N

N

Parallel N-free order recognition

Laurent Viennot

» To cite this version:

Laurent Viennot. Parallel N-free order recognition. Theoretical Computer Science, 1997, 175, pp.393-
406. 10.1016/S0304-3975(96)00210-1 . inria-00471609

HAL 1d: inria-00471609
https://inria.hal.science/inria-00471609
Submitted on 8 Apr 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00471609
https://hal.archives-ouvertes.fr

Parallel N-free Order Recognition

Laurent Viennot
LITP/IBP
Université Paris 7 Denis Diderot
Case 7014, 2, place Jussieu

F-75251, Paris Cedex 05.
e-mail: lavie@litp.ibp.fr

Abstract

Parallel algorithms for recognizing and representing N-free orders are pro-
posed for different models of parallel random access machines (PRAM). The algo-
rithms accept as input a transitively reduced directed graph with n vertices and
m edges. They respectively run in time O(logn) using n 4+ m processors in the
EREW PRAM model and in constant time using n? processors in the CRCW
PRAM model. Algorithms for distributed-memory machines are also proposed.

Key words: Parallel algorithms, recognition algorithms, PRAM, partial order,
N-free order.

1. Introduction.

Due to the proverbial intractability (i.e. NP-completeness) of the majority
of computational problems occurring in the algorithmic study of ordered discrete
structures, much interest has been paid to classes of ordered sets that still admit
efficient algorithms for otherwise intractable problems. The tractability of these
classes is in most cases a consequence of rather strong structural properties not
shared by arbitrary partial orders.

Many such algorithms have been developed by, for example, Mohring [Moh89],
Golumbic [Gol80], Spinrad [Spi85], Pnuelli, Lempel and Even [PLE71], Papadim-
itriou and Yannakakis [PY79], Gabow [Gab81]. However, all of them are sequen-
tial algorithms. Like Bender, Gastaldo and Morvan [BGM93] who gave a parallel
solution to interval order recognition, we are interested in developing parallel al-
gorithms to complement the existing sequential algorithms. In this paper we focus
on N-free orders.

N-free orders have been theoretically studied in depth for their numerous
structural poperties [HJ85, Gri69, LM73, HB78, HN60]. One of their main and
oldest applications is their use in project analysis, in particular in the techniques
such as CPM or PERT, see e.g. [ElIm77, MP64]. These techniques represent a

1

project by a directed graph in which the edges correspond to the activities of the
project and vertices correspond to events (the completion of all activities entering
the vertex). In order-theoretic terms, this so-called activity-on-edge representation
or PERT-network is just the edge diagram of an N-free order. If the original partial
order describing the technological precedence constraints of the project is not N-
free, then dummy activities are added to make it N-free. Many techniques have
been proposed for this task, cf. [Sys84, Sys85, Spi&6] for further references.

The other major application of N-free orders arose with the investigation of
the jump number. This classical parameter can be computed by a simple greedy
algorithm in N-free orders [Riv82], and is also related to several structural prop-
erties of N-free orders.

The fastest known N-free recognition algorithms assume that the partial order
P is given in transitively reduced form and construct an edge diagram if P is N-
free. Their running time is O(n + m), where n is the number of vertices and m is
the number of edges in the transitive reduction of P. The first such algorithm is
implicitly contained in the recognition algorithm for series-parallel partial orders
in [VTL82]. The first “explicit” linear N-free recognition algorithm appeared in
[Sys82]. Another important result is the algorithm of Ma and Spinrad [MS91]
where no assumption on the input is made. It determines whether the transitive
closure of a directed graph is an N-free order in O(n + m;) time where m; is the
number of edges of the transitive closure of the input.

In this paper we propose parallel algorithms for recognizing N-free orders,
and parallel algorithms for determining edge diagram representations.

