N

N

Towards a Generic Context-Aware Framework for
Self-Adaptation of Service-Oriented Architectures

Francgoise André, Erwan Daubert, Guillaume Gauvrit

» To cite this version:

Frangoise André, Erwan Daubert, Guillaume Gauvrit. Towards a Generic Context-Aware Framework
for Self-Adaptation of Service-Oriented Architectures. 5th International Conference on Internet and
Web Applications and Services, May 2010, Barcelona, Spain. pp.309-314, 10.1109/ICIW.2010.52 .
inria-00470487v2

HAL 1d: inria-00470487
https://inria.hal.science/inria-00470487v2
Submitted on 18 May 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00470487v2
https://hal.archives-ouvertes.fr

2010 Fifth International Conference on Internet and Web Applications and Services

Towards a Generic Context-Aware Framework
for Self-Adaptation of Service-Oriented Architectures

Francoise André, Erwan Daubert, Guillaume Gauvrit
IRISA / INRIA
Campus de Beaulieu, 35042 Rennes cedex, France
{Francoise.Andre, Erwan.Daubert, Guillaume.Gauvrit}@irisa.fr

Abstract—Many software applications are now built from
services which run on heterogeneous platforms and are ac-
cessed by several users. These environments are in constant
evolution. So applications and services have to dynamically
adapt in order to satisfy the quality of service required by the
users. Programming adaptation facilities taking into account
the different situations that could happen is a difficult task.
Our objective is to provide mechanisms for self-adaptation
of services. We propose a generic framework that allows to
specify different kinds of adaptation, in various environments.
This paper presents the overall framework and details some
of its functionalities: the monitoring, the decision to adapt and
the planning of adaptation actions. The current state of our
implementation for an OSGi platform is described.

Keywords-Self-adaptation; SOA; Framework for Dynamic
Adaptation; Cloud Computing;

I. INTRODUCTION

Applications are more and more build as a composition
of services running on large scale, dynamic and heteroge-
neous environments. A Service Based Application (SBA)
is a software architecture where the basic element is the
service, performing a single functionality, such as access-
ing a resource or managing a data structure. The services
communicate with each others to satisfy the objective of
the application, by using communication protocols through
well-defined interfaces such as SOAP for web services.
The very large scale of the execution environment is to
be measured in terms of number of users, service-oriented
platforms and computers. The dynamism results from node
volatility (due to failures, maintenance, voluntary connec-
tions or disconnections), service evolution (new services
may be deployed, existing ones be removed) and varying
users demands requiring different levels of quality of service.
All these factors lead to the necessity for dynamic (i.e. at
run time) service, application and infrastructure adaptation,
without human intervention.

Our objective is to define a generic context-aware frame-
work to build self-organizing service-oriented architectures
for cloud computing.

Section II briefly places our work relatively to related
works. Next, Section III presents an overview of the frame-
work. Then the different main functions of our frame-
work are detailed, starting with the monitoring function

978-0-7695-4022-1/10 $26.00 © 2010 IEEE
DOI 10.1109/ICIW.2010.52

309

in Section IV. Following is the decision and analysis in
Section V. Then the planning is described in Section VI.
Finally the execution phase of the adaptation is presented
with the example of our implementation for the migration of
a service in Section VIIL. Section VIII concludes this article
and presents our future works on the framework.

II. STATE OF THE ART

Currently, the works done on dynamic self-adaptation
are focused on component-based software architectures, for
which multiple frameworks have been developed, such as
Dynaco [1] and SAFRAN [2]. Both of them are generic, i.e.
they separate the adaptation phases and let free the choice
of the adaptation logic. The MAPE model [3] (Monitoring,
Analysis, Planning, Execution) is now a standard reference
for specifying a way to divide the different adaptation
phases.

Various works proposing means for dynamic adaptation
have been done in specific contexts, either restricted to an
application domain or to a given infrastructure [4], [5], [6],
[7]. Very few are based on a generic framework and enable
self-adaptation.

III. FRAMEWORK

For some years, the concepts of autonomic and adaptive
applications has grown in importance in several research
areas, such as mobile computing, grid computing and enter-
prise computing. Applications adapt at run-time for a range
of different purposes, including to cope with the amount
of available resources, to use a more efficient program and
to better satisfy the user needs. But introducing facilities for
adaptation in exiting code is a very difficult task. Even when
designing new applications, taking into account the various
situations where adaptation may occur is almost impossible
for the designer. Ad hoc solutions are not a good way to
solve the problem. The use of a generic framework, built
separately from the functional code, specifically dedicated
to run-time adaptation, as described by the model MAPE
in [3] and capable to itself evolve, seems to be the only
solution for the long time.

