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Abstract: A coloring c of a graphG = (V,E) is ab-coloringif in every color class there is a vertex colored
whose neighborhood intersects every other color classke.b-thromatic numbeof G, denotedx,(G), is the
greatest integek such thatG admits ab-coloring withk colors. A graphG is tight if it has exactlym(G) vertices

of degream(G) — 1, wherem(G) is the largest integen such thatG has at leasin vertices of degree at leasi— 1.
Determining theb-chromatic number of a tight grapgh is NP-hard even for a connected bipartite graiph [15]. In
this paper we show that it is also NP-hard for a tight chordapg. We also show that tHechromatic number
of a split graph can be computed is polynomial. Then we defiaé+closure and the partid-closure of a tight
graph, and use these concepts to give a characterizatioghtfgraphs whosé-chromatic number is equal to
m(G). This characterization is used to develop polynomial tige@thms for deciding whethex,(G) = m(G),

for tight graphs that are complement of bipartite grapthissparse and block graphs. We generalize the concept
of pivoted tree introduced by Irving and Manlove[12] andwtits relation with theb-chromatic number of tight
graphs.
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b-coloration des graphesttriqués

Résune : Unek-colorationc d'un grapheG est uneb-colorationsi dans toute classe de couleur, il y a un sommet
dont le voisinage intersecte toutes les autres classesuleucs. Thenombre b-chromatiqud’un graphe est le
plus grand entiek tel queG admette und-coloration aved couleurs. Un graphe eétriqué s'il a exactement
m(G) sommet de degma(G) — 1, avean(G) le plus grand entiem tel queG ait au moinsn sommets de degré au
moinsm— 1. Calculer le nombrb-chromatique d’un graphe étriqué est NP-dur méme pauglaphes connexes
bipartis [15]. Dans ce rapport, nous montrons que c’ede@gent NP-difficile pour les graphes étriqués cordaux.
Nous montrons également que le nombrehromatique d’un graphe split peut &tre calculé en tepghgnomial.
Ensuite nous définissonsliecldture et lab-cléture partielle d’un graphe étriqué. Nous utilis@mes deux concepts
pour concevoir des algorithmes en temps polynomial pocidee six,(G) = m(G) pour les graphes étriqués qui
sont bipartisPs-sparse ou des block-graphes. Nous généralisons égaléerconcept d'arbre pivoté de Irving and
Manlove [12] et montrons sa relation avec le nomiizehromatique des graphes étriqués.

Mots-clés : coloration de graphds-coloration, extension de précoloration, graphes éé
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1 Introduction

A k-coloring of a graphG = (V,E) is a functionc: V — {1, 2, ..., K, such thaic(u) # c(v) for all uve E(G).
Thecolor class ¢is the subset of vertices @ that are assigned to colarThechromatic numbeof G, denoted
X(G), is the least integek such thatG admits ak-coloring. Given &-coloringc, a vertexv is ab-vertexof color

i, if c(v) =1 andv has at least one neighbor in every color clagsj #i. A coloring of G is ab-coloring if
every color class haslavertex. Theb-chromatic numbeof a graphG, denotedx,(G), is the largest integek
such thaG admits ab-coloring withk colors. These concepts were first defined.ir [12]. In that papeng and
Manlove proved that the problem of determining thehromatic number of a graph is NP-Hard. In fact, it was
shown in [15] that deciding whether a graph admits@oloring with a given number of colors is an NP-complete
problem, even for connected bipartite graphs. The followipper bound for the-chromatic number of a graph,
presented in[12], has been proved to be very usefuh atimits ab-coloring withm colors, therG must have at
leastm vertices with degree at least— 1 (since each color class has dmegertex). Them-degreeof a graphG,
denoted bym(G), is the largest integem such thatG hasm vertices of degree at least— 1. It is easy to see that
Xb(G) < m(G) for every graplG. A vertex ofG with degree at leash(G) is called adensevertex. The preceding
upper bound leads us to the definition of a class of graphshndme tight with respect to the number and degree
of their dense vertices:

Definition 1 (tight graph) A graphG is tight if it has exactlym(G) dense vertices, each of which has degree
m(G) — 1.

