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Abstract. Constructing and executing distributed systems that can adapt to their
operating context in order to sustain provided services and the sewaditiep

are complex tasks. Managing adaptation of multiple, interacting services-is p
ticularly difficult since these services tend to be distributed across thensyste
interdependent and sometimes tangled with other services. Furthetimoex-
ponential growth of the number of potential system configurations elgifom

the variabilities of each service need to be handled. Current practioestioig
low-level reconfiguration scripts as part of the system code to handléime
adaptation are both error prone and time consuming and make adajsigens
difficult to validate and evolve. In this paper, we propose to combine huoden

and aspect oriented techniques to better cope with the complexities ofvadapti
systems construction and execution, and to handle the problem of eatj@bne
growth of the number of possible configurations. Combining these teabsiq
allows us to use high level domain abstractions, simplify the representdtion o
variants and limit the problem pertaining to the combinatorial explosion of pos
sible configurations. In our approach we also use models at runtimenavage

the adaptation logic by comparing the current configuration of the systea to
composed model representing the configuration we want to reach.

1 Introduction

Context aware software systems that can automaticallytadaghanges in their en-
vironments play increasingly vital roles in society’s edtructures. The demand for
adaptive systems appears in many application domainsingufiggm crisis manage-
ment applications such as disaster and power managememtteidainment and busi-
ness applications such as mobile interactive gaming,gbgtiiding and business col-
laborations.

However, constructing and executing adaptive systems igtdyhcomplex tasks
facing several challenges. Adaptive software systemsyguieally deployed on dis-
tributed platforms consisting of heterogeneous compudgces. The target platforms
for a single system can range from computer networks of agytsismall portable de-
vices, such as phones or PDAs. Furthermore, a system is caupmd components
with variable configurations that might have dependencgtiaiships that need to be
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resolved during adaptation; thus, compounding the contgleBetter techniques for
taming the complexity of adaptive software during develeptrare needed. Another
challenge in adaptive system construction and executitimeisssue of combinatorial
explosion. Adaptive systems are often developed by defisavgral variation points,
which represents points in the software where differeniavés of the implementa-
tion might be chosen to derive the final system configuratR@solving these variation
points leads to an exponential growth in the number of ptessipsstem configurations.
This presents a major problem, since reasoning on a hugeerusfhbonfigurations to
find the best possible configuration for the current contexbimes too time consuming
when considering the often strict requirements to resptimsss these systems face.

Abstraction is the most fundamental principle applied iftvgare engineering to
encounter a continuously wider range of problems and isangacomplexity [20]. In
Model Driven Engineering (MDE), abstractions and transfations between levels are
used to manage complexity. For example, the Model Driverni#ecture (MDA) speci-
fies three abstraction levels; a Computation IndependedeM&IM) describes the en-
vironment and specifies requirements; a Platform Indep@ridedel (PIM) describes
the parts that do not change from one platform to another;aaf/tatform Specific
Model (PSM) includes descriptions of platform dependemntsp@nother principle that
are commonly applied in software engineering to handle dexity are separation of
concern. Aspect Oriented Modeling (AOM) approaches pewaidvanced mechanisms
for separation of concern such as mechanisms for encajpgutabsscutting features
and for composing crosscutting features to form integratedels [9, 13-15].

In this paper we present a new approach where we addreseraed! in adaptive
system construction and execution by combining certaie@spriented and model-
driven techniques. In particular we use:

— Aspect-Oriented Modeling techniques in order to tackleislsee of the combina-
torial explosion of variants. AOM allows us to encapsulagtidct variation points
into aspects which are separated from the base model of shens'g functionality.
Then, distinct aspects might be composed into the base nmodetier to obtain
different configurations. This approach allows us to reasora limited and lin-
early increasing number of aspects, thus avoiding the prnoldf combinatorial
explosion seen in other approaches.