Section 2 introduces the basic definitions and properties of N-free orders,
which will be exploited in our recognition algorithms. In section 3 we propose
PRAM parallel N-free order recognition algorithms for two models of PRAM: with
exclusive memory accesses or with concurrent memory accesses. In section 4 we
propose PRAM parallel algorithms for constructing edge diagram representations.
We present parallel recognition and representation algorithms for distributed mem-
ory machines in section 5.

2. Definition and properties of N-free orders.

A partial order will be denoted by P = (V, <), where V is the (finite) ground
set of vertices and < is the order relation, i.e. an irreflexive and transitive relation
whose pairs (u,v) €< are written as u < v (u,v € V). If u < v then u is called a
predecessor of v and v is called a successor of u. If u < v and there isno w € V with
u < w < v then v is said to cover u (denoted by u < v). We also say that v is an
immediate successor of u (or u is an immediate predecessor of v). ImSucc(u) and
ImPred(v) denote the set of all immediate successors and immediate predecessors
of w.

Directed graphs may have parallel arcs but no loops. They are denoted by
G = (V, A), where V is the set of vertices and A is the set of directed edges or
arcs. An arc a € A is directed from its tail u to its head v. We write a = (u,v). If
there are parallel arcs, we consider that A is a multiset. A sink is a vertex which
is not a head of any arc, and a source is a vertex which is not a tail of any arc.

A dag is a directed acyclic graph (possibly with parallel edges). It is transi-
tively closed if (u,v), (v,w) € A implies that (u,w) € A, and transitively reduced
if (u,w) € A implies that there is no v € V with (u,v) € A and (v,w) € A. Every
arc (u,w) violating this condition is called transitive.

Every partial order P = (V, <) may be interpreted as a transitively closed
dag with vertex set V and edge set <. Obviously, the transitively reduced form
corresponds to the covering relation. A Hasse diagram of P is a drawing of this
reduced form where the edges are implicitly directed from bottom to top (see
Figure 1).

An order is N-free if its reduced form does not contain the subconfiguration
N from Figure 1.(a) as induced subgraph.

@ (b)

Figure 1. (a) The forbidden subconfiguration for N-free orders. (b) An
example of N-free order represented by its Hasse diagram. The Hasse diagram
is a full representation of the order since a vertex v is a successor of a vertex u
if and only if there exists an always ascending path from u to v.

Every dag G = (V, A) defines a partial order P = (A, <) over its arcs in the
following sense: a < b if and only if there exists a directed path from the head of
a to the tail of b in G.

Notice that b covers a if and only if the head of a is the tail of b. The dag
with vertex set A induced by the covering relation of P is called the line-graph of
G. Such an order P is said to be edge-induced and G is called an edge diagram of
P.

The following theorem (see [Moh89]) gives the fundamental structural prop-
erties of N-free orders needed for sequential recognition.

3

Theorem 1. Given a partial order P = (V, <), the following statements are
equivalent:
(1.1) P is N-free.
(1.2) For all u,v € V, ImSucc(u) = ImSucc(v) or ImSuce(u) N ImSucc(v) = 0.
(1.3) P is edge-induced.

The optimal sequential recognition algorithm [Sys82] verifies property 1.2 by
scanning incrementally each vertex and its set of immediate successors. It assumes
that the order is given in transitively reduced form. Its running time is O(|V| +
=D

An equivalent graph-theoretic approach to Theorem 1 has been developed
in [VTL82], cf. also [FGS85]. As we will see, it is more appropriate for parallel
algorithmics. They define the class of complete bipartite composite dags (CBC dag
for short) as the class of directed acyclic graph G = (V, A) for which there exists
a partition By, ..., By of A such that:

(2.1) each B; induces a complete bipartite subgraph of G (B; is called a bipartite

component of G),

(2.2) for each non-sink vertex v, all arcs leaving v belong to the same bipartite
component,

(2.3) for each non-source vertex v, all arcs entering v belong to the same bipartite
component.

@ (b)
Figure 2. (a) A complete bipartite graph with source set S and sink set
T'. (b) The bipartite components of the transitive reduction of the N-free order
represented in Figure 1.

