N

N
N

HAL

open science

Composing Models for Detecting Inconsistencies: A
Requirements Engineering Perspective

Gilles Perrouin, Erwan Brottier, Benoit Baudry, Yves Le Traon

» To cite this version:

Gilles Perrouin, Erwan Brottier, Benoit Baudry, Yves Le Traon. Composing Models for Detecting
Inconsistencies: A Requirements Engineering Perspective. Proceedings of the International Work-
ing Conference on Requirements Engineering: Foundation for Software Quality (REFSQ2009), 2009,
Amsterdam, Netherlands, Netherlands. inria-00468522

HAL 1d: inria-00468522
https://inria.hal.science/inria-00468522
Submitted on 31 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00468522
https://hal.archives-ouvertes.fr

Composing Models for Detecting Inconsistencies:
A Requirements Engineering Perspective

Gilles Perrouin®, Erwan Brottier?, Benoit Baudry!, and Yves Le Traon?

! Triskell Team IRISA/INRIA Rennes Campus de Beaulieu, 35042 Rennes, France
2 France Télécom R&D, 2 av. Pierre Marzin, 22 307 Lannion Cedex, France
3 ENST Bretagne, 2 rue de la Chataigneraie, CS 17607, 35576 Cesson Sévigné Cedex
France
!{gperroui,bbaudry}@irisa.fr, 2erwan.brottier@orange-ftgroup.com,
*Yves. letraon@telecom-bretagne.eu

Abstract. [Context and motivation] Ever-growing systems’ com-
plexity and novel requirements engineering approaches such as reuse or
globalization imply that requirements are produced by different stake-
holders and written in possibly different languages. [Question/ prob-
lem] In this context, checking consistency so that requirements specifica-
tions are amenable to formal analysis is a challenge. Current techniques
either fail to consider the requirement set as a whole, missing certain
inconsistency types or are unable to take heterogeneous (i.e. expressed
in different languages) specifications into account. [Principal ideas/
results] We propose to use model composition to address this problem
in a staged approach. First, heterogeneous requirements are translated
in model fragments which are instances of a common metamodel. Then,
these fragments are merged in one unique model. On such a model in-
consistencies such as under-specifications can be incrementally detected
and formal analysis is made possible. Our approach is fully supported by
our model composition framework. [Contribution] We propose model
composition as means to address flexibility needs in requirements in-
tegration. Threats to validity such as the impact of new requirements
languages needs to be addressed in future work.

Keywords: model-driven requirements engineering, flexible inconsis-
tency management, model composition.

1 Introduction

Cheng and Atlee [1] have reviewed state of the art of current requirements en-
gineering research and identified future directions. Amongst those, two seem
particularly relevant to address ever-growing system complexity, shorten engi-
neering time and maximize value: Globalization and Reuse. Globalization sug-
gest to engineer systems in geographically distributed teams in order to benefit
from a continuous working force (24h/day), close distance of customers and re-
source optimization. Reuse offers to capitalize on requirements value by wisely

re-applying the same requirements in a product-line context. These promising
research directions have a strong impact on the definition of the requirements
themselves. First, requirements of a single system will be handled by several en-
gineering teams having different habits and therefore inducing communication
challenges [1]. Second, reusing requirements in a new context may imply having
to deal with different formalisms used for their description. As mentioned by
Sommerville [2], a Software Requirements Specification (SRS) is captured by a
collection of viewpoints, described by system authorities (stakeholders, existing
system documentation, and so on). Viewpoints encapsulate partial requirements
information, described by heterogeneous models i.e. expressed in various lan-
guages (depending on stakeholders preferences and skills) and relating to differ-
ent crosscutting concerns [3].

Globalization and reuse also represent a challenge for consistency management.
Indeed, models forming viewpoints are likely to be inconsistent due to the
amount of heterogeneous information involved and the number of stakeholders
responsible of their productions. Requirements analysts need to detect inconsis-
tencies among these models to reveal conceptual disagreements and drive the
requirements elicitation process [4]. To do so, they need a global view of incon-
sistencies in order to decide whether they will tolerate inconsistency presence
or not [5]. Model comparison techniques [4,6-8] have been proposed to detect
logical contradictions with respect to consistency rules. These techniques are
relevant to find static and inter-model inconsistencies. But they have some im-
portant limitations. First, consistency rules in a multi-formalism context must
be written for each possible pair of languages. Second, these techniques are in-
efficient to provide a measure of the overall SRS consistency since consistency
rules checks models two by two. As a result, they are not suitable to detect
under-specifications (a lack of information detected between two models may
be resolved by a third one). Moreover, dynamic inconsistencies are undetectable
because formal techniques enabling their detections can not be used as they re-
quire a global model of the SRS.