— Model-Driven techniques to automate and improve the aeatf the reconfigu-
ration script needed to make the running system evolve froenocmnfiguration to
another. Currently the adaptation logic of adaptive middie relies on the exe-
cution of low-level and hand-written reconfiguration stsjpwvhich specify all the
possible transitions between the configurations. As thespts decide how sys-
tems - possibly critical to safety - are manipulated at metithey require rigorous
validation. Such a process is both time consuming and, eeeseyprone to human
errors. Instead of manually writing these scripts, we appbgel driven techniques
to generate them by analyzing the different variants of tistesn. In addition we
apply model driven principles to provide models at run timerhanaging the exe-
cution of the adaptation at a more abstract level. This enadto provide abstrac-
tions fine-tuned towards the adaptation task, reducing ity Furthermore, it
makes our approach applicable on many execution platformee ®ur models at
runtime is provided as platform independent models.



The remainder of this paper is organized as follows. Se&imtroduces a running
example and presents some background. Section 3 presemtethodology for man-
aging dynamic variability. Section 4 details our approasing the running example.
Section 5 presents related works and Section 6 providesomaticsion.

2 Motivating Example

This section presents a brief background on managementgapdd for variability in
the context of dynamic adaptive systems, based on [1]. Wedisauss the limitations
of this approach and the solutions we propose. The disaussia the context of mo-
bile computing environments applications which need tcedyically discover services
from a wide range of options that may be unknown during dessgich kind of appli-
cations propose a simple yet powerful motivating exampkgysfems that need support
for dynamic variability.

Traditionally, variability management has focused on alaifity that is solved at
predelivery time, i.e. from requirements to deploymentwideer, adaptive systems ex-
hibit degrees of variability that depend on runtime fludiag in their contexts. This
kind of variability is called dynamic variability or runtievariability [1]. Reflective
and adaptive middleware platforms offer powerful mechasigo achieve dynamic
variability to enable adaptation at runtime. These medmsiallow programmers to
hard-code reconfiguration scripts to dynamically tramsfone component-based con-
figuration into another.

2.1 Dynamic service discovery for mobile applications

Mobile applications need to dynamically adapt accordinghanges in their operating
contexts. Mobile devices such as PDAs, mobiles, or laptopscapable of detecting
and notify the user about new available services accordiristher preferences. The
complexity arises from the fact that mobile adaptive agians are expected to sup-
port unanticipated variants associated with user preée®and properties of operating
contexts that inevitably will arise during execution. Fientmore, different designs for
service discovery protocols (SDPs) have been proposed:d;i@mmay not be possi-
ble to completely specify at design time user preferencexepties associated with
the contexts, or which protocols will be used to advertiseises in a given context
execution.

[8] presents a solution to overcome the challenges poseeéteydgeneous service
discovery protocols. The solution offers a common core itecture that individual
discovery protocols follow. Using the final architecturesodvery protocols can be im-
plemented and dynamically plugged into the middlewardqlat. Hence, different ser-
vice discovery protocols can be used to discover servicesrtised by heterogeneous
platforms. Furthermore, different policies can be uplabdering runtime to dynami-
cally update the behavior of the application. Using thisiBoh, the service discovery
interaction platform from our example can take differenésahat individual protocols
could assume:

-User Agent (UA) to discover services on behalf of clients,

-Service Agent GA) to advertise services, and,



Fig. 1. Common Architecture and its Configurations

-Directory Agent (DA) to support a service directory whe®as register their ser-
vices andUAs send their service requests. A DA also announces posititehras of
requests against advertisements.

Depending on the required functionality, participatingles might be required to
support 1,2, or the 3 roles at any time. The common architectuhich is shown in
Figure 1, has six components:

-Advertiser Component: used bySAs to advertise its services and Bys to pro-
cess incoming service advertisements storing them in cadti€ component also deals
with the maintenance of a directory overlay network.

-Request Componentused byUA andDAs to generate service requests.

