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Parallel N-free Order Re
ognitionLaurent ViennotLITP/IBPUniversit�e Paris 7 Denis DiderotCase 7014, 2, pla
e JussieuF-75251, Paris Cedex 05.e-mail: lavie�litp.ibp.frAbstra
tParallel algorithms for re
ognizing and representing N -free orders are pro-posed for di�erent models of parallel random a

ess ma
hines (PRAM). The algo-rithms a

ept as input a transitively redu
ed dire
ted graph with n verti
es andm edges. They respe
tively run in time O(logn) using n+m pro
essors in theEREW PRAM model and in 
onstant time using n2 pro
essors in the CRCWPRAM model. Algorithms for distributed-memory ma
hines are also proposed.Key words: Parallel algorithms, re
ognition algorithms, PRAM, partial order,N -free order.1. Introdu
tion.Due to the proverbial intra
tability (i.e. NP-
ompleteness) of the majorityof 
omputational problems o

urring in the algorithmi
 study of ordered dis
retestru
tures, mu
h interest has been paid to 
lasses of ordered sets that still admiteÆ
ient algorithms for otherwise intra
table problems. The tra
tability of these
lasses is in most 
ases a 
onsequen
e of rather strong stru
tural properties notshared by arbitrary partial orders.Many su
h algorithms have been developed by, for example, Mohring [Moh89℄,Golumbi
 [Gol80℄, Spinrad [Spi85℄, Pnuelli, Lempel and Even [PLE71℄, Papadim-itriou and Yannakakis [PY79℄, Gabow [Gab81℄. However, all of them are sequen-tial algorithms. Like Bender, Gastaldo and Morvan [BGM93℄ who gave a parallelsolution to interval order re
ognition, we are interested in developing parallel al-gorithms to 
omplement the existing sequential algorithms. In this paper we fo
uson N -free orders.N -free orders have been theoreti
ally studied in depth for their numerousstru
tural poperties [HJ85, Gri69, LM73, HB78, HN60℄. One of their main andoldest appli
ations is their use in proje
t analysis, in parti
ular in the te
hniquessu
h as CPM or PERT, see e.g. [Elm77, MP64℄. These te
hniques represent a1



proje
t by a dire
ted graph in whi
h the edges 
orrespond to the a
tivities of theproje
t and verti
es 
orrespond to events (the 
ompletion of all a
tivities enteringthe vertex). In order-theoreti
 terms, this so-
alled a
tivity-on-edge representationor PERT-network is just the edge diagram of anN -free order. If the original partialorder des
ribing the te
hnologi
al pre
eden
e 
onstraints of the proje
t is not N -free, then dummy a
tivities are added to make it N -free. Many te
hniques havebeen proposed for this task, 
f. [Sys84, Sys85, Spi86℄ for further referen
es.The other major appli
ation of N -free orders arose with the investigation ofthe jump number. This 
lassi
al parameter 
an be 
omputed by a simple greedyalgorithm in N -free orders [Riv82℄, and is also related to several stru
tural prop-erties of N -free orders.The fastest knownN -free re
ognition algorithms assume that the partial orderP is given in transitively redu
ed form and 
onstru
t an edge diagram if P is N -free. Their running time is O(n+m), where n is the number of verti
es and m isthe number of edges in the transitive redu
tion of P . The �rst su
h algorithm isimpli
itly 
ontained in the re
ognition algorithm for series-parallel partial ordersin [VTL82℄. The �rst \expli
it" linear N -free re
ognition algorithm appeared in[Sys82℄. Another important result is the algorithm of Ma and Spinrad [MS91℄where no assumption on the input is made. It determines whether the transitive
losure of a dire
ted graph is an N -free order in O(n+mt) time where mt is thenumber of edges of the transitive 
losure of the input.In this paper we propose parallel algorithms for re
ognizing N -free orders,and parallel algorithms for determining edge diagram representations.Se
tion 2 introdu
es the basi
 de�nitions and properties of N -free orders,whi
h will be exploited in our re
ognition algorithms. In se
tion 3 we proposePRAM parallelN -free order re
ognition algorithms for two models of PRAM: withex
lusive memory a