In this paper, we mainly investigate the following decispoblem:

TIGHT b-CHROMATIC PROBLEM
Instance: A tight grapk®.
Question: Doegp(G) equalsn(G)?

A direct consequence of the NP-completeness result shofii&fjrs the following:
Theorem 2. TheTIGHT b-CHROMATIC PROBLEM is NP-complete for connected bipartite graphs.

For any positivek, B denotes a path witk vertices. A graplG is Py-sparseif every set of five vertices
of G induces at most one,. Bonomo et al.[[ll] proved that tHechromatic number oP;-sparse graphs can be
determined in polynomial time. They asked if this resultlddae extended tdistance-hereditary graphshat are
graphs in which every induced path is a shortest path. We emisvihe negative to this question by showing the
following stronger result (Theorelth 3Jhe TIGHT b-CHROMATIC PROBLEM is NP-complete for chordal distance-
hereditary graphsWe recall that a graph ishordalif it does not contain any induced cycle of size greater than
3.

The proof of our NP-completeness result is a reduction freeD8 E-COLORABILITY. We reduce an instance
of this problem to a graph which is slightly more thaspdit graph i.e. a graph whose vertex set may be partitioned
into a cligue and an independent set. Hence a natural goeistitm ask about the complexity of finding the
b-chromatic number of a given split graph. We show in Thedrkhebit can be solved in polynomial time.

In SectiorB, we introduce theclosureG* of a graphG. We show that for a tight grapB, x,(G) = m(G)
if and only if x(G*) = m(G). Hence if one can determine the chromatic number of the mdoisupolynomial
time, one can also solve the@HT b-CHROMATIC PROBLEM in polynomial time. We show that it is the case for
(tight) complement of bipartite graphs. Indeed, we prow the closures of such graphs are also complements of
bipartite graphs and the chromatic number of the complenfenbipartite graph can be determined in polynomial
time. This was unknown since the characterization of compl&s of bipartite graphs witk,(G) = k given by
[13] does not lead to a polynomial algorithm for determintingir b-chromatic number.
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Moreover, we introduce the definition of pivoted tight gragptd use this definition to give a sufficient condi-
tion for a tight graph to satisfy,(G) < m(G).

The method of computing the-closure of a graph and then the chromatic number of it doésyietd
polynomial-time algorithms to solve tha@HT b-CHROMATIC PROBLEM for all classes of tight graphs. However,
for some of them, we show in Sectibh 4, that the AT b-CHROMATIC PROBLEM may be solved in polynomial
time using a slight modification of the closure, tbartial closure It is the case for block graphs aRg-sparse
graphs. It is already known that decidingkf(G) = m(G) is polynomial time solvable foPs-sparse graph§][1].
However, our linear-time algorithm for tigify-sparse graphs is faster than thgV|2) algorithm of [1]. It is also
interesting to see how our general method can be used tothase problems.

2 Chordal graphs

Theorem 3. TheTIGHT b-CHROMATIC PROBLEM is NP-complete for chordal distance-hereditary graphs.

Proof. The problem belongs to NP sincebacoloring with m(G) colors is a certificate. To show that it is also
NP-complete, we present a reduction fronEBsE-COLORABILITY of 3-regular graphs, which is known to be
NP-completel[10]. Le6 be a 3-regular graph withvertices. SeV (G) = {v1,Vz,...,vn} andE(G) = {ey,...,em}.
Let | be the vertex-edge incidence graph@fthat is the bipartite graph with vertex 3éfl) = V(G)UE(G) in
which an edge 06 is adjacent to its two end-vertices. We construct fiomanew graptH as follows. First, we
add an edge between every pair of vertice¥ i) and then, we add three disjoint copieskafn,>. One can
easily see thady (v) =n—1+3=n+2, forve V(G), and thady (u) = 2, foru € E(G). Moreover, each copy of
K1nt2 has exactly one vertex with degree equahtp2. Consequentlyn(H) = n+3 andH is tight. InH, V(G)

is a clique andE(G) is an independent set, 8HAUBJ is a split graph, and so it is chordal. As the disjoint copies
of Ky nt2 are themselves chordal graphs, we get that the entire ¢tdplthordal. One can easily check this
also distance-hereditary. We now prove tBadmits a 3-edge-coloring if and onlyy(H) = m(H) =n+ 3.