-Reply Component:used byUAs andDAs to generate service replies.

-Cache Component:for common utility tasks such as management of temporary
data, service advertisements, and location of neighbdiiegtories.

-Policy Component:this component stores and deals with user preferences; appl
cation needs and/or inclusive context requirements.

-Network Component: for the transmission of messages.

Network CacheandPoliciescomponents will always be present in any valid config-
uration. The other three components and their bindingshaifbart of the configuration
or not, depending on the roles the protocol might perform §A UA, or DA). Hence,
roles (agents) directly define the configuration (variarfgjure 1 shows three differ-
ent configurations which are compliant with the architeetiar support either BJA or
SArole by restricting the number of components to only thosgiired to provide the
determined functionality. By using a complete frameworhkfaguration, aDA can also
be supported.

In [1, 2], authors complement the solution shown above targehe development
of adaptive systems. This approach uses the Genie toolkito[dlesign stable runtime
configurations, as well as the possible triggers that teitihe reconfigurations. In the
case of the example above, the UA, SA, and DA are the possilnifigairations to be
used by any specific SDP. At the end of the process, a stathineamodel is produced
where each state represents a configuration and eachivamsjpresents a conditional
reconfiguration that transforms the source configuratioo fhe target configuration.



Essentially, this state machine model drives the execuifotihe system. Using the
Genie toolkit and the state machine model, designers cametically generate XML
files that represent the adaptation policies associatednsitions. Such policies can be
dynamically introduce to change the behavior of the systaering execution. Figure 2
illustrates the state machine model for the dynamic semiseovery application and
an example of a generated adaptation policy associatedtiétlarc (pointed by the
arrow from the top arc of the model to the generated policie &pproach has also
been applied to consider configurations and reconfiguméssociated with different
domains such as routing protocols and networking techmesof?].
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=Event>
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Fig. 2. Variants and transitions for the service discovery application

2.2 Limitations of existing approaches

The approach described in [1] presents several limitatibirst, the possible system
configurations need to be enumerated and fully specifiechrigity; the generated poli-
cies mainly specify the trigger events and which reconfigomascripts have to be
loaded to adapt the system from one state mode (i.e. agehtoanother. These scripts
are currently hand-written using the API offered by the utyileg execution platform.
Finally, each state mode represents the whole system, wea gbnfiguration. This is
not enough in some cases. For example, in the case of the dysamice discovery
application described above, there is another variahdiityension associated with the
specific protocol to use such as ALLIA, GSD, SSD, SLP [8]. Eatlhese proto-
cols has its own terms and rules. Therefore, in order to getace agent and a user
agent understanding each other, they need to use the satoegbrdaking into account
different protocols increments the number of configuratiand rules needed.

2.3 Contributions

The contribution of our proposed approach is twofold. Birste argue that the recon-
figuration scripts described above can also be inferred fremmodels, by comparing



the target configuration with the current configuration,dach transition that may be
triggered during runtime. The results of this comparisol aliow the dynamic gener-
ation of the corresponding reconfiguration, i.e. the idexatiion of the components that
should be added or deleted. This solution is possible as @goped to keep a reference
model that represents the current system and the possilddi@domodel that is the
result of the required adaptation. This will be detailedhia hext sections. Secondly,
using Genie, each state mode represents the whole systeme asmfiguration per do-
main (in the example above the service discovery domainfligaussed above, this is
not enough in some cases. Considering the complete enuomeodtonfigurations for
different variability dimensions, such as different piaih may be an unmanageable
task. In the following sections we will show how Aspect-Gitied Modeling techniques
allow the separation and composition of different viewstef system reducing com-
plexity during the development.

3 Overview of the approach

The common practices in component-based dynamically agapgstems (DAS) are
to handle dynamic adaptation at the code level. The adaptaties and the transfor-
mations that have to be performed on the running system acdedoaled and mixed
with the code of the application [3, 5, 8]. This approach nsa&daptive systems very
difficult to understand, validate and evolve.

