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Abstract— M/EEG inverse modeling with distributed dipolar

source models and penalizations with sparsity inducing norms

(e.g. ℓ1 with MCE [1], ℓ0 with FOCUSS [2], ℓ2-ℓ1 [3]) offer a way

to select a set of active dipoles. Indeed, sparsity inducing norms

lead to solutions where most of the sources are set to zero and

the remaining non zero sources form the set of estimated active

dipoles. When running cognitive studies multiple experimental

conditions are usually involved and cognitive hypothesis classi-

cally consist in quantifying the difference between these condi-

tions. The problem is that when a sparse inverse solver is used

independently for each experimental condition, it happens that

the selection of dipolar sources is not consistent across condi-

tions, thus limiting further analysis. Even if all conditions share

a common dipolar source, due to noise, it can happen that such

solvers do not select exactly the same dipole but two neighboring

ones. To circumvent this limitation, we propose in this contribu-

tion to run the inverse computation with all the experimental

conditions simultaneously. We use a penalization that achieves

a joint selection of active dipoles while estimating two parts in

the reconstructed current distributions: a part that is common

to all the different conditions and a part that is specific to each

condition. The penalization used in the inverse problem is based

on groups of ℓ2-ℓ1 norms. The optimization is achieved with it-

erative least squares (iterative ℓ2 Minimum Norm) making the

solver tractable on large datasets. The method is illustrated on

toy data and validated on synthetic MEG data reproducing ac-

tivations appearing for somesthesic finger stimulations. We call

our solver SMC (Sparse Multi-Condition).

Keywords— MEG, EEG, Inverse Problem, Sparse prior,

IRLS

I. INTRODUCTION

Distributed source models in Magnetoencephalography

and Electroencephalography (collectively M/EEG) use the

individual anatomy derived from high resolution anatomi-

cal Magnetic Resonance Images (MRI) [4]. They consist in

sampling the automatically segmented cortical ribbon with

a high number of equivalent current dipoles (ECD). Each

dipole adds linearly its contribution to the measured signal

leading to a linear solution to the forward problem. The mea-

surements M ∈ R
dm×dt (dm number of sensors and dt num-

ber of time instants) are obtained by multiplying the current

source amplitudes X ∈R
dx×dt (dx number of dipoles) by a for-

ward operator G ∈ R
dm×dx , called the lead field matrix, i.e.,

M = GX .

Solving the forward problem consists in computing G tak-

ing into account the electromagnetic properties of the head

[5], while solving the inverse problem consists in estimat-

ing the neural currents X̂ that explain the observed measure-

ments. However, this latter problem is strongly ill-posed. It

implies that X̂ can only be computed if priors are set on the

solution. Standard priors assume that a weighted ℓ2 norm of

X̂ , denoted ‖X̂‖w;F (Frobenius norm), is small. The estimated

distribution of cortical currents X̂ is obtained by solving:

X̂ = argmin
X

||M−GX ||2F +λφ(X) ,λ ∈ R+ (1)

with φ(X) = ‖X‖2
w;F and ‖X‖2

w;F = ∑
dt
t=1 ∑

dx
i=1 wix

2
it , w =

(wi)i ∈ R
dx
+,∗. Such priors provide the grounds of what are

called in the M/EEG literature Minimum Norm (MN) inverse

solvers [6, 5] and the noise normalized variants, e.g., dSPM

[7]. Such standard solvers are fast to compute since ℓ2 priors

lead to linear inversion. Indeed X̂ is obtained by multiplica-

tion M with a matrix Hw:

X̂ = W−1GT (GW−1GT +λ Id)−1M = HwM , (2)

where Id stands for the identity matrix and W is a diagonal

matrix whose diagonal elements are the weights wi. How-

ever, there are shortcomings of such simple solvers. The main

critic is that they tend to smear the estimated current distri-

butions over widely extended cortical regions, limiting the

spatial resolution of the reconstructed sources. To circumvent

this limitation and obtain more focal activations, alternative

strategies based on general ℓp norms have been proposed.

With ℓp norms, a value of p ≤ 1 induces “sparsity”, i.e., ,

a small number of sources with non-zero amplitudes, while

with ℓ2 all sources have non-zero amplitudes. This observa-

tion led to the development of FOCUSS [2] and MCE [1] that



work instant by instant, and more recently to a promising spa-

tiotemporal inverse method based on a mixed ℓ2-ℓ1 norm [3].

We call such solvers sparse solvers and the set of estimated

active dipoles the active set.

During an experiment, a subject is generally asked to per-

form different cognitive tasks or to respond to various ex-

ternal stimulations. They are referred to as different exper-

imental conditions. Neuroscience questions ofter require to

quantify the difference between these conditions, i.e., to as-

sess what are the different and the common active brain re-

gions involved in the different conditions. Let us denote by

Mk the measurements for condition k and dk the number of

conditions. With linear inverse solvers, a contrast map be-

tween condition k and condition l can be obtained simply by

computing: X̂k − X̂ l = HMk −HMl = H(Mk −Ml) .