Let c be a 3-edge-coloring d(G) that uses color$1,2 3}. We shall construct &-coloringc’ of H with
n+ 2 colors. Letc'(u) = c(u), for u e E(G), andc/(vi) =i+ 3, for 1< i < n. Note that in this partial coloring,
the vertices iV (G) areb-vertices of their respective colors. To obtain the renrajfi-vertices, one just have to
appropriately color the copies Kf n, 2, which can be easily done. Thatjs ab-coloring ofH with m(H) =n+3
colors.

Now, letc’ be ab-coloring ofH that uses1+ 3 colors. Sinc&/(G) is a clique, we may assume thétvi) =
i+ 3, for 1<i < n. Since there are only+ 3 vertices of degrea+ 2 in H, each vertex itV (G) is anb-vertex.
But then, since every vertex WW(G) has degree exactly+ 2 in H, all its neighbors must have distinct colors. As
a consequence, since no verte¥ifG) is colored with one of the colors ifil, 2,3}, for every vertex iV (G), its
3 neighbours irE(G) are colored with distinct colors ifil, 2, 3}. This implies thatG admits a 3-edge-coloring of
G, and completes the proof. O

Remark 4. A graphG = (V,E) is Ps-laden[5] (resp. extended Rladen) if for every setSC V of six vertices,
the subgraph induced ycontains at most one induc&y or is a split graph (resp. pseudo-split graphi.e. a
{C4,K2}-free graph). By definition, evefis-laden graph is extendéld-laden. One can check that the graph in the
reduction of Theorerfl 3 iBs-laden, so the IGHT b-CHROMATIC PROBLEM is NP-complete foPs-laden graphs.
The class of the extendéd-laden graphs contains many graph classes with few indBg¢edin particular,
it contains the class d?s-tidy graphs[d] which in turn contains the ones &%-lite [IZ], Ps-extendible [[5] and
Ps-reducible graphg[8]. A graph B-tidy if for every setA inducing aP, there is at most one vertessuch that
the subgraph induced byU {x} has at most one inducdd. Bonomo, Koch, and VelasqueZ [2] proved that the
b-chromatic number of &-tidy graph can be determined in polynomial time, thus editegthe result in[[11].

The three copies df1 2 play an important role in the reduction of the proof of Then[8, since one can
show the following
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Theorem 5. If G is a split graph thery,(G) = m(G). Hence, the b-chromatic number of a split graph can be
determined in polynomial time.

Proof. Let G be a split graph an@K,S) a partition ofV(G) with K a cligue ands an independent set such that
|K| is maximum. Every vertex ii has degree at leaf| — 1 and every vertesin Shas degree at mogt| — 1
otherwise(K U {s}, S\ {s}) would contradict the maximality dK|. Hencem(G) = |K]|.

Coloring the vertices irK with |K| distinct colors and then extend it greedily to the verticeS¢This is
possible since every vertex8has degree smaller th#id|.) gives ab-colouring ofG with m(G) = |K| colours. O

3 b-closure

Definition 6 (b-closure) Let G be a tight graph. Thb-closureof G, denoted byG*, is the graph with vertex set
V(G*) =V(G) and edge s (G*) = E(G) U {uv| uandv are non-adjacent dense vertizes {uv| u andv are
vertices with a common dense neighbpur

The next theorem proves the relation, for a tight gré&phetween the paramete(s(G) andy (G*):
Lemma 7. Let G be a tight graph. Thex,(G) = m(G) if and only ifx(G*) = m(G).