Based on our previous experience aiming at designing a
framework for adaptation of a component based applica-

IEEE
computer
® psouety

Decision

Qlaptation Framework &m

Planning

v

Service-Based Application

‘ Probe ‘ ‘ Effector }

Service-Oriented Platform

o] [e |

Infrastructure (OS & Hardware)

Probe

Figure 1.

tion [8], we propose an extension taking into account the
world of distributed services on heterogeneous platforms
such as OSGi [9], SCA [10] and web services [11]. The
framework allows to specify any kind of adaptation by a
precise decomposition of the different functionalities that
may be involved in an adaptation process. Each of these
functionalities may be specialized to fit some particular need.
Moreover the separation of the different adaptation functions
gives a clear and well structured code, easier to maintain and
to evolve if new situations appear.

Five major types of adaptation can be done using our
framework on a SBA: parametric adaptation modifies the
value of an existing parameter of a service, for example it
modifies the bitrate of a video stream; functional adaptation
replaces one function implementation by another, leaving the
interfaces unchanged, for example it changes the encoding
algorithm for a video; behavioural adaptation changes the
manner a service acts and possibly its interfaces, for instance
it changes a visual representation by a vocal one; structural
adaptation modifies a composition of services inside an
application, for instance adding a new service for security
purpose of the application; environmental adaptation allows
to change the outside world of the application, for example it
migrates a service for a better use of the underlying physical
infrastructure.

As can be deduced from this description of the adaptation
types, our framework works at different levels, ranging from
a single service, a composition of services in one application,
to several applications running on heterogeneous service
oriented platforms and distributed computers. Concerning
this last point, to cope with the distributed aspect, our
framework may be itself distributed. This enforces its scala-
bility. Meanwhile in that case the framework should remain
coherent; this property is ensured by providing cooperation

Framework

310

and coordination mechanisms, as we will see in the next
sections.

To finish this general description of the framework, it
is divided into the four main functionalities of the MAPE
model: Monitoring or observation, Analysis or decision,
Planning and Execution. The observation function is realized
by a set of probes, monitors and event managers, and
triggers the adaptation system depending on the state of the
environment and the services (see Section 1V); the analysis
and decision function decides of an adaptation strategy and
will be described in Section V; the planning function has to
define a set of actions that will satisfy the strategy chosen
by the decision phase and schedules them (see Section VI);
the last step is the execution of the concrete actions on the
different elements that are impacted by the adaptation (see
Section VII).

The figure 1 resumes the main points of our proposal:

o It is multilevel: on the top we find the user who, by
changing his needs, may trigger an adaptation; on the
bottom the infrastructure (OS and material) may also
requires adaptation due to nodes volatility or changes in
the OS policies; in the middle the services, their com-
position in SBA and the associated Service Oriented
Platforms where all the different types of adaptation
are performed using our framework.

Monitoring is done at each level and reciprocally adap-
tation actions may also be performed at different levels,
depending on the adaptation types.

The different functions that compose the adaptation
framework are shown, together with the means to
specialize them by decision policy and planning guide,
as it will be described in the following sections.

In order not to overload the picture, the distributed
aspect of our system doesn’t appear explicitly in the

figure, but all the elements shown may be replicated on
different nodes to cope with large scale environments.

I'V. MONITORING

The monitoring function of our framework is used to
collect an informative and dynamic view of the adaptive
entity and its environment. This view should include every
pieces of information deemed useful to take an adaptation
decision, including information on the hardware, the oper-
ating system and the service-oriented platform the adaptive
service is running on, in addition to the adaptive application
and the services themselves. This dynamic view is pictured
by values representing states of the system. Events, coming
from the observed elements modify those states.

More precisely, the monitoring function is designed to
collect relevant events in order to picture a low-level view
of all the elements. Such a view is useful to have precise
information but is not very well suited to get a global
representation of states of the system. To do so, the mon-
itoring function of our framework can compose events to
represent derivative values better suited to picture a higher-
level, synthetic view of the system.