The idea of the approach we propose in this paper is to contboukel driven and
aspect-oriented techniques to handle the complexitieslabtave system construction
and execution. Models cope with complexity through absimas and are used both to
specify the dynamic variability at design time and to managpetime adaptations. As-
pect oriented techniques are utilized to model the adaptatbncerns separately from
the other aspects of the system. By utilizing model basettati®mns and advanced
separation of concerns in this way the adaptation beconstsrda design and under-
stand, possible to validate and allows to easily evolve ttaptation policies even at
runtime.

Figure 3 presents the conceptual model of the proposed agprérom a method-
ological perspective the approach is divided in two phadesign time and runtime.

At design-time, the application base and variant architecinodels are designed
and the adaptation model is built. At runtime, the adaptatimdel is processed to
produce the system configuration that should be executesl fallowing paragraphs
details the steps of Figure 3.

Because the potential number of configurations for an agagiistem grows ex-
ponentially with the number of variation points, a main @i of the approach is to
model adaptive systems without having to enumerate alt fhessible configurations
statically. To achieve this objective, an application isd@led using a base model which
contains the common functionalities and a set of variantetsoghich can be composed
with this base model. The variant models capture the vditiabif the adaptive appli-
cation. The actual configurations of the application aré htiruntime by selecting and
composing appropriate variants. An adaptation model §psavhich variant have to
be selected depending on the context of the running apialicat

The adaptation model is central to the approach as it capalrehe information
about the dynamic variability and adaptation of the adapsiystem. It is built from
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Fig. 3. Conceptual model of the approach

the requirements of the system, refined during design andl atseintime to manage
adaptation. It is made of four main elements:

— Variants. This part of the model makes references to all the availedt@bility
for the application. Depending on the complexity of the egstit can be a simple
list of variants, a data structure like a hierarchy or a caméature model.

— DependenciesThe dependencies specify constraints on variants thabearsed
in a configuration. For example, the use of a particular fionetlity (variant model)
might require or exclude others. These constraints rechectotal number of con-
figurations by rejecting invalid configurations.

— Context model The context model is a minimal representation of the enviro
ment of the adaptive application to support the definitiomddiptation rules. We
only consider elements of the environment relevant for @sging adaptation rules.
These elements are updated by sensors deployed on thegiaysiem.

— Adaptation rules. These rules specify how the system should adapt to its envi-
ronment. In practice these rules are relations betweendhrey provided by the
sensors and the variants that should be used.

During runtime appropriate configurations of the applimathave to be built from the
base and variant models. To select the appropriate confignyshe reasoning frame-
work processes the adaptation model and makes a decisied bashe current context.
The output of the reasoning framework is one or more optibatrhatch the adaptation
rules and satisfies the dependency constraints. For eatlese# pptions the complete
model of the corresponding configuration can be built atinnatusing model compo-
sition.

Because the idea of the approach is to build configuratiordeomand rather than
enumerating all configurations, each new configuration bédetvalidated at runtime.



The role of the validation framework is to process the coméijan proposed by the
reasoning framework in order to select the ones that aretsafeploy in the running
system. The validation framework checks that the architeainodel of the configura-
tion is correct with respect to the constraints and protasbociated to the components
it contains.

Once a configuration has been selected by the reasoningvilainand checked
by the validation framework, it can be deployed in the rugngiystem. To ease the
adaptation of the running system, a model representingytsters at a higher level of
abstraction is causally connected to it. This model is faansed to match the config-
uration that has been selected for adaptation. The runyisters is adapted thanks to
the causal connection. Because the connection goes in betttidns, it also allows
checking that the system is actually running the requiredigaration.