Statements 2.2 and 2.3 are simply a condition of maximality of the bipartite
components (see Figure 2). Using this definition, another characterization theorem
is given:

Theorem 3 [VTLS82]. A dag is CBC if and only if it is the transitive
reduction of an N -free order.

Remarks: Let S; and T; respectively denote the source set and the sink set of the
bipartite component B;. Then for all v € T;, ImPred(v) = S; and for all u € S;,
ImSucc(u) = T;. Thus we have:

{S;, 1 <i<k}={ImPred(v), veV}
and {T;, 1 <i<k}={ImSucc(u), ue V}.

Each S; (respectively T;) will be called a component source set (respectively com-
ponent sink set) of G whose bipartite component is B;.

3. Parallel recognition algorithms.

In the following we develop two parallel algorithms for N-free order recogni-
tion. They are both based on Theorem 3 and they compute the bipartite compo-
nents. They suppose that the input is given in transitively reduced form.

For the remaining of this paper, let n and m respectively denote the number
of vertices and arcs of the input.

The first algorithm employs the ezclusive-read exclusive-write (EREW for
short) PRAM, where only one processor at a time can read from or write to a
memory location. It runs in O(logn) time with O(n + m) processors.

The second algorithm employs the arbitrary concurrent-read concurrent-write
(arbitrary-CRCW for short) PRAM. In case of write conflict, only one arbitrary
processor succeeds in writing its value. The second algorithm runs in constant
time with O(n?) processors.

3.1 Data-structure independent algorithm.

The two parallel algorithms are based on the following data-structure inde-
pendent algorithm:

Algorithm 1. N-free order recognition
Input: A transitively reduced graph G = (V, A).
Output: True if the transitive closure of GG is an N-free order and false if not.

Step 1. Let S; and T; respectively denote the source set and the sink set of
the bipartite component B; (1 < i < k). Compute the bipartite components
supposing that G is the transitive reduction of an N-free order as follows:

Select a vertex u; in each component source set S; using {S;, 1 <i <k} =
{ImPred(v), v € V}.
For all such vertex u;,

identify T; = ImSucc(u;),
identify the B; as the set of all arcs having their head in T;.

Step 2. Check whether the three conditions 2.2, 2.3 and 2.1 for CBC dags are
verified. If it is the case then G is the transitive reduction of an N-free order,
else return false.

Remarks: Notice that in any case, the components computed in Step 1 form a
partition of the arc set. Moreover they induce bipartite subgraphs of G because
G is transitively reduced. Indeed, if it was not the case, a component B; would
contain two arcs of the form (u,v) and (v, w). It would also contains by construc-
tion the arc (u;,v) and the arc (u;, w) which would then appear to be a transitive
arc. This would violate the fact that G is transitively reduced. Thus in Step 2,
for condition 2.1 we just have to check that these subgraphs are complete.

Notice also that all the arcs entering a vertex v € T; will be in the same
bipartite component B; by construction. Thus condition 2.3 will always be verified
and we do not need to check it. On the other hand, when we successfully check, for
some sink vertex u, that all the arcs leaving it are in the same bipartite component
B; (condition 2.2), we then know that u € S;. Thus the component source sets
are computed at the same time.

As a final remark, let us explain how we will deal with disjoint subsets. The
bipartite components are disjoint subsets of A. Every B; will be numbered by ;.
The bipartite components will be represented in array B such that an arc j is in
B; if and only if B[j] = u;. The S; (respectively the T;) are disjoint subsets of V.
Every S; (respectively T;) will have same number as B;. The S; (respectively the
T;) will be analogously represented in an array S (respectively T).

Theorem 4. Algorithm 1 determines whether a transitively reduced graph G
18 N -free.

The proof follows from theorem 3.

Proof: If the input G is the transitive reduction of an N-free order (i.e. a CBC
dag), then the algorithm really computes its bipartite components in Step 1 and
the three tests succeed in Step 2.