Composing models can help to overcome these limitations by providing one
global model from a set of models providing an unified view [9] of the require-
ments with respect to a particular purpose (e.g. functional requirement simu-
lation). Regarding inconsistencies detection, model composition translates the
inter-model consistency problem into an intra-model consistency one. This has
numerous advantages. First, consistency rules can be defined on one unique
metamodel and hence are much easier to specify. Second, dynamic inconsisten-
cies can be readily checked by formal tools.

However, current composition techniques [9-14] do not fully address our prob-
lem. Indeed, they do not support the composition of heterogeneous models since
they compose models in the same formalism. Most of these approaches assume
that models are conforming to their metamodel prior to their composition which
is not common place in requirements engineering practice [15]. Finally, they do
not emphasize of ensuring traceability during composition which is required to
determine inconsistency source, such as stakeholders conflicts.

Building on our experience on model composition [13], we propose in this pa-
per a generic composition process addressing the above issues. First, we extract
information from heterogeneous models and translate it in terms of a set of
model fragments. This step is called interpretation. The second step, called fu-
sion, builds a global model by composing model fragments. The resulting global
model can be analyzed with respect to under-specifications and other inconsis-
tency types through dedicated diagnostic rules potentially covering the SRS as
a whole. By postponing inconsistency detection in the global model it is possi-
ble to resolve inconsistencies in an order only determined by the requirements
engineers. Therefore, we provide them the flexibility required to drive inconsis-
tency management. We also automatically compute traceability links between
elements of input models and the global one. This is useful to trace inconsisten-
cies back in models, providing valuable feedback to stakeholders. This process is
fully supported by a model-driven platform [13,16], integrated into the Eclipse
framework. Section 2 outlines our model composition process. Section 3 details
the fusion step and illustrates how inconsistent models can be composed. Sec-
tion 4 illustrates how various kinds of inconsistencies can be detected. Section 5
highlights some relevant work. Section 6 concludes the paper and sketches some
interesting perspectives.

2 Process overview

In this section, we describe our composition-and-check process. It is a result
of researches carried out in the context of the R2A* project (R2A stands for
Requirement To Analysis) project, initiated in collaboration with THALES and
FRANCE TELECOM. Its goal is the definition of a framework for analyzing
requirements, simulating functional requirements [16] and generating software
artifacts from them [17]. This process is completely based on a model-driven
approach and consists of three sequential steps, as shown in Figure 1. It starts
from a set of input models, expressed in various input requirements languages
(IRL). These models are composed during the interpretation and fusion steps,
presented in section 2.1. These steps result in a global model and a traceability
model. These two models are the inputs of a static analysis step which consists
in checking the global model according to consistency rules and producing a
consistency verdict. This last step is described in section 2.2.

2.1 Composition

Input models to compose are produced by stakeholders. They capture specific
parts of the software requirements specification (SRS) and describe partial in-
formation of the requirements. They may be inconsistent and can be described

4 http://www.irisa.fr/triskell/Softwares/protos/r2a/r2a_core?set_
language=en

modeling

D wr

- — P« instance of »

input Requirements
Lang

| input models
Interpretation

2T
, E\Ij% model
.0 DD_EI_T' fragments

= 4
B
8- Fusion
<
\ . oA
\ o—0
\ o—a

global traceability
model model

Static Analysis
Inconsistency 4/ \ Formal semantic

management verification

Composition

Fig. 1. Overview of the composition-and-check process

with various input requirements languages as depicted in Figure 1 (a prelimi-
nary parsing step presented in [13] is required for textual specifications.). Fur-
thermore, they describe different concerns of the system-to-be. Composing such
input models requires to state precisely the following: 1) Which information must
be extracted from input models, 2) How this information is obtained from these
input models and 3) How extracted pieces of information must be combined to
obtain one global model.

Core Requirements Metamodel. The Core Requirements Metamodel (CRM)
defines information that will be extracted from input models and composed. T'wo
main factors influence the definition of the CRM. The first one is related to the
answer that we will give to the first point i.e. the elicitation of a subset of the
IRLs’ concepts on which we will base analysis on the global model. This elici-
tation is the result of a negotiation between stakeholders to determine what are
the most important concepts according to their respective viewpoints.