Proof. Setm= m(G). Suppose that,(G) = m, and letc be ab-coloring of G with mcolors. It is easy to see that
the m dense vertices form a clique & and sox(G*) > m. Let us show that is a proper coloring foG*. Let
uv ¢ G be such thative E(G*). If both u andv are dense, as there are exadtiglense vertices i, they must
have distinct colors it. Now, suppose that or v is not a dense vertex. By the definition @f, u andv have a
common dense neighbor, sdyin G. Since all dense vertices & have degreen— 1 andc is ab-coloring,u and
v must have been assigned distinct colors.iflence x(G*) = m.

Conversely, let’ be a proper coloring o&* with m colors. In this case, sindg(G) C E(G*), ¢’ is also a
proper coloring of5. It only remains to show that every colordfhas ab-vertex. As the dense vertices@fform
a clique inG*, they have distinct colors id. Moreover, for a dense vertekof G, we have thalNg- (d) is a clique.
As a consequencd,is ab-vertex. Thereforexp(G) = m. O

Sincew(G*) > mimplies thatx(G*) > m, it follows:

Corollary 8. Let G be a tight graph. If,(G) = m(G), thenw(G*) = x(G*) = m(G).

3.1 Complement of bipartite graphs

By LemmalT, it is interesting to consider theclosure of a tight grapks if the chromatic number of its closure
can be determined in polynomial time. Indeed if so, one caidddn polynomial time ifx,(G) = m(G). We now
show that it is the case & is the complement of bipartite graph.

Lemma 9. The b-closure of the complement of a bipartite graph is a dempnt of a bipartite graph.

Proof. Let G be a tight complement of a bipartite graph. MéG) = X UY whereX andY are two disjoint cliques
in G. AsV(G*) =V(G), and sinc&E(G) C E(G*), the setX andY are cliques irG*. So they also form a partition
of V(G*) into two cliques. O

Computing the chromatic number of the complem@nif a bipartite graplG is equivalent to compute the
maximum size of a matching in this bipartite graph. Henceait be done irO(,/|V(G)| - |E(G|) by the algo-
rithm of Hopcroft and Karpl[11] and i®(|V (G)|?>376) using an approach based on the fast matrix multiplication
algorithm [17].
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Corollary 10. Let G be a tight complement of bipartite graph. It can be dedith Omax{./|V (G)|-|E(G)|, |V (G)|>3"®})
if Xo(G) = m(G).

3.2 Pivoted graphs

In the study of théb-chromatic number of trees, Irving and Manlolel[12] introdd the notion of ivoted tree
and showed that a trék satisfiesx,(T) < m(T) if and only if it is pivoted. We generalize this notion and sho
how our generalization is related to thechromatic number of tight graphs.

Definition 11 (Pivoted Graph) Let G be a tight graph. We say th&t is pivotedif there is a selN of non-dense
vertices, with|N| =k, and a set of dense verticBs with |D| = m(G) — k+ 1, satisfying:

1. For every paiu,v € N, uis adjacent to, or there is a dense vertexthat is adjacent to bothhandv.

2. Foreverypaiue N, d € D, eitheruis adjacent ta or u andd are both adjacent to a dense ventegnot
necessarily irD).

Theorem 12. Let G be a tight graph. Then G is a pivoted graph if and onby(€6*) > m(G).

Proof. First, assume thag is a pivoted graph. Then Definitiofik 6 dnd 11 immediately intpatN U D is a clique
of sizem+1inG".

Reciprocally, assume thaf{G*) > m. LetSC V(G*) be a clique of sizen+ 1 in G*. LetN ={v e S| vis not
dense inG} andD ={v e S|vis dense irG}. Letu,ve S If u,v € D, there is nothing to show, since Definition
[T imposes no restrictions between dense vertic& iff u < N,ve DUN, we have that eitheuv € E(G), or
ud,vd € E(G), for a dense verted € V(G). So, it is easy to see that the sBteindD satisfy the requirements of
Definition[T]. O

Lemmd¥ and TheorelIl2 have the following corollary.
Corollary 13. Let G be a tight graph. If G is a pivoted graph, thes(G) < m(G).

