interface Vorke { of the resulting PAC:

requires addltem(ltemiteny;

} conponent PAC i npl ements SyncA | ogin,
SyncA checkout, SyncA update,
A |l og

Let us now consider the problem of canceling updates to the
client-specific view of the e-commerce shop during sessio
e.g. to ensure consistent pricing to the client. We can defin
a suitable aspect component, which we €hsi st ency,

Qut Session =
? eventB login() -> eventE login() ->

to solvg this problem. The aspect component programmed ipnlsgigis(s)lnoz) '
Baton is as follows: (eventB update() -> skipB update() ->
aspect Consistency inmpl enents Consi stencyl ski pE_update() -> log() ->
{ event E _update() -> I nSession
Qut Session = | event B _checkout() -> event E_checkout ()
(login() -> InSession), -> Qut Session).

I nSession = }
(update() > skip; log() -> InSession

interface SyncA login { ski pE_update() -> eventE update() ->

provi des eventB_| ogi n(); Begin).
provi des event E_| ogi n(); }
}
i nterface WorkC {
interface SyncA checkout { requires additen(ltemiten);
provi des event B_checkout (); }
provi des event E_checkout ();
) i nterface SyncB update {
requires event B update();
interface SyncA update { provi des event E_update();
provi des event B _update(); provi des proceedB_update();
requi res event E update(); requi res proceedE_update();
requi res proceedB update(); provi des ski pB_update();
provi des proceedE update(); requi res ski pE_update();
requi res ski pB update(); }
provi des ski pE_update();
}

VIlI. RELATED WORK
interface A log {
requires log(); The work on open modules [4] suggests that module in-
} terfaces should be extended with pointcut names to be used
by aspect implementors in order to advise the aspect as well

o) o as by the module implementor who, in case of an evolution
The following figure illustrates the PAC with its correspendy¢ the module may have to update the definition of the

ing interfaces conne(_:ted to the rest of the system (for tke S&ointcut. We do something very similar with action integac

of space, we have hidden the compon€at al og). which, together with the component protocol, is an abstract
description of the execution points within the componeat th
an aspect may affect.

Fused [5] aims at achieving a symmetric, unified component
architecture that treats aspects and components as uniform
entities. Then, it addresses the problem of properly corifigu
connections between components implementing a concern and
the rest of the system. FuseJ proposes a powesfufiguration
languageto program component connections that support
SyncA_checkout crosscutting connections. This is conceptually similarato
Baton connector.

Fractal Aspect Component (FAC) [6] introduces a general
model for components and aspects. FAC decomposes a soft-
ware system into regular components agect components
(ACs), where an AC is a regular component that embodies a
crosscutting concern. Aaspect domains the reification of

e notion of a pointcut: the components picked out by an

. Furthermore, the implicit relationship between a woven
AC and the component in which the aspect component applies
is a first-class entity called aspect bindingA posterior work

SyncA_login

Client
SyncA_update

Trace
Logger

A_log

PAC

The weaving also produces the instrumentation of so
base components.As an example the compoAdnt n be-
comes equivalent to:

conponent Admi n inpl ements [7] introduces the notion of open modules to FAC.
Wor kC, SyncB update None of these approaches support the definition of con-
{ nections between components implementing advices and base
Begin = components that depend on a global shared state. Baton

(eventB update() -> proceedB update() -> permits to program this kind of smart connections that cor-
addlten(ltemitem) -> proceedE update() responds to stateful aspects in the AOP terminology. Furthe
-> event E _update() -> Begin more, none of these approaches seamlessly integrate AQP int

| eventB update() -> skipB update() -> COP as Baton does.

VIIl. CONCLUSION [6]

This paper proposed a solution of the problem of mod-
ularizing crosscutting concerns in component-based syste
Our main contribution is to show how AOP and COP CaP/]
be seamlessly integrated. The tupdtass,aspectdf AOP has
been introduced into COP as the tugleomponent, aspect
components)In concrete terms, Baton, a language for pro-

N. Pessemier, L. Seinturier, T. Coupaye, and L. Duchf@nModel for
Developing Component-based and Aspect-oriented SystemBroceed-
ings of the 5th International Symposium on Software ContipagiSC06)
ser. Lecture Notes in Computer Science, vol. 4089. Viennsstra:
Springer-Verlag, Mar. 2006, pp. 259-273.