The second important factor is the type of analysis that is targeted by the check
process. If dynamic inconsistency checking is required, a formal operational se-
mantics of the CRM has to be given.

Interpretation. The first step of the process, called interpretation, addresses
the second point. This step is detailed in previous work [13] and is beyond the
scope of this paper. Basically, the interpretation extracts relevant information
in input models and translates it in terms of model fragments, which are in-
stances of the CRM. The interpretation is governed by a set of interpretation
rules matching IRLs’ concepts (with respect to optional guards) and produc-
ing corresponding model fragments instances of the CRM. These interpretation
rules have been defined in collaboration with THALES’ requirements analysts
in order to validate “correctness by construction” of interpretation rules.

Fusion. The second step of the process called fusion addresses the third point.
From a model-driven perspective, the fusion step is supported via a model com-
position technique which provides a high-level of flexiblity (see Section 3.3 for
details). As for interpretation, fusion is described by a set of fusion rules. The
fusion consists in detecting and resolving overlaps between model fragments. An
overlap is a situation where two sets of related model elements in different mod-
els are semantically equivalent i.e. designate common features of the domain of
discourse [18]. Overlap resolution aims at producing a compact representation of
information captured by interpretation, i.e. the global model. Without replacing
a complete semantic analysis, the fusion makes explicit semantic links between
input models. This step is detailed and illustrated in section 3.

Interpretation and fusion rules automatically build traceability information nec-
essary to identify elements which are the cause of an inconsistency.

2.2 Static Analysis

The third step of the process, called static analysis, is performed once the global
model is available. Two kinds of consistency rules are checked. The first ones,
called structural inconsistencies, check if the global model fulfills at least the
CRM constraints expressed with MOF (cardinalities, composition...). Two kinds
of inconsistencies can be detected at this stage:

— Under-specification is detected if one property value of one object has fewer
elements than specified by the property cardinality. It means that informa-
tion is missing in input models and the global model is incomplete with
regards to the targeted formal analysis technique,

— Logical contradiction is detected if one property value of one object has more
elements than specified by the property cardinality. It means that at least
two input models overlap semantically but this overlap is inconsistent.

The second kind of consistency rules, called static semantics inconsisten-
cies, is complex and is generally described with OCL rules. Intuitively, these
rules correspond to well-formedness rules defining business-specific restrictions
on metamodels. However these rules can be difficult to write in OCL for stake-
holders who do not have a technical expertise. To help such stakeholders, we
propose the notion of diagnostic rules which are easier to write for stakeholders

and enable to provide meaningful information in a non-technical form when a
rule is violated. The composition-and-check process can be used iteratively in
order to limit the amount of managed information and the number of inconsis-
tencies to solve. As the fusion step can take as an input the global model (it is
just a large model fragment). It is then possible to check how a new input model
impacts a consistent global model. When no inconsistencies are detected, the
targeted formal verification technique can be applied. When input models (and
corresponding parts of the SRS) are updated to take into account results of the
formal verification, a new cycle can be started. These points will be detailed in
section 4.2.

3 Combining inconsistent models via Fusion

3.1 Running Example: the RM

The RM metamodel is the current CRM of the R2A platform. It captures a
functional and a data description of the system. It is meant to capture functional
requirements and the control flow between them. RM also allows for requirements
simulation and system test cases generation within R2A platform [17]. Figure 2
illustrates an excerpt of the RM metamodel. It describes a state-based formalism
where system actions are described as use cases (metaclass USECASE), enhanced
with their activation conditions and effects (relationships PRECONDITION and
PosTCONDITION expressed as first order logic expressions).

Only few concepts defining these expressions are showed in Figure 2 (the EX-

PRESSION subclasses). Expressions contain references to property values of the
system, represented by the metaclass PROPERTYVALUE. The OCL constraint 1
in Figure 2 ensures that referenced property values in any expression exist in
the model (constraint 2 checks their type conformance). Use case contains a set
of formal parameters (metaclass PARAMETER). Each parameter represents an
ENTITY involved in the use case, which plays a particular ROLE (for instance
“actor”). Only the actor parameter of a use case can trigger it and a use case
has only one actor, as expressed by the OCL constraint 3.
Other notions in Figure 2 describe basically an entity-relationship diagram. En-
tities are either business concepts (CONCEPT) or actors (ACTOR) of the sys-
tem (entity which can trigger at least one use case). Entities have properties
which represent their possible states (ATTRIBUTE) and relationship with others
(RELATION). Properties have a type (DATATYPE) which can be a BOOLEAN-
TYPE or an ENUMERATIONTYPE (a finite set of literal values, representing
strings, integers or intervals). Instances of attributes and relations are property
values of the system. A system state is a set of entity instances and property
values, corresponding to a system configuration at a given moment. The reader
can refer to [13,15] for more details on this metamodel.