Anyway, no matter what partition of the arc set has been computed in Step 1,
if the tests succeed in Step 2 then G is a CBC dag. If G is not the transitive
reduction of an N-free order then we cannot have computed bipartite components
in Step 1 and one of the tests will fail in Step 2.]

3.2 An EREW algorithm.

In the remaining of the paper, we mix up vertices and their numbers, more
formally, we suppose that V = {1,...,n}.
The first parallel N-free order recognition uses an arc-array data structure,

where the arcs are explicitly stored as couples of vertex numbers in an array A

During the algorithm, we sort couples of integer between 1 and n (the numbers
of the vertices). As no efficient bucket sort running on EREW PRAM is known,
we will always use the Cole Parallel Merge Sort [Col88] which can sort k elements
in O(log k) time using k processors. These couples will be sorted according to the
lexicographical order <., defined by:

(U,) <pex (u',0") <= {

or according to the anti-lexicographical order <, defined by:

or

either u < u/

u=u and v < v'.

() <anti (W, 0") <= (v,u) <jer (v,).

In a lexicographically (respectively anti-lexicographically) sorted array of couples,
we call blocks the subarrays of consecutive couples having same first (respectively

second) component (see Figure 3).

(b)[(1,3) (1,6)

(2,7)

(3.7)

(4,8) (4,9)

(5,7)

(6,2) (6,5)

(8,3) (8,6)

(9,2) (9,5)

() |(6,2) (9,2)

(1,3) (8,3)

(6,5) (9,5)

(1,6) (8,6)

(2,7) (3,7) (5,7)

(4,8)][(4.9)

Figure 3. (a) The N-free order represented in Figure 1 with numbered

vertices. (b) The arc-array representation of its reduced form sorted lexicographi-

cally. The blocks which are the subarrays of couples having same first component

are outlined. (c¢) The arc-array sorted anti-lexicographically. The blocks are the

subarrays of couples having same second component.

7

In this first implementation of Step 1 of Algorithm 1, the chosen vertex in each
component source set will be the one having minimal number. The idea will be to
select these elements uq, ..., u; without having computed the component source
set S1,..., Sk that respectively contain them. To do so, we anti-lexicographically
sort the arc-array. Consider now the arcs of a block and let v be their common
second component. Keeping only their tails, we obtain the sorted list of the ele-
ments of ImPred(v). Thus the first element of this list is the selected vertex of the
component source set ImPred(v). Obviously this first element will be the same for
any w such that ImPred(w) = ImPred(v). In the example of Figure 3, the selected
vertices will be 6, 1,2 and 4. Then we can easily identify the corresponding 7T; and
B; giving them number wu;.

The out-degree D (u) of each vertex u of the input (1 < u < n) will be
required in Step 2. We will verify that every B; computed in Step 1 is com-
plete by checking that all its sources have same out-degree. This is sufficient
since DT (u;) = |T;| by construction. The out-degrees can easily be calculated in
O(logn) time using for example, a lexicographical sorting of the arcs and a parallel
prefix computation.

The algorithm is as follows:

Algorithm 2. EREW implementation
Input: A transitively reduced graph G.
Output: True if the transitive closure of GG is an N-free order and false if not.

{ Implementation of Step 1 of Algorithm 1 }
1 Sort the arcs of array A anti-lexicographically.
2 For alll <j<mdo

3 Let (u,v) be the arc in array position A[j].

4 If (u,v) is the first arc of its block (i.e. if the head of the arc in array
position A[j — 1] is different from v) then set T'[v] := wu.