With a sparse solver that provides better spatial resolution,

the contrast X̂k − X̂ l can also be computed but it is likely to

fail. Because of noise, the active set for condition k is likely

to be different than the active set for condition l even if both

conditions share a common active region. The aim of the

solver detailed in this contribution is to circumvent this lim-

itation. To do so, we propose a solver based on ℓ2-ℓ1 mixed

norms that inverts all the conditions simultaneously as in [8]

for the problem of functional mapping with M/EEG. By do-

ing so, we want to estimate what are the common and specific

active regions in all conditions.

The rest of this contribution consists of two parts. Sec-

tion II., introduces the solver and briefly sketches the imple-

mentation details. Section III., presents some simulation re-

sults on two datasets: toy data and synthetic MEG data re-

producing activations appearing for somesthesic stimulations

of different fingers. Quantitative validation is provided on the

realistic dataset.

II. METHOD

In [3], the problem solved corresponds to (1) where φ(X)
equals to ‖X‖21. This ℓ21 mixed norm is defined for a matrix

X ∈ R
dx×dt by ‖X‖21 = ∑

dx
i=1 ‖Xi·‖2 = ∑

dx
i=1

√

∑
dt
t=1 x2

it .

When penalizing the inverse problem with the ℓ21 norm

the solution X̂21 has a sparse structure where only a few

rows have non-zero coefficients. These rows form the ac-

tive set A (X̂21) of the ℓ21 solution: A (X̂21) = {i s.t. x̂it 6=
0 for all t} . The reason for this sparse structure is that the ℓ21

norm groups row coefficients in different ℓ2 norms: ‖Xi·‖2.

When considering different experimental conditions, in-

dexed by k, the ℓ21 solver provides the solutions X̂k
21 whose

active sets are A (X̂k
21). Due to noise, is it likely that the two

estimated active sets A (X̂k
21) and A (X̂ l

21) are not exactly

equal, even if the generators in both conditions are exactly

the same. One way to go around this issue consists in com-

puting the inverse problem on all conditions simultaneously

by solving the problem:

X̂ = argmin
X
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+λ‖X‖21 ,λ ∈ R+ (3)

where the matrix X ∈ R
dx×dkdt is obtained by concatenating

horizontally all the Xk. By doing so, one forces A (X̂k
21) to be

the same for all k.

In practice, this latter constraint is too strong as different

conditions necessarily have specific current generators in ad-

dition to the common ones. This observation suggests that

one could estimate each X̂k in two components: a component

X̂k
c whose active set is common between all conditions and

a component X̂k
s that is specific. The problem addressed be-

comes:

(X̂k
c , X̂k

s )k = argmin
(Xk

c ,Xk
s )k
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+λρ‖Xc‖21 +λ (1−ρ)
dk

∑
k=1

‖Xk
s ‖21

(4)

where λ ∈ R+ and ρ ∈ [0,1]. Once (X̂k
c , X̂k

s )k are estimated

one can get access to the components of the measurements

that are common and specific, (M̂k
c ,M̂

k
s )k, defined by M̂k

c =
GX̂k

c and M̂k
s = GX̂k

s .

Implementation We solve the optimization problem in (4)

using iterative Weighted Minimum Norm computations (2)

where the weights are updated at each iteration. The approach

is similar to the FOCUSS solver and is usually referred to

as IRLS (Iterative Reweighted Least Squares). Some details

can be found in section 4.2.1 in [9]. Once the active set is

estimated, the time series are obtained by running an ordinary

least square constrained to the active set, which is no longer

an ill-posed problem as the active set size is smaller than the

number of sensors.

III. SIMULATION STUDY

To illustrate the method, we designed a toy dataset with

3 conditions, 1 common generator and 1 specific generator

in each condition. The time series for each source is simu-

lated to be smooth and last for 100 ms with positive and neg-

ative deflections similar to standard evoked responses mea-

sured by M/EEG. The toy dataset has dm = 10 sensors and



dx = 50 possible sources. The matrix G is random with nor-

malized columns. The noiseless time series, used later as

ground truth, (M̌k
c ,M̌

k
s )k with M̌k = M̌k

c + M̌k
s are presented

in figure 1. Since activations are not necessarily time locked

with the same delay across conditions, activation time series

are perturbed with random time jitters. This is illustrated in

figure 2 where the source time series are plotted. The matri-

ces Xk
c and Xk

s can be visualized as images like in figure 3(a)

or by looking at the active sets like in figure 3(b). One can

observe the row structure of the sparsity pattern. Starting

from (M̌k
c ,M̌

k
s )k to which has been added a Gaussian white

noise (SNR=3), the sources (X̂k
c , X̂k

s )k are estimated taking

as parameters λ = 0.01 and ρ = 0.4. It can be observed

that we recover the true sparsity pattern, i.e., the good ac-

tive sources. The associated estimated time series presented

in figure 2(b) match with the ground truth presented in fig-

ure 2(a). The parameters were set empirically to maximize

the fit with the ground truth. However, an optimal value for

ρ = 1/(1+
√

dk)≈ 0.4 can be analytically derived in the case

where the time series of all generators have the same ℓ2 norm.