From a change to the environment quite a few steps are redfoitee able to safely
adapt the system. These steps (especially model compuoaittbvalidation) can require
some time to execute and thus delay the actual adaptatigorabtice, this issue is
tackled by keeping track of the configurations that are @aid and registering them
for reuse. In extreme cases where predictable fast adaptatrequired, a set of pre-
defined configuration can be specified, built and validatextivance.

4 Managing the combinatorial explosion of configurations

The service discovery application described in sections2\va different variability di-
mensions: the functionality and the network protocols.rélere three variants for the
functionality: UA, SA and DA (= UA and SA). Four variants ofetfprotocols (ALLIA,
GSD, SSD and SLP) can be supported separately or not. Thisfe&5 configurations
(2*-1 protocols and 3 functionalities) and potentially 1986x44) different reconfigu-
rations. However, in the example of the service discovepjiegtion, the two variability
dimensions and their aspects are independent and trighgréidtinct events. Thus, it
is possible to manage all the reconfigurations with 12 sgyrijor respectively adding
and removing each aspects.

4.1 Using AOM to represent the variability

To avoid the combinatorial explosion, we propose to modeMiriants instead of the
configurations. This way, the number of models to be definedigiinearly with the
variability. The configurations can then be built by autdoely combining the vari-
ants. In practice this is achieved using Aspect-Orienteddiog techniques for archi-
tecture models. The application commonalities, i.e. tishiggcture elements which are
part of all configurations, are captured in a single base ndédlghe variants are then
defined as aspect models to be woven in the base model. Fromiculza selection
of variants, the corresponding configuration can be butibmatically by weaving the
corresponding aspect models into the base model.

The specific AOM technique we use is thet&RTADAPTERS approach [14, 15].
SMARTADAPTERS has formerly been applied to Java programs and UML class dia-
grams [14]. More recently, we have generalized this apprdacany domain meta-
model [15]. SYARTADAPTERSautomatically generates domain-specific AOM frame-
works using an input domain-metamodel. In this paper, theado metamodel we use



is a generic component model representing the main conoeptied to describe the
topology of running systems: components, binding, pefs,

In SMARTADAPTERS an aspect is composed of three parta:graft model, rep-
resentingvhat we want to weaveij) an interface model, representindnere we want
to weave the aspect afig a composition protocol specifyingow to weave the graft
model into the interface model. The graft model is a modejrfrant representing a
given concern. The interface model is a model fragment petrenized by roles allow-
ing the interface model to be matched in different base nsoé@hally, the composition
protocol is described by model transformation primitivesgttmanipulate elements from
the graft and the interface models.

4.2 Application to the Service Discovery Example

For handling the functionalities of the service discoveng application is separated
into a base model and two aspects. The base model contaiosrtimmon components:
Policy, CacheandNetwork

The first aspect corresponds to the user agent (UA) role aiilissrated in the
left part of Figure 4. The graft model contains all the comgruts and bindings needed
to realize the functionality of the UA role. The interface aeb contains all the base
components needed to integrate the graft mdeaicy, CacheandNetwork The com-
position protocol, represented by the interconnectingdjrspecifies how to weave the
graft model into the interface model. It consists in bindecgnponents of the graft
model to components of the interface model, and vice-v&wailarly, the second as-
pect corresponds to the service agent (SA) role and isridltedd in the right part of
Figure 4.

I ———
i Policy -
[ ! jmmmmmm-mmm oo
i Network
[mmmmmmmmmm | I L [ —
— 4 Cache i U Policy L4
| | SO i ! ! (mmmmmmmmmmmmm
1 N e H
] Intefface model = —————— i Network '
______ —
| ]__ e+ Cache 1 s
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*-| Request ! Intetface model
i
User Agent I
Reply aspect (UA) Advertiser -
Service Agent
Graft model| Graft model aSpeCt (SA)

Fig. 4. User Agent and Service Agent aspect

These two aspects allow building the three functional caméitions of the service
discovery application. Weaving only the User Agent aspeatl$ to the User Agent
configuration, weaving only the Service Agent aspect leadbe Service Agent con-
figuration and weaving both aspects leads to the Discovegnfgonfiguration.