5 Set the bipartite component number of the arc (u,v) to B[j] := T[v].

{ Implementation of Step 2 of Algorithm 1 }

{ Checking condition 2.2: are the arcs leaving each vertex in the same bipartite
component? }

6 Sort the arcs lexicographically.

{ Check that in every block, all arcs have same bipartite component number: }

7 For all 2<i<ndo

8 Let (u1,v1) and (ug2,v2) be the couples in array positions A[i — 1] and
Ali] respectively.

9 If u; = us then ReturnValue[i] := (B[i — 1] = BJi])

10 Else ReturnValueli] := true

11 S[us] := Bi]

12 Let (u,v) be the couple in array position A[1], set S[u] := BJ[1].

8

13 If not(/_, ReturnValue[i]) then return false

{ Checking condition 2.1: are the bipartite components complete? }

14 Store the couples (S[u], DT (u)) lexicographically.

15 Check in the same way as previously that in every block all the couples have
same second component.

16 If the two tests have succeeded then return true.

Theorem 5. Algorithm 2 determines whether a transitively reduced graph G
is N-free. It runs on EREW PRAM in O(logn) time using n+m processors.

Proof: Algorithm 2 is clearly equivalent to Algorithm 1. The concurrent read in
line 5 can be implemented with a prefix computation in O(logn) time using m
processors. All sorts and conjonctions can run in O(logn) time using O(n + m)
processors. The result follows. O

3.3 A CRCW algorithm.

We now propose a constant time algorithm. This is possible because we deeply
use the arbitrary concurrent write ability to compute partitions instead of sorting
operations. We will check that the bipartite components are complete thanks to
the complementary graph: we will test if no arc is missing in any component. The
use of the complementary graph induces a O(n?) workload. Algorithm 3 is based
on an adjacency-matrix structure which allows to work on both the graph and its
complement. The adjacency-matrix M for the input graph G = (V, A) is defined
as follows:
true if (u,v) € A
false otherwise.

M o] = {

Notice that we can easily compute this representation from an arc-array data
structure in constant time using n? processors.

To implement Step 1 of Algorithm 1, every bipartite component will be com-
puted in two phases. Consider a component source set S;. For all v € V such
that ImPred(v) = S;, we have to isolate the same vertex w;. First we pick an
arbitrary vertex ST'[v] € ImPred(v) (lines 1-2). In each component source set, we
keep only the picked vertex having minimal number (lines 3-6). Then for each
such vertex u;, we respectively compute T; and B; as the immediate successors set
of u; (lines 7-8) and as the set of the arcs entering T; (line 9). Figure 4 illustrates
lines 1-6 on an example.

Algorithm 3. CRCW implementation
Input: A transitively reduced graph G.

Output: True if the transitive closure of G is an N-free order and false if not.

9

@ (b)

Figure 4. Selecting a source in each bipartite component. (a) A bipartite
component with numbered vertices. (b) Here, an arbitrary concurrent write has
determined ST[5] = 2 and ST'[6] = ST|[7] = 3 (line 2). Thus we mark 2 and
3 (line 4). The existence of the arc (3,5) proves that 3 and 2 = ST[5] are in
the same source set ImPred(5) = ImPred(6) = ImPred(7) and thus that 3 is
not the marked vertex with minimal number in this source set. Hence 3 will be
unmarked (line 6).

{ Implementation of Step 1 of Algorithm 1 }

1 For all 1 <u,v <ndo if M[u,v] then

2 ST :==u { arbitrary concurrent write }

3 For all 1 < u < n do Marked[u] := false

4 For all 1 < v < n do Marked[ST[v]] := true

5 For all 1 <u,v <ndo if M[u,v] then

6 If u > ST[v] then Marked[u| := false { concurrent write of same
value }

7 For all 1 < wu,v <n do if M[u,v] then

8 If Marked[u] then T[v] :=u

9 Blu,v] := T[]

{ Implementation of Step 2 of Algorithm 1 }
10 Result := true

{ Checking condition 2.2: are the arcs leaving each vertex in the same bipartite
component? }

{ Compute the source set of every bipartite component: }

11 For all 1 < u,v < n do if Mu,v] then

12 S[u] := Blu,v] { arbitrary concurrent write }

13 If S[u] # B[u,v] then Result := false { check that the previous

concurrent write was indeed a concurrent write of the same value }

{ Checking condition 2.1: are the bipartite components complete? }

{ Check that no arc is missing in any component: }
14 For all 1 < u,v < n do if not(M[u,v]) then
15 If S[u] and T'[u] are defined and S[u] = T'[v] then Result := false

10

16 return Result.

