SuSE : Subspace Selection embedded in an EM algorithm

Abstract : Subspace clustering is an extension of traditional clustering that seeks to find clusters embedded in different subspaces within a dataset. This is a particularly important challenge with high dimensional data where the curse of dimensionality occurs. It also has the benefit of providing smaller descriptions of the clusters found. In this field, we show that using probabilistic models provides many advantages over other existing methods. In particular, we show that the difficult problem of the parameter settings of subspace clustering algorithms can be seen as a model selection problem in the framework of probabilistic models. It thus allows us to design a method that does not require any input parameter from the user. We also point out the interest in allowing the clusters to overlap. And finally, we show that it is well suited for detecting the noise that may exist in the data, and that this helps to provide a more understandable representation of the clusters found.
Type de document :
Communication dans un congrès
Conférence d'Apprentissage, 2006, Trégastel, France. 2006
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger
Contributeur : Isabelle Tellier <>
Soumis le : mercredi 7 avril 2010 - 21:06:44
Dernière modification le : mardi 24 avril 2018 - 13:32:41
Document(s) archivé(s) le : vendredi 9 juillet 2010 - 21:10:00


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00471311, version 1



Laurent Candillier, Isabelle Tellier, Fabien Torre, Olivier Bousquet. SuSE : Subspace Selection embedded in an EM algorithm. Conférence d'Apprentissage, 2006, Trégastel, France. 2006. 〈inria-00471311〉



Consultations de la notice


Téléchargements de fichiers