——, “A Safe Aspect-Oriented Programming Support for Gmment-

Oriented Programming,” iRroceedings of the 11th International ECOOP
Workshop on Component-Oriented Programming (WCOPB6)Reuss-
ner, C. Szyperski, and W. Weck, Eds., Nantes, France, J0&,26chnical
Report 2006-11, Universitat Karlsruhe, Fakultat fiformatik.

gramming concurrent aspects in Java, has been evolved infg) &, Fernandes, R. Passama, and J. C. Royer, “ComponetitsSyinbolic

language for programming aspect components that are dpplie
to a component-based system. [9

We have shown how weaving an aspect component and
plain components can produce a system with only plain com-

ponents. This can actually be extended to the weaving of many

aspects composed together using composition operators [2]
The operators are then also translated into plain compsnent
The action interface makes it possible to deal with aspects,
including some form of incremental development, without

breaking the black-box property of components. Indeed, the

action interfaces have to be anticipated and made part of the

component interface at design time but aspect weaving dhn st
take place at deployment time (this implies that component
implementations can be instrumented at deployment time,
which is for instance the case when these implementations
are provided as Java bytecode).

As future work, we plan to extend these ideas to a more
realistic component model including, for instance, maty-
communication. In this regard, we could combine efforthwit
works on component models with explicit protocols such as
[8]. We also plan to integrate support for distributed aspec
in the line of AWED [9].

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
helpful comments and mention that this work has been partly
supported by the project AMPLE: Aspect- Oriented, Model-
Driven, Product Line Engineering (STREP IST-033710).

REFERENCES

[1] R. Douence, P. Fradet, and M. Sudholt, “Compositionygeeand Interac-
tion Analysis of Stateful Aspects,” iRroceedings of the 3rd International
Conference on Aspect-Oriented Software Development (AQEIA)
K. Lieberherr, Ed. Lancaster, UK: ACM Press, Mar. 2004, pfl1
150.

R. Douence, D. Le Botlan, J. Noyé, and M. Sudholt, “Cament As-

pects,” inProceedings of the 4th International Conference on Gengrat

Programming and Component Engineering (GPCE!0&ortland, USA:

ACM Press, Oct. 2006, pp. 79-88.

[3] A. Nufiez and J. Noyé, “Baton: A Domain-Specific Langeafor Co-
ordinating Concurrent Aspects in Java,” Proceedings of the 3éme
Journée Francophone sur le Développement de Logiciels A2pects
(JFDLPAOQ7) Toulouse, France, Mar. 2007.

[4] J. Aldrich, “Open modules: Modular reasoning about adyiin ECOOP

2005 - Object-Oriented Programming, 19th European Comiege ser.

Lecture Notes in Computer Science, M. Odersky, Ed., vol635&las-

gow, UK: Springer-Verlag, Jul. 2005, pp. 144-168.

D. Suvée, B. D. Fraine, and W. Vanderperren, “A symneesmd unified

approach towards combining aspect-oriented and compdrzesed soft-

ware development.” irCBSE ser. Lecture Notes in Computer Science,

I. Gorton, G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. Aafgtrd,

C. A. Szyperski, and K. C. Wallnau, Eds., vol. 4063. Sprin@&06,

pp. 114-122.

[2]

(5]

Transition Systems: A Java Implementation of Rendez-Voims,Pro-
ceedings of the Communicating Process Architecture Cenéer 2007.

]. L. D. Benavides Navarro, M. Sudholt, W. VanderperrenD Fraine, and

D. Suvée, “Explicitly distributed AOP using AWED,” i®@OPSLA 2006,
Proceedings of the 21th Annual ACM SIGPLAN Conference omdbbj
Oriented Programming, Systems, Languages, and Applitatf L. Tarr

and W. R. Cook, Eds. Portland, Oregon, USA: ACM Press, Od620