In addition to listening to events occurring in the system,
the monitoring function can also actively probe periodically
selected values to generate events and update the view.
Events are transmitted to the decision function only when
differing from previous values. The context view is built
using an EQL-based model and implemented using the
WildCAT framework [12].

In our framework, the monitoring phase of the MAPE
model is divided into multiple services and elements. Ad
hoc probes are the software or hardware elements taking
the measures needed to create the events. The probes are
listened to and queried by monitors, which are services
providing events using the same interface to the event
manager. Monitors constitute an abstraction layer of the ad
hoc probes. The event manager is the service collecting the
events, composing them and keeping a view of the system.

The probes can take measures in every layer of the
system. At the operating system level, a probe can for
example measure the state of hardware resources, such as
the available RAM or the number of processors. The procfs
virtual file system under Unix-like OSs (usually mounted at
/proc) is an example of an OS level probe. At the service
platform level, probes can notice that a service appears or
disappears. Whereas in the adaptive services, probes can
keep under observation various evolutions, such as the size
of a buffer or calls to functions.

Since probes can use various communication interfaces,
monitors interfaces them to provide events under the same
service-oriented interface. A single monitor can listen mul-
tiple probes and push multiple events. Monitors have to be
able to answer to requests on the value for the events they
monitor.

311

The event manager is designed to collect and compose
events coming from monitors, constituting composite events.
It can also make computations on an event over a window
of time. For example, a composite event can be the aver-
age number of requests being processed by processors. A
composite event can also be the maximum time to process
a request over the last minute. Those computations are
described in a dedicated language. Since the framework is
distributed, there can be multiple event managers spread
over various service-oriented platforms. The event manager
also checks if updated values of event are different from
previous ones and only transfers them to the decision service
if it is the case. The decision and planning functions of
the framework can request values of events through the
event manager, in order for them to get complementary
information to execute their tasks when needed.

V. DECISION

The analysis function of the MAPE model is designed
to take adaptation decisions. When a change arises in the
monitored elements, the monitoring function sends a notice
to the decision function. Upon receiving a new notice, the
decision function has to analyse and decide if an adaptation
is needed and to choose an adaptation strategy if needed.

The decision function of our framework is constituted by
many distributed decision services, each of them made up
by a negotiator handling the communication and possibly
two decision engines. In an application composed of dis-
tributed services, such as web services in clouds, taking a
coherent and global view of every elements contributing to
the application is next to impossible, especially in a timely
fashion. Thus, in our framework the decision function is
composed of various decision services cooperating together
to take adaptation decisions, each decision service being in
charge of a subset of the application. A decision taken by
the decision function is reified into multiple strategies, each
one being a part of a distributed strategy.

Distributed strategies are made the following way. When
a decision service notices a change in its view of the
system that necessitates an adaptation, the decision service
issues a strategy stating what are the changes to make. If
the application of the strategy doesn’t need involvement
from other decision services, the strategy is handled to the
local planning function. In the other cases, the parts of the
strategy needing involvement from other adaptation services
will be negotiated with the concerned decision services.
Those negotiations may end up initiating other strategies
that, together with the original strategy, will be constituting
a distributed strategy.

The cooperation between decision services is handled
by negotiation mechanisms using for instance FIPA proto-
cols [13]. As a consequence a decision service is divided into
two parts: the decision-maker and the negotiator, as shown in
Figure 2. The role of the negotiation is to make the various

Decision-maker
Short-term
engine
Long-term
engine
ol

[Event manager

Negotiator

Planning

Decision W

Figure 2. A decision service

decisions services agree on common parts of distributed
strategies. A decision service can submit a strategy to
another decision service. This one has to analyse what is
involved and then to decide either to apply it, reject it or
make a counter-proposal. Indeed, a service can depend on
many things unknown to the decision service initiating a
distributed strategy negotiation; those dependencies make
the application of the strategy not always as straightforward
as it could appear to the issuer of the original strategy. Once
a distributed strategy is negotiated, strategies are given to the
relevant services of the planning function.

Moreover, our framework offers the possibility for the
decision-maker to be decomposed into two decision engines
running concurrently. These two engines are complementary:
the first one focus on short-term decisions and the second on
long-term ones. Both are used to make adaptation decisions,
that is strategies. However they don’t reason the same way
and corresponds to different adaptation needs. The short-
term engine makes fast and simple decisions and is useful
when rapid reactions are needed. The other is slower to
analyse situations but can make complex strategies and
optimize the application for the long-term.