3.2 Dealing with Inconsistent Fragments

Figure 3 presents a set of RM model fragments, obtained by interpreting a set
of input models (interpretation step). These input models represent the specifi-

Usecase parameters | Parameter |~
name: String 1.* | rele: String
i 3 1 | parameter
1 10p 1 | preCondition 1 | postCondition
- Proper
op Expression perty
Property | pame: String

o]

Not

PropertyValue

name: String

[

.

attributes

Entity

name: EString

* subTypes

Attribute
Relation relations

enti

0.1

ties

superType

DataType

| Actor | | Concept |

| BPValue | | EPValue |

Literal

name: String

| BooleanType || EnumerationType |

1.+

¥

literals

(1) context PropertyValue : let x = parameter.type.oclAsType (Entity) in property = x.attributes union (x.relations)
->select(p|p.name = name)->one
(2) context PropertyValue : self oclTypeOf(BPValue) and property.type.oclTypeOf (BooleanType) or
self.ocITypeOf(EPValue) and property.type.oclTypeOf(EnumerationType)
(3) Context Usecase : parameters.select(p|p.role="actor") size() = 1

Fig. 2. A part of the RM metamodel used in R2A platform

parameters

Fig. 3. Examples of RM model fragments

HymemmmTees i i y i
| 1:iActor | ®) o) i:e) io1s:C t i
! B i B 6 : BooleanType 4l 11: Concept | - oncept |y
| [name : customer " 4 : Concept @ u - ' hame : customer| |
! lt " - book type ! i1[name : customer| i [
i@ Ype . [Dame: booX | u . i[9 Attribute | 1 i [attributes!
[2 Parameter | i i| 7:Relation |yl O ATMOWE |y |attributes:: - '
(| 2 Arameer | attributes & name : borrowed| ! [name : registered| il 19 : Attribute |,
' . I H . n . " . ¢ " "

H role : actor | 5: Attribute | | relations:: | attributes ! 12 : Atiribute #[name : registered| !
' I H n . : | i
! |parameters it [name : borrowed :i - " 10 - Concent i name : registered| j | type :
| X i H 8 : Concept 1 : P " I i
! 3 : Usecase i i book YPC 11120 : Enumeration |
! [name : subscribe|! 4 [name : customer e o i
e T e — . - |
1| 21: UseCase 22 : Parameter (b 23 : Actor 25 : Attribute |24 : BooleanTypel:
! —— parameters type - - - -
! [name : subscribe name : actor name : librarian name : registered| type (OF
[ot N Sttt [e e e Y :
FEIEIIIIEIIIIIariaTaTanIaTaIIIIIIIIIIiiaiiiianiaianiniiTiTiasaTiasiacaztiiTITisosiiiiiioiziiziziiiizoizoy
1| 14: UseCase — 15 : BPValue 16 : Parameter 17 : Actor

! — postCondition - parameter type

1 [name : subscribe name : registered| name : actor name : customer ®

i

cation of a library management system (see [13] for details). Input models are
written in RDL (Requirement Description Language [13]) which is a constrained
form of natural English. For example, one sentence of library management sys-
tem, interpreted in terms of model fragments of Figure 3 is:

The ‘‘book’’ must be registered before the °‘customer’’ can
‘‘pborrow’’ the ‘book’’

Each fragment handles a piece of information, extracted from one input model
by one interpretation rule as explained in section 2.1. The fragment (a) declares
a use case subscribe which can be triggered by an actor customer. The fragment
(b) states the existence of a business concept book which has a state borrowed,
without information on its type. To handle such inconsistent fragments in a
model (prior and after their fusion), it is necessary to allow non-compliance
with respect to basic well-formedness rules of the metamodel such as multiplici-
ties or types. We introduce the notion of a relazed metamodel to cope with this
situation.

Definition 1. A relazed CRM is a metamodel where the following properties
hold:

— All metaclasses are considered as concrete (i.e. instantiable),
— All multiplicities between metaclasses are considered as '*’,
— There is no containment relationship (treated as regqular associations).