Theorem 6. Algorithm 3 determines whether a transitively reduced graph G
is N-free. It runs on CRCW PRAM in constant time using n> processors.

Proof: The time and number of processors bounds are clear.

In line 13, all arcs (u,v) leaving u write their bipartite component number in
Slu] and check in line 14 that they have all written the same value, checking by
the way condition 2.2. Notice that two vertices v and v are sources of the same
bipartite component if and only if S{u] = S[v].

We check that every bipartite component B; joining vertices from S; with T;
is complete by testing whether an arc (u,v) verifying u € S; and v € T; is missing
in line 17.

We still have to prove that the implementation of Step 1 of Algorithm 1 is
correct. We suppose that the input is a CBC dag as we do not matter what is
computed otherwise.

Consider a bipartite component B; joining vertices from S; with T;. For all
v € T;, ST[v] is set in line 2 to an arbitrary vertex in S; = ImPred(v). The vertices
of the form ST[v] are marked in line 4. Let u; be the marked vertex with minimal
number in S; and let v; be a vertex such that ST[v;] = w,.

Consider now line 6. For all arc (u;,v) leaving u;, v € T; and thus we have
ST[v] > u;. Hence u; is still marked after this line. On the other hand for all
u € S; different from w;, the arc (u,v;) is present in the graph since the bipartite
component is complete by hypothesis. As u > ST[v;], Marked[u] is set to false.
After line 6, u; is the only marked vertex in S;. Thus the write in line 8 is exclusive
and T; = ImSucc(u;) is the set of vertices v verifying T'[v] = u;. The arcs (u,v) of
B; are those entering a vertex in 7; as computed in line 9. They can be identified
by Blu,v] = u; the number of B;. O

4. Parallel algorithms for constructing edge dia-
grams.

In the following section, we provide algorithms which determine an edge dia-
gram edge-inducing a given N-free order.

4.1 Properties of the bipartite components.

Let G = (V,.A) be the transitive reduction of an N-free order P. By theo-
rem 3, G is a CBC dag. Let By,..., B be the partition of its arc set in bipartite
components. For every B;, we denote by S; the set of sources of B; and by T; the
set of sinks of B;.

11

Let T,y be the source set of G and S, be the sink set of G. Thus Ty, T4, ..., Tk
and Sy,..., Sk, Sec form two partitions of V. In addition, we introduce two “vir-
tual” bipartite components By and B,.. We formally set that Tj is the component
sink set of By and that S, is the component source set of Byo.

Now consider the dag R = ({BO,Bl,...,Bk,BOO},‘N/> defined as follows.

Each vertex v € V is associated to an arc o € V of R (V is a multiset):
(7) if v e T; and v € S; then v = (B;, B;) is an arc from B; to B;.

Notice that R may have parallel arcs as there may be several vertices in T;NS;.

(@ (b)

Figure 5. (a) The N-free order of Figure 1 represented by its Hasse dia-
gram where the bipartite components are outlined. (b) Its unique edge diagram
which has a single source and a single sink. Its vertices are the bipartite com-
ponents represented in a (plus a source and a sink). Each arc is associated to a
vertex of the N-free order.

Theorem 8 [VTL82]. The dag R is an edge diagram of P.

Proof: G is the line graph of R as its arcs (u,v) are those verifying v € S; and
v € T for some j € {1,...,k} and we can write u = (B;, B;) and v = (Bj, By,) for
some i,k € {0,1,...,k, o0}. O

Notice that R is the only edge diagram of P which has a single source and a
single sink.