The short-term engine may for instance use a rule-based
engine compliant to the Java Rule Engine API (JSR-94),
such as JESS or JRuleEngine. A rule-based engine can be
seen as an elaborated parser of if-then statements. It is used
to make relatively fast and simple decisions, in order to
enforce a valid state of the distributed application. Since this
engine can only make strategies that are defined statically,
it is rather limited in a very heterogeneous and dynamic
environment. It can be used for example to decide that when
a service fails and an equivalent one can be found, this
service replace the failed one.

The long-term engine may use an engine based on utility
functions [14]. Utility functions are functions computing the
utility of a configuration of a system, enabling to compare
configurations. A configuration found with an utility signif-
icantly higher than the utility of the configuration currently
in use can be used to make a strategy. Since it can create
strategies dynamically, it is well suited for an use in a
heterogeneous and dynamic environment. In addition, since

312

its strategies are made to fulfil a goal that can change
dynamically, it is well suited in a context where goals of an
application can be modified by SLAs. It’s more an engine
optimizing the current state of the system than an engine
reacting to events. Thus it can optimize the application or
services following the constraints of the developers (for
example to limit the consumption of resources) and the
constraints of the users (for example to lower the response
time), making compromises. However, this engine is not as
fast as an rule-based engine and might not be able to make
a strategy in a timely fashion.

VI. PLANNING

As seen in the previous section, a decision result is
represented by a strategy. A strategy defines the new state
to reach but it doesn’t define how to obtain this state. This
is the role of planning phase. To do so, the planner looks
for a set of actions that are able to turn the current state of
the system (here meaning application and services) into the
new state.

Various types (parametric, functional, behavioural, struc-
tural, environmental) of actions can be involved to adapt a
system, as described in Section III. Each type of adaptation
corresponds to a set of actions that can be used to implement
it. The role of the planner is to select the appropriate actions
for the current situation. In most of the cases of adaptation,
several actions are needed to implement a strategy. For ex-
ample the structural adaptation which consists to add a new
service in an application (i.e. a composition of services) may
be implemented by choosing the new service, connecting
it to one or several services of the old composition, after
having removed their previous links. In such situation a
scheduling policy should be specified by the planner. Indeed
some actions are dependant from each others and they must
be executed in a precise order. On the contrary, since we
are in a distributed environment and since we want to
perform efficient adaptation, if some actions without logical
dependencies can be executed in parallel the schedule must
exhibit their potential parallelism. Meanwhile, the execution
time taken to implement an adaptation strategy may not be
the unique criteria for scheduling. Other factors such as the
processor load, the amount of memory or bandwidth used
during the adaptation can be of importance. For instance
even if it is logically possible to simultaneously transfer two
services from one node to another, overloading the network
between the two nodes may be incompatible with the quality
of service to be preserved for the other activities. As can be
easily understood, it is almost impossible to statically define
adaptation plans. Too many dynamic factors are involved
to make a good planning choice in advance. Therefore our
planner is designed to schedule at run time the necessary
actions to implement a given strategy.

Run time planning is not an easy task. Thus, we propose
to decompose the problem into sub-problems with limited

interactions. Since we consider applications running on a
distributed environment, the adaptation that should be real-
ized can impact elements located on different sub-systems
and nodes. For that reason we can decompose the planning
activity following the location of elements that need adap-
tation. Distributed planning algorithms have already been
proposed in the literature. Georgeff [15], for motion planning
in robotic, suggests to use local agents to build local plans
and to synchronise them with a supervisor. The decomposi-
tion of the main goal into sub-goals is quite simple because
each agent manages the behaviour of a distinct robot and
only defines its actions. It never acts on other robots. In this
case, the supervisor is only needed to find, in the global plan,
all actions that can trigger dangerous interactions between
robots, for example collisions or the use of the same resource
by more than one robot concurrently. Corkill [16] assumes
that the goal is only a conjunction of many independent
goals and proposes a distributed algorithm based on the
NOAH (Nets of Action Hierarchies) framework [17]. Durfee
and Lesser [18] propose a partial global planning where
each agent communicates with the others during their cal-
culation of local plans. This communication helps them to
know the state of the calculation of the global plan. This
communication takes time so the agents assume that they
know an incomplete, inconsistent and out-of-date state of the
global plan. This kind of algorithms degrades the solution
that could be found because agents are not always working
as a strong collaborative team but it limits the overhead
due to communication. Many other algorithms can be found
in the literature like [19], [20]. Many of them are based
on centralized algorithms extended to distributed problem
solving by adding cooperation between agents.