Thanks to this notion it is possible to interpret partial and inconsistent model
elements and to combine them. As mentioned in Section 2, inconsistency check-
ing is progressively performed on the global model. Finally the global model is
made consistent with respect to the original (un-relaxed) CRM. This process
will be detailed in Section 4.

3.3 Fusion principles

One simple approach to perform model fusion is to compare objects two by two
and combine them when with respect to syntactical equivalence. Yet, this raises
two issues (i) designation clashes and (ii) type clash. Designation clash [19] oc-
curs when a single syntactic name in the requirements specification designates
different real-world concepts (e.g. the pair (9,12) refers to different concepts while
having the same name). A type clash arises when two different types ar given for
the same concept (e.g. the pair (1, 8) refers to a customer in two different ways).
It can be seen as specialization of a terminology clash [19]. To alleviate these
issues, we need to let requirements analysts define fine-grained rules specializing
fusion and resolve these clashes. To this aim, we propose two kinds of fusion
rules (FR): equivalence rules (ER) and normalization rules (NR).

Rules of the first type define equivalence ranges and describe how to resolve them.
An equivalence range is a set of objects which are considered as equivalent. Res-
olution targets the replacement of equivalent objects by one new object, where

properties have been set properly to keep the whole information. Normalization
rules aim at transforming the model after ER executions so that a violation of
conformity reflects an inconsistency. Figures 4 and 5 give examples of FR spec-
ifications for the RM metamodel presented in Figure 2.

ERI1 (a,, a, : ATTRIBUTE): ATTRIBUTE
- aj.name = az.name
A al.am‘fbures'] = a;.am*fbures'].
ER2 (r}, rz : RELATION): RELATION
- [.0ame = rz.name.
ER3 (r: RELATION, a ; ATTRIBUTE): RELATION
- a.name = r.name.
- linkedEntities = equRanges.collect(r : RELATION | r.linkedEntities) \ c.collect(a :
ATTRIBUTE | a.owningEntity).
ER4 (ul. u2: USECASE): USECASE
- ul.name = uz.name.
ER5 (py. pz : PARAMETER): PARAMETER.
- pi.name = py.name.
ERG (a;, a, : ACTOR): ACTOR.
- a,.1ame = az.namne.
ER7 (c: CONCEPT, a : ACTOR): ACTOR
- c.name = a.iame.
ERS8 (cy. ¢z : CONCEPT): CONCEPT.
- cp.name = cy.naime.
ER9 (b;, by : BOOLEANTYPE): BOOLEANTYPE.
- bigpe! = bytype’.

Fig. 4. Examples of equivalence rules

An ER is defined as an equivalence range constructor and an equivalence
range resolution (constructor and resolution in the remainder). The constructor
is a boolean expression which takes as inputs a pair of objects and returns
true if they are equivalent. It aims at defining a set of equivalence ranges in
the context of its owning rule. The resolution is used to replace all objects in
the equivalence ranges by a new object which captures their semantics. ERs
are expressed with three ordered elements, listed in Figure 4: a signature (first
line), a constructor boolean expression (the first element of the list) and a set of
resolution directives (the second element being optional and used only in ER3).
The signature handles the name of the rule, a type filter on the pair of objects
checked by the constructor and the type of the object created by the resolution
(return type). ER1 specifies for instance that objects of type ATTRIBUTE which
have the same name and are related to the same ENTITY (attributes ! points out
the opposite reference of attributes) are part of the same equivalence range. This
ER illustrates how context can be part of overlaps identification. The resolution
of such an equivalence range will produce an instance of ATTRIBUTE, as specified
by its return type.

NR1 : Execution of an imperative form of the constraint 1 in Figure 2 for each
PROPERTYVALUE.
NR2 : Creation of an And tree with elements of u.preCondition for each USECASE.
NR3 (uc : USECASE) 7 : card (uc.preCondition) = 0;
!': uc.preCondition := TRUE.new;