If this does not hold, the parameter ρ should be adapted.
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Figure 1: Noiseless toy dataset with 3 conditions, 1 common generator and
1 specific generator in each condition. Each column corresponds to a

condition. The 1st row corresponds to M̌k , the 2nd to M̌k
c and the 3rd to M̌k

s .

20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0.3

Time (ms)

S
o

u
rc

e
 A

m
p

lit
u

d
e

 

 

 

Xc 1
Xs 1
Xc 2
Xs 2
Xc 3
Xs 3

(a) Ground truth
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Figure 2: Source time series. In green are the time series for the specific
sources and in red the time series for the common generator. (a) Series used
for simulation before corrupting the signal with an additive Gaussian noise

(b) Estimated time series (SNR=3, λ = 0.01 and ρ = 0.4).

In order to quantitatively assess the performance of the

method, we have conducted a simulation study with a realistic

configuration. The matrix G is obtained by solving an MEG
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(b) Active Sets for all conditions

Figure 3: (a) Source amplitudes used for the toy data in all 3 conditions (b)
Illustration of the active sets. In red is the active set common to all the Xk

c

and in green is the active set specific to the different Xk
s .
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Figure 4: Estimated times series (M̂k
c ,M̂k

s )k . Each column corresponds to a

condition. The 1st row corresponds to M̂k , the 2nd to M̂k
c and the 3rd to M̂k

s .
One can observe a good match with the ground truth presented in figure 1.

forward problem with a spherical headmodel. The sources are

sampled over a cortically constrained domain consisting of a

triangulated mesh of the cortical ribbon. In order to schemat-

ically reproduce activations appearing for somesthesic stimu-

lations of two different right hand fingers, two specific gener-

ators have been positioned in the left primary somatosensory

cortex (in green in figure 5) and one common generator has

been positioned in the left parietal cortex. The time series of

activations of these different generators are presented in fig-

ure 6(a). The computation has been carried out 10 times for

multiple SNR values. One result of estimated source times

series with SNR equals 1 is presented in figure 6(b). For each

estimation, we chose to quantify the error using (M̂k
c ,M̂

k
s )k

and the ground truth (M̌k
c ,M̌

k
s )k. The errors Ec and Es are de-

fined by Ea = ‖M̂a−M̌a‖F/(‖M̂a‖F +‖M̌a‖F)∈ [0,1] where

M̂a (resp. M̌a) is obtained by concatenating horizontally the

M̂k
a (resp. M̌k

a) and “a” is set to “c” or “s”.

The results of the simulations are presented in figure 7.

One can observe that the method provides unbiased results



at very high SNR. The errors obtained with SNR equal to 20

are almost 0. As the SNR drops down, the errors increase but

stay small until the SNR gets negative, which is acceptable.

In order to demonstrate that the portion of the active set

that is common between conditions is more consistently re-

covered with the SMC solver, we have compared our results

with the single condition spatiotemporal sparse solver pro-

posed in [3]. We ran this solver on each condition succes-

sively and defined the common active sets as the intersection

between all the A (X̂k
21). The dk specific portions of the ac-

tive set for the ℓ21 solver were obtained by subtracting from

each A (X̂k
21) the common portion. For both methods, the es-

timation error was quantified as the number of differences be-

tween the active sets obtained and the ground truth. Results

are presented in figure 8. One can observe that the estimation

of Ac is improved thanks to the SMC solver, especially at low

SNR. This was the principal motivation for the development

of this solver.

Figure 5: Synthetic source configuration with 2 specific generators in the
primary somatosensory cortex (green sphere end green pyramid) and 1

common generator in the parietal cortex (red sphere).

IV. CONCLUSION

In this contribution, we explained how sparse solvers can

be used in M/EEG to go beyond simple localization by pro-

viding a way to estimate what are the specific and what are

the common current generators involved in different cogni-

tive tasks. By doing so we provide a principled and robust

way to compare different conditions when using non-linear

sparse inverse solvers.
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Figure 6: Source time series. In green are the time series for the specific
sources and in red the time series for the common generator. (a) Series used
for simulation before corrupting the signal with an additive Gaussian noise

(b) Estimated time series (SNR=1, λ = 5 and ρ = 0.4).
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Figure 7: Estimation errors for different values of SNR (see text). Errors are
provided for 10 repetitions of the experiment. The method has no estimation

bias for high SNRs and presents low errors even at low SNRs.
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(b) Single condition ℓ21

Figure 8: Number of errors in the estimated active sets for both solvers: the
ℓ21 solver [3] and the SMC solver. Results are presented for 10 repetitions
of the experiment. It can be observed that the estimation of Ac is improved

by the SMC solver especially at low SNR.
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