VII. EXECUTION

Once a plan is defined, it has to be executed. As for
the previous adaptation functions, execution needs to be
efficient due to the dynamism of the environment. Moreover,
some characteristics of the SOA or the infrastructure (OS,
hardware) where the element to adapt is located have specific
requirements. For example, in the service platform OSGi,
some dependencies have to be resolved by the platform
before starting to migrate services. So execution has to
take into account the specificities of the SOA and the
infrastructure. That is the reason why we have defined two
kinds of actions: abstract and concrete ones. Abstract actions
are actions independent from the concrete SOA or infras-
tructure. They are defined in a guide used by the planning
phase, making easier the planning of the strategy. Indeed the
planner only needs to know information about the current
state of the elements, the goal of the adaptation and the
available abstract actions. Concrete actions or effectors are
the actions dedicated for each service-oriented architecture
and environment. Due to the dynamism of the platforms and
the environment, we have chosen not to statically define a

313

list of abstract actions but to dynamically specify it from
the current concrete actions. Consequently, guides are also
dynamically constructed.

A first implementation of our framework has been realised
on top of OSGi platforms. OSGi is a specification defining
a service-oriented platform and its common services, with
a large user base and mature implementations. Applications
are built as set of bundles which are library components in
OSGi terms. Bundles interact by using or providing services.
They import and export Java packages and offer or require
services. Services interfaces are Java interfaces. The latest
specification defines a way to interconnected several OSGi
platforms and allows to bind services running on distributed
platforms. OSGi already offers some kind of adaptation
actions like the dynamic registration or unregistration of
services, but they are not sufficient for the needs of self-
organising service-based applications. That’s why we define
others actions like migration and replication of services.

The migration of service is an environmental adaptation
action consisting in moving a service from a node to another.
This migration can be useful when a node is overloaded
by too many services. If a service X is migrated from an
overloaded node A to a node B, resources allocated to this
service on the node A are released and can be reallocated
for the others. To move a service between platforms, our
framework needs to move the bundle because only bundles
can register services. Moreover, bundles have dependencies
with other bundles according to the services they use and
to their imported packages. Nothing has to be done for
migration about service dependencies. However as imported
packages have to be available where the bundle is, before
to move a bundle, our implementation have to solve the
packages dependencies. When these dependencies have been
resolved, the bundle can be moved from A to B. A bundle is
defined by a JAR file. The OSGi platform provides actions
to install a bundle with the URL of the JAR file. In our
case, before migration, the JAR is accessible on the platform
A. A new URL should be created for the platform B.
Our framework uses the HTTPService, which is a standard
service described in OSGi, in order to publish resource on
the network and to build URL for this resource. With this
new URL the bundle can be installed. Then, this bundle
is started and registers its services on the OSGi platform
B. However, not every service have to be registered on
the platform B, in our example only the service X. Our
implementation provides this possibility by allowing the
bundle to ask which services are necessary and the bundle
chooses the services to register. In addition, the state of the
service is saved before its migration in order to restore it
when it is registered on the platform B. Once the service X
is registered on the platform B, our framework unregisters
X on the platform A and uninstalls the bundle if it does not
provide other services or if it is not used to provide packages
on A.

VIII. CONCLUSION

Even if several research works have tackled the problem
of software adaptation, now crucial due to the constant
evolution of the execution environments, very few con-
sider the heterogeneous and distributed aspects of these
environments, as well as the various types of possible
adaptations. We propose a generic framework, that, due
to its fine grain decomposition into functionalities, can
manage different levels of adaptation (service, application,
SOA, infrastructure) and cope with dynamically defined
adaptation actions for parametric, functional, behavioural,
structural, environmental adaptation. We have in particular
designed cooperation mechanisms to coordinate distributed
analysis and decision, on the fly planning of adaptation
actions, using abstract events and abstract actions. Examples
of possible specialisations of our framework have been
given and a first implementation for OSGi realized. Our
current work concerns the implementation on heterogeneous
service oriented platforms and on top of cloud infrastructure
running an OS capable of virtualisation of resources such as
XtreemOS [21].