Fig. 5. Examples of normalization rules

A resolution directive describes how to set the value of a particular property
for the object created by the resolution. If no resolution directive is defined, the
default policy is applied. As defined by Sabetzadeh et al. [9], it consists in mak-
ing the union of the property value of each object in the equivalence range (with
basic equality resolution for primitive types such as string or integer). Yet, some
property values cannot be resolved by union (for instance the kind of a UML
class representing one abstract class and one interface). In such cases, resolu-
tion directives are useful to resolve these overlaps. As an example, each property
value of ATTRIBUTE instances created by the ER4 resolution is evaluated by the
default policy as opposite to the linkedEntities property values of RELATION
instances created by the ER3 resolution. The fusion of model fragments may not
be performed in one step (identification of all equivalence ranges and resolution).
Indeed, an object can be contained by more than one equivalence range. As an
example, the object 1 is also contained by (1, 17) ER6. The stopping criterion
of the fusion is satisfied when no more equivalence ranges have been identified.
Some inconsistencies in a model do not reveal inconsistencies in the information
captured but only irrelevant ways to express this information. For instance, an
instance of Usecase in a RM model must have one pre-condition exactly. If this
use case has no condition of activation, its pre-condition must be an instance of
the metaclass TRUE. This mapping to TRUE must be done if no partial specifi-
cations describe information about this pre-condition. NR3 is specified for this
purpose.

The main part of the fusion algorithm is given in Figure 7. It processes a set
of objects (from model fragments to merge) and a set of ER. It iterates until no
more equivalence ranges have been resolved (or identified). The loop contains
two steps: equivalence range identifications (lines 04-07) and their resolutions
(lines 08-13). The method elicit(l:list of objects) removes all objects passed as
parameter (it also deletes links between them and remaining objects). It is used
to remove objects contained by a resolved ER. Figure 6 gives the final model
obtained by executing this algorithm on model fragments of Figure 3 according
to fusion rules of Figure 4 and 5. It is an instance of the relaxed CRM.

3.4 Traceability computation

The composition process generates automatically a traceability model as intro-
duced in section 2.1. This model stores the history of all kinds of rules (inter-
pretation, fusion and normalization) that have been executed during the com-

38 :Attribute

name : [registered]

15 :Attribute

type

name ; [registered]

owningEntity

40 :BooleanTyp

E postCaondition

47 Usecase

53 :True

parameters

name : [subscribe]

51 :Parameter

44 Concept

name : [book]

37 Actor

relations

name : [librarian]

41 :Relation

name : [borrowed]

type

praCondition ¢

role : [actor]

52 :Actor

/

25 :BPValue

name : [customer]

relations

name : [registered]

63 :Attribute

type

name : [registered]

31 :Enumeration

20 :BooleanType

‘ type

12 :BooleanType

Fig. 6. Result of the application of Fusion rules on model fragments (Figure 3)

if (er.constructor(ol, 02)) then er.equivalences.add(ol, 02)

0 Algo Fusion(11 : List<Object>, 12 : List<ER>) is
1 var resolved : List

2 do

3 resolved.clear()

4 forAll ol in1l

5 forAllo2inll

? forAll er in 12

8 .

9 forAll er in 12

10 forAll r in f.equivalenceRanges
11 var o : Object := er.resolution(r)
12 11.add(o)

13 resolved.addAll(eq)

14 ll.elicit(resolved)

until(resolved.isVoid())

Fig. 7. Fusion Algorithm (equivalence rules application)

position process. Each rule execution is associated to model elements that have
been matched and produced. Model elements pertain either to input models,
interpreted and composed model fragments or to the global model. Given such
a traceability model, it is possible to compute a connected graph where nodes
are model elements involved in at least one rule and vertices relates elements
matched and produced for each rule.

4 Inconsistency detection

We illustrate in this section our inconsistency detection process, introduced in
section 2.2. This process is composed of two activities performed in parallel:
structural inconsistency detection and static semantics inconsistency detection.

4.1 Structural Inconsistency Detection

Structural inconsistency detection checks conformance of the model with respect
to the CRM definition expressible through MOF. For example, one constraint on
the RM metamodel requires that any USECASE has at least one PARAMETER.
Structural inconsistencies comprise logical contradictions: attribute registered of
customer (object 53 in Figure 6) has two types which is clearly a non-sense.
Concerning under-specifications, attribute registered (object 15) of book has no
type at all. Structural inconsistencies for a given CRM are automatically detected
by MOF-compliant tools. Therefore there is no need to define them for a new
CRM. When no more structural inconsistency is detected, the global model can
be cast to an instance of the original (un-relaxed) CRM.

