Learning Recursive Automata from Positive Examples - Archive ouverte HAL Access content directly
Journal Articles Revue des Sciences et Technologies de l'Information - Série RIA : Revue d'Intelligence Artificielle Year : 2006

Learning Recursive Automata from Positive Examples

(1, 2)
1
2

Abstract

In this theoretical paper, we compare the "classical" learning techniques used to infer regular grammars from positive examples with the ones used to infer categorial grammars. To this aim, we first study how to translate finite state automata into categorial grammars and back. We then show that the generalization operators employed in both domains can be compared, and that their result can always be represented by generalized automata, called "recursive automata". The relation between these generalized automata and categorial grammars is studied in detail. Finally, new learnable subclasses of categorial grammars are defined, for which learning from strings is nearly not more expensive than from structures.
Fichier principal
Vignette du fichier
RIA06.pdf (246.1 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00470101 , version 1 (03-04-2010)

Identifiers

Cite

Isabelle Tellier. Learning Recursive Automata from Positive Examples. Revue des Sciences et Technologies de l'Information - Série RIA : Revue d'Intelligence Artificielle, 2006, New Methods in Machine Learning. Theory and Applications, 20 (6), pp.775-804. ⟨10.3166/ria.20.775-804⟩. ⟨inria-00470101⟩
133 View
449 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More