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement 215483
(S-Cube).

REFERENCES

[1] J. Buisson, F. André, and J.-L. Pazat, “Supporting adaptable
applications in grid resource management systems,” in 8th
IEEE/ACM International Conference on Grid Computing,
Austin, USA, 19-21 September 2007.

[2] P.-C. David and T. Ledoux, “An aspect-oriented approach

for developing self-adaptive fractal components,” in Soft-

ware Composition, ser. Lecture Notes in Computer Science,

W. Lowe and M. Siidholt, Eds., vol. 4089. Springer Berlin /

Heidelberg, 2006, pp. 82-97.

[3] J. O. Kephart and D. M. Chess, “The vision of autonomic

computing,” Computer, vol. 36, no. 1, pp. 41-50, 2003.

[4] G. Bastide, A. Seriai, and M. Oussalah, “A self-adaptation of

software component structures in ubiquitous environments,”

in Proceedings of the 5th international conference on Perva-

sive services. ACM, 2008, pp. 173-176.

[5S] M. Al-Turkistany, A. Helal, and M. Schmalz, “Adaptive

wireless thin-client model for mobile computing,” Wireless

Communications & Mobile Computing, vol. 9, no. 1, pp. 47—

59, 2009.

[6] S. Vadhiyar and J. Dongarra, “Self adaptability in grid

computing,” Concurrency and Computation: Practice and

Experience, vol. 17, no. 2-4, pp. 235-257, 2005.

314

[7]1 S. Wu and Y.-T. Chang, “A user-centered approach to active
replica management in mobile environments,” Mobile Com-
puting, IEEE Transactions on, vol. 5, no. 11, pp. 1606-1619,
Nov. 2006.

[8] “Dynaco Web site,” last access on Feb. 2010. [Online].

Available: http://dynaco.gforge.inria.fr/

[9] “OSGi Alliance,” last access on Feb. 2010.

Available: http://www.osgi.org

[Online].

[10] SCA Consortium, “Building Systems using a Service Ori-
ented Architecture,” Whitepaper, 2005. [Online]. Available:
http://www.ibm.com/developerworks/library/specification/ws-
sca/

Se-

[11] E. Cerami, Web Services Essentials, S. St.Laurent, Ed.

bastopol, CA, USA: O’Reilly & Associates, Inc., 2002.
[12] P-C. David and T. Ledoux, “Wildcat: a generic framework
for context-aware applications,” in MPAC ’05: Proceedings of
the 3rd international workshop on Middleware for pervasive
and ad-hoc computing. New York, NY, USA: ACM, 2005,

pp- 1-7.
[13] “Fipa interacation protocol specifications,” last
access on Feb. 2010. [Online]. Available:

http://www.fipa.org/repository/ips.php3
[14] J. O. Kephart and R. Das, “Achieving self-management via
utility functions,” IEEE Internet Computing, vol. 11, no. 1,
pp. 4048, 2007.
[15] M. P. Georgeff, “Communication and interaction in multi-
agent planning.” San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1988, pp. 200-204.
[16] D. D. Corkill, “Hierarchical planning in a distributed environ-
ment,” in IJCAI’79: Proceedings of the 6th international joint
conference on Artificial intelligence. ~ San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1979, pp. 168-175.
[17] E. D. Sacerdoti, “A structure for plans and behavior,” Al
Center, SRI International, 333 Ravenswood Ave., Menlo Park,
CA 94025, Tech. Rep. 109, Aug 1975.
[18] E. Durfee and V. Lesser, “Predictability versus responsive-
ness: Coordinating problem solvers in dynamic domains,” in
Proceedings of the Seventh National Conference on Artificial
Intelligence, 1988, pp. 66-71.
[19] S. Cammarata, D. McArthur, and R. Steeb, “Strategies of
cooperation in distributed problem solving,” in IJCAI’S83:
Proceedings of the Eighth international joint conference on
Artificial intelligence. ~ San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1983, pp. 767-770.
[20] M. Iwen and A. D. Mali, “Distributed graphplan,” Tools
with Artificial Intelligence, IEEE International Conference on,
vol. 0, p. 138, 2002.
[21] C. Morin, “Xtreemos: a grid operating system making your
computer ready for participating in virtual organizations,”
Proceedings of ISORC’07, vol. 5, pp. 347-368, 2007.