4.2 Static Semantics Inconsistency Detection

We distinguish two categories of static semantics inconsistencies depending on
the stakeholders who specify them. Well-formedness inconsistencies are related
to rules domain experts define on the CRM (e.g. constraint 1 for the RM meta-
model in Figure 2). Custom inconsistencies are violation of rules defined by
requirements analysts. Enforcing such rules may be required to enable further
formal analysis on the model. As mentioned in section 3, fusion outputs the
global model as an instance of the relaxed CRM. Since for flexibility reasons [5]
we do not want to impose a sequence in inconsistency detection activities, we
cannot assume that the global model can be cast to an instance of the CRM. We
therefore need to define well-formedness and custom rules on the relaxed CRM.
While OCL is often used to specify static semantics rules, defining navigation
paths across scattered elements can be tricky and rule violation feedback useless
for stakeholders.

We offer the possibility to requirements analysts to define diagnostics rules
(DR), defined for a given version of the relaxed CRM, to solve these problems.
Diagnostics rules encapsulate a guard and a textual template. The guard is based
on pattern matching as for interpretation and fusion rules. Hence, it is no longer
required to specify navigation through the model to retrieve model elements.
The template is a natural language sentence parameterized with expressions re-
ferring matched elements and navigating the global model. When a DR matches,
an inconsistency is detected, the template is instantiated and added to a ver-
dict log which can be reviewed by non-experts. Traceability links can be then
navigated until pointing out inconsistent requirements in input models and rules
involved in the production of elements responsible of the inconsistency. A few
examples based on the RM metamodel are provided in Figure 8a. For instance,

Contradiction (a)

(b)

DR1 (Parameter p)
p.role = ‘actor’
Ocard(p.type) > 1

Verdict

DRI : The use case subscribe (47) has 2 actors.

DR2 : The property registered (25) involved in the use case
subscribe (47) can not be matched with one property owned by
one entity.

The use case [ucName] has [card(p.type)] actors.

Under-specification

DR2 (BPValue v)
v.property = void

The property [v.name] involved in the use case [...]
can not be matched with one property owned by one
entity.

Fig. 8. Some DRs for the metamodel RM and an excerpt of the verdict

DRI1 declares that there is a contradiction if a use case has more than one actor.
Indeed, this DR is related to the OCL constraint 3 defined Figure 2). As the
verdict illustrates (Figure 8b), the feedback for this rule is much more under-
standable for non-experts.

When both static semantics and structural inconsistencies are resolved we cast
the global model to an instance of the original CRM which is fully consistent
and amenable to further analysis.

While having no inconsistency detection sequence is a good point for flexibil-
ity, it can be disturbing for requirements analysts to figure out which rules have
to be checked first, especially if the CRM is complex and there are numerous
rules. In such cases we propose to manage inconsistency resolution incrementally
by stepwise resolving groups of diagnostics rules. Freed from restriction such as
checking of structural inconsistencies prior to static semantics ones, domain ex-
perts can drive inconsistency management in accordance with conceptual and
methodological grounds rather than technical limitations.

5 Related Work

Zave and Jackson defined in [12] the scientific foundations of multi-formalism
composition. They describe a formal CRM designed for formalizing a wide range
of metamodels where composition is the conjunction of elements extracted from
models. They describe a notion of functions dedicated to each input language for
assigning input model semantics in the CRM. They then discuss a few method-
ological points on how to perform inconsistency checking. However, they do not
discuss inconsistency types that can be verified and do not offer any implemen-
tation supporting their vision. More concrete composition solutions have been
proposed as a way to perform semantic analysis [10,11]. In [10], the authors
defines a framework to produce a HOL (High Order Logic) model from mod-
els expressed in different notations and analyze the composed model with HOL
tools. Ainsworth et al. [11] propose a method for composing models written in

Z. Relations between models are described with functional invariants and some
7 proof obligations can be performed to verify composition correctness. How-
ever, these two approaches require that a significant amount of work shall be
done manually, either for the pre-processing of Z models [11] or relevant infor-
mation must be extracted and translated into a HOL specification by hand in
[10]. Moreover, they do not process inconsistent models.

Kompose [14] is a meta-modeling approach built on the Kermeta language. It
targets the automatic structural composition of aspects in software development
processes. It is a rule-based approach where equivalence between objects is auto-
matically calculated with regards to object structure. Kompose assumes that ho-
mogeneous input models (i.e. instances of a unique metamodel) are structurally
consistent prior to their composition. Kolovos et al [20] propose a model merging
language able to compose heterogeneous models which uses pattern-matching to
merge models. However, similarly to compose they need to avoid conflicts be-
fore merge which restricts the inconsistency types that can be fixed and the
global model and limit flexibility with respect to inconsistency management.
Sabetzadeh and Easterbrook [9] provide an interesting composition framework
based on a formal definition of models to compose. The composition operator
(category-theoretic concept of colimit) is formally defined and traceability links
are automatically inferred. However this operator requires the model type of
[21] which restricts highly the accepted IRLs. As opposed to Kompose and our
approach, equivalence must be given by hand by the requirements analyst and
composition only works for homogeneous models.