12

4.2 Algorithms.

Parallel algorithms which determine an arc array representation of a corre-
sponding edge diagram given an N-free order can easily be obtained from the
recognition algorithms we have proposed.

Suppose that the input is the reduced form of an N-free order. We have
already mentioned the fact that these algorithms compute the S; and the T; (1 <
i < k). In addition, let us suppose that at the beginning of the algorithms, arrays
T and S are respectively initialized to 0 and co. The sources (respectively the
sinks) are the only vertices for which T (respectively S) is not computed. Thus at
the end of the algorithm, T (respectively S) represents the partition Ty, T4, ..., Ty
(respectively Si,..., Sk, Soo) Where Ty has number 0 (and By, has number oc).
Thus by adding the following line, we obtain parallel algorithms for constructing
an arc-array V representing the edge diagram defined by 7 without changing the
previous complexities.

(9) For all 1 <u <n do V[u]:= (T[v], S[v]).

Theorem 10. Algorithms 2 and 3 enhanced by (9) determine whether a
transitively reduced graph is the transitively reduced form of an N -free order
and construct (if the answer is yes) a corresponding edge diagram. They
respectively run on EREW PRAM in O(logn) time using n+ m processors
and on CRCW PRAM in constant time using n? processors.

Proof: The proof follow from Section 4.2.

Remarks: An edge diagram R gives a sublinear representation of the correspond-
ing N-free order P as its size is O(n). This representation allows to answer in con-
stant time to the query “Is u an immediate predecessor of v7” by testing whether
the head of w is the tail of v.

The transitively closed form of P can be obtained from the transitive closure
of R as the query “Is u a predecessor of v?” can be answered by testing whether
there exists in R a directed path from the head of u to the tail of v. This is
interesting since in general R is much smaller than the reduced form of P.

5. Algorithms for distributed-memory machines.

Notice that Algorithm 2 is composed of several sorting and partial sum rou-
tines. Because sorting algorithms and partial sum algorithms have been studied
intensively on many distributed-memory architectures, it is a relatively small step
to write distributed-memory algorithms for recognizing N-free orders and con-
structing edge diagrams.

13

Consider a hypercube architecture. The sorting procedure for hypercube
with the best complexity, proposed by Cypher and Plaxton [CP90], runs in time
O(logn(loglogn)?) on n processors. The partial sum algorithm for hypercube in-
troduced by Nassimi and Sahni [NS81] runs optimally in time O(logn). Therefore,
on a hypercube we can implement Algorithm 2 to run on m processors in time
O(log n(loglogn)?).

On a O(y/n) by O(y/n) mesh of processors, sorting procedures with the best
complexity—for example, the rotate sort of Gafni and Marberg [MG87] or the
bitonic sort of Batcher [Bat68]—run optimally in time O(y/n). A partial sum
also runs optimally in time O(y/n). Therefore on a O(y/n) by O(y/n) mesh of
processors we can implement Algorithm 2 optimally in time O(y/n).

6. Perspectives.

In this paper we have proposed PRAM and distributed-memory algorithms
for recognizing N-free orders and constructing edge diagrams. Note that our
algorithms only accept transitively reduced directed acyclic graphs as input. It is
a general problem to develop parallel recognition algorithms which do not suppose
that the input is transitively reduced or transitively closed, and which do not
require transitive reduction nor transitive closure computations. As far as we
know, this is still an open problem for many other classes of orders and even for
very simple ones like the class of total orders.

7. Acknowledgments.

This paper is intentionally structured as the article of Bender, Gastaldo and
Morvan [BGM93].

References.

[Bat68] K. E. Batcher. Sorting networks and their applications. In Spring Joint
Computer Conf., pages 307-314, 1968.

[BGM93] M. Bender, M. Gastaldo, and M. Morvan. Parallel interval order recog-
nition and construction of interval representation. Technical Report
RR 93-27, LIP ENS-Lyon, September 1993. To appear in Theoretical
Computer Science.