Proof. As G is pivoted, Theorer 12 implies thaf G*) > m(G), and thereforg(G*) > m(G). Then, by Lemma
[@, X6(G) < m(G). O

There are graphs satisfying G*) > m(G) but notw(G*) > m(G). Figure[l shows a chordal non-pivoted
graphG with exactlym(G) = 7 dense vertices, each of degree 6, suchxh@d) < m(G).

In contrast to what happens with pivoted graphs, where aelaf size greater tham is formed in theirb-
closures, the graph of Figute 1 has clique number 7, bistid®sure produces an odd hole (by the five non-dense
vertices in the bigger component) which caugés*) > 7.

4 Partial b-closure

Definition 14 (partial b-closure) Let G be a tight graph. Theartial b-closureof G, denotedGs, is the graph
with vertex setv(G*) = V(G) and edge seE(G*) = E(G) U {uv| u andv are vertices with a common dense
neighboug.

Lemma 15. Let G be the partial b-closure of a graph G, and let D be the set (Ghdense vertices of G. Then
Xb(G) = m(G) if and only if G, admits a niG)-coloring where all the vertices in D have distinct colors.

Proof. The proof is similar to the one of Lemrih 7. In this case, sineelowvnot add edges between all the pairs of
dense vertices iy, we need the requirement that thgG)-colouring of Gy, is such that all dense vertices have
distinct colours. O

RR n° 7241
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Figure 1: A non-pivoted chordal graph, satisfyidG) < m(G), and itsh-closureG*, satisfyingx(G*) > w(G*) =
m(G)
(the new edges between the dense vertices are dashed).
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By LemmdIb, one can decide in polynomial timgif G) = mwherever it can be decided in polynomial time
if the constrained coloring of its partial closu@, exists. In particular, it is the case if the precoloring exien
problem can be decided in polynomial time f8r We show that this is the case for block graphs Badparse
graphs.

4.1 Block graphs

The results presented in this subsection were obtainedipezation with Ana Silva. A grap8 = (V, E) is a block
graphif every of its blocks (maximal 2-connected subgraphs) ismplete graph. For an example, see Fidiire 2.

Figure 2: A block graph.

Lemma 16. The partial b-closure of a block graph is chordal.

Proof. By contradiction, assume that the partiatiosureGy, of a block graphG is not chordal. Then it has an
induced cycleC = (vi, Vo, ..., ) of lengthk > 4. For every edge;vi_1 of C (indices must be taken moduk)
eithervivi;1 € E(G) or there is a dense vertex € V(G) such thatyw;,wivi 1 € E(G). In the latter case, the
vertexw; is adjacent to nw;j for j ¢ {i,i +1} in G, otherwise bottv;v; andv;vi;1 would be edges OBB andC
would not be induced. Furthermore, this implies that allékistingw;’s are distinct. LeC’ be the cycle obtained
from C by replacing each edgevi1 by viwivi+1 whenevew;vi.1 ¢ E(G). Observe that' is a cycle ofG.

But, sinceG is a block graph, the vertices of any cycle (in particuGiy,form a clique inG and thus also in
Gp. Hence the vertices & form a clique inGp, a contradiction. O

Marx [L1€] showed that the precoloring extension problem nvak theC colours are used at most once is
solvable in timeO(C - |V (G)|3) for a chordal grapks. Hence,

Corollary 17. the TIGHT b-CHROMATIC PROBLEM can be decided in time @(G)|V(G)|®) for tight block
graphs.

Remark 18. A tree is a block graph, so using the partial closure methedtBHT b-CHROMATIC PROBLEM for
tight trees can be solved in tin@m(G)|V (G)|3). However, Irving and Manlové[12] gave a linear time algomit
to compute théb-chromatic number of any tree. Hence thes#HT b-CHROMATIC PROBLEM can be solved in
linear time for trees.

RR n° 7241
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4.2 P4-sparse graphs
Lemma 19. The partial b-closure of aPsparse graph is Psparse.