We have illustrated the approach using the variability anftinctionalities of the
application but the variability on the network protocolshandled similarly. Four as-
pects have to be defined for each of the four protocols anc thsgects have to be



woven alternatively to build the corresponding configumasi. As a result, the complete
service discovery application is modeled using a base memt#l6 aspects instead of
the 45 models and/or the 12 scripts needed to specify alldhfgurations.

4.3 Discussion

Even with the simple example we described, our approactvalteducing by 50% the
number of artifacts (aspects or scripts) required to dieedtie variability of the ap-
plication. If the whole configuration models are requiredg( for validation purpose)
we reduce by 86% the number of models (6 aspects and 45 catfans) needed to
describe the whole space of configurations. The importagepty is that the number
of models grows linearly with the variability instead of exgntially when all con-
figurations have to be described. It is interesting to aldcadhat the aspect models
are smaller and simpler models than complete configuratiotets, as they focus on a
single concern.

A consequence of the approach is that the adaptation rulestdwve to select one
specific configuration but sets of variants to include oreatel In the service discovery
example, if the adaptation is specified by a state machinadhgtation rules for the
functionalities have to be duplicated for each network geot. Using the proposed
approach the adaptation rules for functionalities and agtwrotocols can be defined
separately since these two variability dimensions aregaddent.

In practice, engineers are used to state machines to rep@ase check adaptation
policies. The proposed technique uses aspects and morgayernes which might be
more difficult to understand and verify. This is especiallyetif there are complex in-
teractions between the variability dimensions and vasiafd overcome this limitation,
the adaptation state matching of the application can be lwilomatically (completely
or partially) from the specification of the variants and tld@gtation rules. This gives
an opportunity to the designer to check on his usual reptaten that the aspects and
rules yield the expected adaptation.

5 Generating the adaptation

In this section, we present our model-driven causal comrentsponsible for reflecting
changes from the model to the platform, and vice-versa. Wgtihte our proposition
on the service discovery application and discuss the adgastand limitations of our
approach.

5.1 Using MDE to generate the adaptation logic

A key characteristic of adaptive systems is their abilitpthomatically adapt a running
application. Our solution adopts a model-driven approadatuhtime adaptation by us-
ing models at runtime, where the runtime model is conneci#itet executing system by
a causal connection. This causal connection allows us t@gethe executing system
by manipulating its model. Our approach is similar to howemibn/reflective plat-
forms work, however, using higher level models adds the fitasfeemaining platform
independent.

Figure 5 presents our approach to runtime adaptation aralsiéte causal con-
nection depicted in Figure 3. A reference model is generasénny reflection over the
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running system, representing the current running configuraThis reference model
conforms to our core metamodel for representing compobas¢d running systems.
This metamodel contains the core concepts needed to repr@smponent-based
configuration at runtime and is independent of any speciécetion platform. The ref-
erence model is updated using listeners that observe théeutural reconfigurations
of the running system, which allows us to update the modélauit instantiating it from
scratch.

Adaptations are triggered by an adaptation need, usualleckby a context change.
In our approach, a reasoning framework decides on a set e€essaccording to the new
context, and a new configuration the application should &itais created by weaving
these aspects. Itis also possible to create a new configuitatia model transformation
or manually by modeling the modified model in a graphical@dit

Once the new configuration is created, it is compared withefexence model (rep-
resenting the existing configuration). It produces a diff amatch model that specifies
the differences and the similarities between the model$e Nt this model compari-
son makes our approach independent from any particulasftranation language. We
browse both diff and match models to analyze the relevamgdmbetween the refer-
ence model and the new configuration. During this analys<snstantiate some recon-
figuration commands, responsible for adding and/or rengpkindings and/or compo-
nents, etc. These commands are ordered according to ti@ityprindeed, the way the
model is transformed does not really matter, provided tihattodified model still con-
forms to the metamodel after transformation whereas theingrapplication should be
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adapted rigorously. In the final step, the ordered sequeinmenamands is executed by
the platform in order to actually adapt the running system.