6 Conclusion

Dealing with inconsistencies across multiple models is a critical issue that re-
quirements analysts and software engineers have to face nowadays. In this pa-
per, we have shown how, by translating the problem from managing inconsisten-
cies amongst heterogeneous models to managing inconsistencies within a single
model, stakeholders’ task can be greatly facilitated. In particular, we proposed a
novel model composition mechanism which able to compose partial and possibly
inconsistent models. Hence, various categories of inconsistencies can be checked
on the resulting global model. Furthermore, as the order of inconsistencies to
be solved is not prescribed by the approach, requirements analysts can flexibly
drive the inconsistency management depending on the context. Native trace-
ability supported by our implementation enables to report inconsistencies on
the original models thus easing the determination of inconsistency causes. We
are currently working on integrating our platform with formal analysis tools to
obtain a complete requirements validation chain. Integration is performed by
means of a model transformation translating CRM instances into models ana-
lyzable by the targeted tool.

In the future, we would like to acquire experience on the adaptability of the
approach to various contexts and input languages. In particular, we will assess

the impact of the introduction of a new input language on fusion rules and on
the CRM.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering. In:
FOSE at ICSE, Washington, DC, USA, IEEE Computer Society (2007) 285-303
Sommerville, G.K., Tan: Requirements Engineering with Viewpoints. Software
Engineering Journal (1996)

Rashid, A., Moreira, A., Aratjo, J.: Modularisation and composition of aspectual
requirements. In: AOSD’03, Boston, Massachusetts, USA (2003) 11 — 20
Easterbrook, S., Nuseibeh, B.: Using viewpoints for inconsistency management.
Software Engineering Journal 11(1) (1996) 31-43

Nuseibeh, B., Easterbrook, S., Russo, A.: Making inconsistency respectable in
software development. Journal of Systems and Software 58(2) (2001) 171-180
Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the rela-
tionships between multiple views in requirements specification. IEEE TSE 20(10)
(1994) 760-773

Nentwich, C., Emmerich, W., Finkelstein, A.: Flexible consistency checking. ACM
TOSEM (2001)

Kolovos, D., Paige, R., Polack, F.: Detecting and Repairing Inconsistencies across
Heterogeneous Models. In: ICST, Los Alamitos, CA, USA, IEEE Computer Society
(2008) 356-364

Sabetzadeh, M., Easterbrook, S.: An algebraic framework for merging incomplete
and inconsistent views. In: RE’2005, IEEE (Aug.-2 Sept. 2005) 306-315

Day, N., Joyce, J.: A framework for multi-notation requirements specification and
analysis. 4th ICRE (2000) 39-48

Ainsworth, M., Cruickshank, A., Groves, L., Wallis, P.: Viewpoint specification
and Z. Information and Software Technology 36(1) (1994) 43-51

Zave, P., Jackson, M.: Conjunction as Composition. ACM TOSEM 2(4) (1993)
379-411

Brottier, E., Baudry, B., Traon, Y.L., Touzet, D., Nicolas, B.: Producing a Global
Requirement Model from Multiple Requirement Specifications. In: EDOC. (2007)
390-404

France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing Support for
Model Composition in Metamodels. In: EDOC, Annapolis, MD, USA (2007)

van Lamsweerde, A., Letier, E., Ponsard, C.: Leaving Inconsistency. In: ICSE
workshop on “Living with Inconsistency”. (1997)

Baudry, B., Nebut, C., Traon, Y.L.: Model-driven engineering for requirements
analysis. In: EDOC. (2007) 459-466

Nebut, C., Fleurey, F., Le Traon, Y., Jézéquel, J.M.: Automatic test generation:
A use case driven approach. IEEE TSE (2006)

Spanoudakis, G., Finkelstein, A.: Overlaps among requirements specifications. In:
ICSE workshop on “Living with Inconsistency”. (1997)

van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflicts in Goal-Driven
Requirements Engineering. IEEE TSE 24(11) (1998)

Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging Models With the Epsilon
Merging Language EML. In: MODELS, Springer LNCS 4199 (2006)

Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informati-
cae 26(3-4) (1996) 241-265