[Col88] Richard Cole. Parallel merge sort. SIAM J. Comput., 17(4), August
1988.

14

[CPY0]
[Elm77]
[FGS85)
[Gab8l]
[Gol80]
[Gri69)]

[HB78]

[HJ85]
[HNGO]
[LM73]

IMG87]

[Moh89]

[MP64]
[MS91]
[NS81]

[PLET71]

R. Cypher and C. G Plaxton. Deterministic Sorting in Nearly Logarith-
mic Time on the Hypercube and Related Computers. In 22nd Annual
Symposium on Theory of Computing, pages 193-203, October 1990.

S. E. Elmaghraby. In Activity Networks, Wiley, New York, 1977.

U. Faigle, G. Gierz, and R. Schrader. Algorithmic approaches to setup
minimization. SIAM J. Comput., 14:954-965, 1985.

H. Gabow. A linear time recognition algorithm for interval dags. Infor-
mation Processing Letters, 12(1):20-22, February 1981.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press, New York, 1980.

P. Grillet. Maximal chains and antichains. Fund. Math., 65:157-167,
1969.

R. L. Hemminger and L.. W. Beineke. Line graphs and line digraphs. In
L. W. Beineke and R. J. Wilson, editors, Selected topics in graph theory,
pages 271-305, London, 1978. Academic Press.

M. Habib and R. Jegou. N-free posets as generalizations of series-parallel
posets. Discrete Appl. Math., 12(3):279-291, 1985.

F. Harary and Z.R. Norman. Some properties of line digraphs. Rend.
Circ. Math., 9(161-168), 1960. Palermo.

B. Leclerc and B. Monjardet. Orders “c.a.c.”. Fund. Math., 79:11-22,
1973.

J. M. Marberg and E. Gafni. Sorting in constant number of row and
column phases on a mesh. In Proceedings of the Allerton Conference on
Computing, Communication and Control, pages 603—-612, 1987.

Rolf H. Mohring. Computationally tractable classes of ordered sets. In
I. Rival, editor, Algorithms and Order, pages 105-193. Kluwer Acad.
Publ., Dordrecht, 1989.

J. J. Moder and C. R. Phillips. In Project Management with CPM and
PERT, Reinhold, New York, 1964.

T. H. Ma and J. Spinrad. Transitive closure for restricted classes of
partial orders. Order, 8(2):175-183, 1991.

D. Nassimi and S. Sahni. Data broadcasting in simd computers. IEEFFE
Trans on Computers, 30(2):101-107, 1981.

A. Pneuili, A Lempel, and W. Even. Transitive orientation of graphs
and identification of permutation graphs. Canad. J. math, 23:160-175,
1971.

15

[PY79]

[Riv82]

[Spi8&5]

[Spi8&6]

[Sys82]

[Sys84]

[Sys85]

[VTLS2]

C. H. Papadimitriou and M. Yannakakis. Scheduling interval-ordered
tasks. SIAM J. Comp., 8:405-409, 1979.

I. Rival. Optimal linear extensions by interchanging chains. Proc. Amer.
Math. Soc., 89:387-394, 1982.

J. Spinrad. On comparability and permutation graphs. SIAM J. Com-
put., 14:658-670, 1985.

J. Spinrad. The minimum dummy task problem. Networks, 16(3):331—
348, 1986.

M. M. Syslo. A labeling algorithm to recognize a line digraph and output
its root graph. Inform. Processing Letters, 15:241-260, 1982.

M. M. Syslo. On the computational complexity of the minimum-dummy-
activities problem in a pert network. Networks, 14:37-45, 1984.

M. M. Syslo. A graph theoretic approach to the jump number problem.
In I. Rival, editor, Graphs and Order, pages 185-215, Reidel, Dordrecht,
1985.

J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series-
parallel digraphs. SIAM J. Comput., 11:298-314, 1982.

16