As a verification step we check that the new reference modet{ws automatically
derived through reflection) is identical to the configuratinodel we wanted to reach.
This is an important step as it allows us to verify that alléld@ptation commands have
been executed successfully.

5.2 Application to the Service Discovery Example

Let us assume that due to a context change, the applicattorbis adapted from the
currently running User Agent configuration to the ServiceeAigconfiguration (Fig-
ures 5, 2 and 4). Looking at Figure 5, the former correspoodké reference model
while the latter corresponds to the new configuration. Thelehocomparison detects
several changes between these two configuratiprtbe Replyand Requestas well
as their bindings, have been delet@yl;the Advertisercomponent is introduced into
the runtime architecture and connected to@aehe Policy andNetworkcomponents.
Based on this information, we automatically instantiateetaod reconfiguration com-
mands in order to adapt the system at runtime. As an examisiind. 1.1 presents a
reconfiguration script that was generated for the Fractdfqim. This script is written
in FScript [6], a language that abstracts the Fractal API.

Listing 1.1. UA to SA reconfiguration script expressed in FScript [6]

action reconfigureUAt oSA(root, Request, Reply, Advertiser)({
st op($Request ) ;
stop($Reply);
/I Remove the Request component
unbi nd( $Request /i nterface: : network);
unbi nd($Request/interface:: cache);
unbi nd($Request/interface:: policy);
unbi nd( $Request/interface::reply);
remove($root, $Request);
/I Remove the Reply component
unbi nd($Repl y/i nterface:: network);
unbi nd($Repl y/interface::cache);
unbi nd($Repl y/interface:: policy);
unbi nd($Repl y/interface::request);
remove($root, $Reply);
// Add the Advertiser component
add($root, $Advertiser)
bi nd($Advertiser/interface:: network);
bi nd($Advertiser/interface::cache);
bi nd($Advertiser/interface::policy);
start ($Advertiser);

5.3 Discussion

Our approach of using causally connected models duringnnenfior dynamic recon-
figuration has several advantages. First and foremost, low alutomatic generation



of reconfiguration scripts instead of having to write themHhand. In our example

reconfiguration example from the previous sub-section, érations are needed to
reconfigure the application, as shown in Listing 1.1. Thgserations have to be or-
dered correctly to produce a consistent script. Our modeéd approach, based on
model comparison, allows us to automatically compute anérothe reconfiguration

operations. Given that the transformations generatingebenfiguration scripts have
undergone rigorous testing, these scripts will produce &sors than humans - thus
increasing safety. In the service discovery applicatios,generate 6 scripts to handle
the variability on the functionalities (one for each traiusi in Figure 2).

Second, we remain independent from any model transformbtiguage. The model
comparison allows us to be totally disconnected from anisttiy manipulating mod-
els. Third, we validate target configurations before atyumdlapting the running sys-
tem, by checking static constraints and simulating the rso@@ for example using
Kermeta [16]. It improves the confidence of runtime adaptatespecially when the
underlying execution platform is not transactional andsdugt offer support for rolling
back to the previous consistent configuration. In fact, ausal link is strongly syn-
chronized from the running system to the model and delayem the model to the
running system. Finally, our approach can be mapped tordiffereflective execution
platforms. For example, we can monitor and adapt Fractafi@] OpenCOM [5] sys-
tems using the same kind of models.