Proof. Let G be aPs-sparse graph. Suppose, by way of contradiction, Bjais notPs-sparse. Then there is at
least one induceB; in Gp that is not inG. Let P = (vi,V2,v3,va) be such &4 in Gp. We will show that there
are 5 vertices that induces tviR's in G, thus getting a contradiction. By symmetry, it is enoughdasider the
following five cases.

Case 1 vivo € E(G), vavz € E(G) andvavs ¢ E(G).
Then,v; andv, are both adjacent to a dense ventex V (G) (by the definition of the partidd-closure).
Note thatviw ¢ E(G) (resp. vow ¢ E(G)) otherwiseviva € E(Gp) (resp. vzva € E(G)) andP would
not be an inducef, in Gp.- Hence{v1,Vz2,v3,wW,v4} induces &s which contains two inducekl.

Case 2 viv2 € E(G), vov3 ¢ E(G) andvavs € E(G).
In this casey, andvs are both adjacent to a dense ventex V(G) (again, by the definition of the-
closure). Note thatyw, vaw ¢ E(G), for otherwise, this would imply that vz € E(G’B) (Vovq € E(G;)),
by the definition of the partidd-closure. But then{vi,vo,w,v3,v4} is an induceds in G.

Case 3 viv2 ¢ E(G), vov3 € E(G) andvavs ¢ E(G).
As viva ¢ E(G), the verticesvy and v, are both adjacent to a dense vertexe V(G). Moreover,
wivs ¢ E(G) (resp.wivs ¢ E(G)), since for otherwisevs € E(Gp) (resp.viva € E(G})) andP would
not be an induced, in Gy Bya similar argumenty; andv, are both adjacent to a dense vertex
w, € V(G), which is not adjacent te; andw,. Note thatw; andw; are distinct sinceviva ¢ E(G). If
wiwe ¢ E(G), then{vi,wi,v2,v3,Wo} is an induced in G. If wiws € E(G), then{vi,wq, V2, Wo, 4}
induces twadP4’s in G.

Case 4 vivo ¢ E(G), vov3 ¢ E(G) andvavs € E(G).
Using arguments similar to the ones in the previous casesbtain that there are distinct dense vertices
wi, Wy € V(G) satisfyingviwi, Vowy, Vows, Vawp € E(G), andviwe, Vawy, vawy, Vawg ¢ E(G). If waw, €
E(G) then{vi,w1,Ws,v3,v4} induces &5 in G. If wiws ¢ E(G), then the sefvi, wy, Vo, Wy, v3} induces
aPsin G.

Case 5 vivo ¢ E(G), vov3 ¢ E(G) andvava ¢ E(G).
Again, by similar arguments to the ones used in the previaises; there are distinct dense vertices
wi, W, W3 € V (G) such thatywi, vowg , VoW, VaWo, VaWs, Vaws € E(G), andvawy, VaWs, VIWy, VaWo, V1 W3, VW3 ¢
E(G). If wyws € E(G), the set{v1,wi,ws,Vv3,va} induces twoPy's in G. Henceforth we may assume
thatwiws ¢ E(G). If wiwse, wows € E(G), then the sefvi,wy,wo, ws,v4} induces & in G. Hence by
symmetry, we may assume thatws € E(G). If wiwy € E(G), then the sefvi, wy, v, Wy, v3} induces
two Py’s in G. If wyws, ¢ E(G) the set{vi,wi, V2, Wo, w3} induces twdPs’s in G.

O

Babel et al.[[14] showed that the precoloring extension jerolis linear-time solvable foig( g — 4)-graphs,
which are graphs where no set of at mgsertices induces more thap- 4 differentP,’s. Hence,

Corollary 20. TheTIGHT b-CHROMATIC PROBLEM can be decided in linear time for tighiparse graphs.

Consequently, for tigh®s-sparse graphs, this algorithm is faster than@ap/ |*) algorithm given in[[lL], that
solves the more general case where the input graph is nodseedg tight.
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