On the Holonomy or Algebraicity of Generating Functions Counting Lattice Walks in the Quarter-Plane

Abstract : In two recent works \cite{BMM,BK}, it has been shown that the counting generating functions (CGF) for the 23 walks with small steps confined in a quadrant and associated with a finite group of birational transformations are holonomic, and even algebraic in 4 cases -- in particular for the so-called Gessel's walk. It turns out that the type of functional equations satisfied by these CGF appeared in a probabilistic context almost 40 years ago. Then a method of resolution was proposed in \cite{FIM}, involving at once algebraic tools and a reduction to boundary value problems. Recently this method has been developed in a combinatorics framework in \cite{Ra}, where a thorough study of the explicit expressions for the CGF is proposed. The aim of this paper is to derive the nature of the bivariate CGF by a direct use of some general theorems given in \cite{FIM}.
Type de document :
Article dans une revue
Markov Processes and Related Fields, Polymath, 2010, 16 (3), pp.485-496
Liste complète des métadonnées

https://hal.inria.fr/inria-00469603
Contributeur : Guy Fayolle <>
Soumis le : vendredi 2 avril 2010 - 12:09:20
Dernière modification le : mercredi 12 octobre 2016 - 01:23:17
Document(s) archivé(s) le : lundi 5 juillet 2010 - 21:07:33

Fichiers

RR-7242.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00469603, version 1
  • ARXIV : 1004.1733

Collections

Citation

Guy Fayolle, Kilian Raschel. On the Holonomy or Algebraicity of Generating Functions Counting Lattice Walks in the Quarter-Plane. Markov Processes and Related Fields, Polymath, 2010, 16 (3), pp.485-496. <inria-00469603>

Partager

Métriques

Consultations de
la notice

214

Téléchargements du document

123