While using a causally connected model to manipulate theimgrsystem has many
benefits, it also has a cost. Response times are often impdotaadaptive systems,
and calculating the diff model and automatically generathe reconfiguration scripts
from it takes more time than simply executing predefinedpseriA possible solution
to that problem is to pre-generate the critical scripts f@ethe system execution. This
way, the adaptation can be performed very quickly and thealgiconected model
can be updated afterwards. Another solution to avoid modelparison would be to
directly connect a particular model transformation larggu@.g.SmartAdapters) to our
causal link. This language would instantiate reconfigaratommands during model
transformation and execute these commands after tranafiom However, this would
make our approach specific to a given model transformatioguiage, while remaining
independent from the execution platform.

6 Related Works

Recent middleware platforms like Fractal [3] or OpenCOM&dpose ways to adapt
a system at runtime, inspired by the work by Oregtyal. [17] ten years ago. These
approaches do not really propose to manage variabilityrdaime but propose mecha-
nisms to reconfigure a system at runtime. We propose to mapausal link to any of
these platforms. Our metamodel can be seen as a dynamic A@dstwibe the running
system. We can use any (aspect-oriented) model transfiomanguages to manip-
ulate the reference model. We are not limited to an ad-hoeiatjve reconfiguration
language. Our causal link automatically computes the atiaptlogic by comparing
the reference model to a modified model.

Many mechanisms for runtime variability management hawnh@oposed. They
are mainly focused on exchange of runtime entities usingmatrization, inheritance,
and preprocessor directives [10, 18, 19]. Our approach re mwarse-grained and uses



architecture based models for the management of whole Setrgponents, their con-
nections and semantics [1]. We can adapt running systenigldéwvel transformation
languages and graphical editors.

Of particular relevance to our work is MADAM/MUSIC [7,12] wdh uses the
adaptation capabilities offered by middleware platforarg] treats dynamically adap-
tive systems as dynamic software product lines [11] withcibreesponding support for
variability management. The main variability mechanismsists in loading different
implementations for each component type (primitive or cosiig) of the architecture.
By decomposing the system into a base model and severaltsaspeaeduce the com-
plexity related to the representation of variation poimtg their selection. We automati-
cally compute safe reconfiguration scripts to adapt theegy$tom the reference model
to a target configuration. Finally our approach is geneticah be mapped to differ-
ent execution platforms whereas MADAM is limited to mobitaegputing applications,
and we can use different model transformation languagestbfyithe reference model
€.9.AOM languages like SmartAdapters [14, 15], MATA [13] or Kooge [9].

Wolfinger et al. [21] demonstrates the benefits of the intémnaf an existing prod-
uct line engineering tool suite with a plug-in platform fanterprise software. As in
our case, automatic runtime adaptation and reconfiguratierachieved by using the
knowledge documented in variability models. Our differenexist mainly because of
the different aims of each approach. Their work focuses aerprise software while
our work covers the domains grid, mobile computing, and efdbd systems. While
variability decisions in [21] are user-centered our vatighdecisions, based on the
Genie approach [1] are environment-centered.

7 Conclusion and Future Works

In this paper we have presented a novel combination of Mbdislen Engineering
(MDE) and Aspect-Oriented Modeling (AOM) to support dynamariability. AOM
allows us to focus on variability dimensions with no needdnsider the whole config-
uration. By composing aspects, it is possible to producede wange of configuration
models, while managing the combinatorial explosion of afats. Using a MDE ap-
proach, we use these configuration models to generate tiptatida logic needed to
adapt the running system from one runtime configuration titeer, instead of writing
it by hand.

In future works, we plan to extend our core metamodel and tapimteresting
properties of the running system, such as QoS-related pgrepgesource consumption,
etc. This will allow us to develop a reasoning framework thaltautomatically select
and weave the most adapted aspects. Another perspectivgis-compile the most
useful reconfiguration scripts. For the moment, our catrsiatlomputes these scripts at
runtime. However, compiling the scripts implies that thed@ids not yet synchronized
with the running system and consequently we do not know whainponents and
bindings to adapt. Languages like FPath [6] may help us imekébhg the component
we want to adapt at runtime.
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