esses or with 
on
urrent memory a

esses. In se
tion 4 wepropose PRAM parallel algorithms for 
onstru
ting edge diagram representations.We present parallel re
ognition and representation algorithms for distributed mem-ory ma
hines in se
tion 5.2. De�nition and properties of N-free orders.A partial order will be denoted by P = (V;<), where V is the (�nite) groundset of verti
es and < is the order relation, i.e. an irre
exive and transitive relationwhose pairs (u; v) 2< are written as u < v (u; v 2 V ). If u < v then u is 
alled aprede
essor of v and v is 
alled a su

essor of u. If u < v and there is no w 2 V withu < w < v then v is said to 
over u (denoted by u � v). We also say that v is animmediate su

essor of u (or u is an immediate prede
essor of v). ImSu

(u) andImPred(v) denote the set of all immediate su

essors and immediate prede
essorsof u. 2



Dire
ted graphs may have parallel ar
s but no loops. They are denoted byG = (V;A), where V is the set of verti
es and A is the set of dire
ted edges orar
s. An ar
 a 2 A is dire
ted from its tail u to its head v. We write a = (u; v). Ifthere are parallel ar
s, we 
onsider that A is a multiset. A sink is a vertex whi
his not a head of any ar
, and a sour
e is a vertex whi
h is not a tail of any ar
.A dag is a dire
ted a
y
li
 graph (possibly with parallel edges). It is transi-tively 
losed if (u; v); (v; w) 2 A implies that (u;w) 2 A, and transitively redu
edif (u;w) 2 A implies that there is no v 2 V with (u; v) 2 A and (v; w) 2 A. Everyar
 (u;w) violating this 
ondition is 
alled transitive.Every partial order P = (V;<) may be interpreted as a transitively 
loseddag with vertex set V and edge set <. Obviously, the transitively redu
ed form
orresponds to the 
overing relation. A Hasse diagram of P is a drawing of thisredu
ed form where the edges are impli
itly dire
ted from bottom to top (seeFigure 1).An order is N -free if its redu
ed form does not 
ontain the sub
on�gurationN from Figure 1.(a) as indu
ed subgraph.
u

v

(b)(a)Figure 1. (a) The forbidden sub
on�guration for N -free orders. (b) Anexample of N -free order represented by its Hasse diagram. The Hasse diagramis a full representation of the order sin
e a vertex v is a su

essor of a vertex uif and only if there exists an always as
ending path from u to v.Every dag G = (V;A) de�nes a partial order P = (A; <) over its ar
s in thefollowing sense: a < b if and only if there exists a dire
ted path from the head ofa to the tail of b in G.Noti
e that b 
overs a if and only if the head of a is the tail of b. The dagwith vertex set A indu
ed by the 
overing relation of P is 
alled the line-graph ofG. Su
h an order P is said to be edge-indu
ed and G is 
alled an edge diagram ofP . The following theorem (see [Moh89℄) gives the fundamental stru
tural prop-erties of N -free orders needed for sequential re
ognition.3



Theorem 1. Given a partial order P = (V;<), the following statements areequivalent:(1.1) P is N -free.(1.2) For all u; v 2 V , ImSu

(u) = ImSu

(v) or ImSu

(u) \ ImSu

(v) = ;.(1.3) P is edge-indu
ed.The optimal sequential re
ognition algorithm [Sys82℄ veri�es property 1.2 bys
anning in
rementally ea
h vertex and its set of immediate su

essors. It assumesthat the order is given in transitively redu
ed form. Its running time is O(jV j +j � j).An equivalent graph-theoreti
 approa
h to Theorem 1 has been developedin [VTL82℄, 
f. also [FGS85℄. As we will see, it is more appropriate for parallelalgorithmi
s. They de�ne the 
lass of 
omplete bipartite 
omposite dags (CBC dagfor short) as the 
lass of dire
ted a
y
li
 graph G = (V;A) for whi
h there existsa partition B1; : : : ; Bk of A su
h that:(2.1) ea
h Bi indu
es a 
omplete bipartite subgraph of G (Bi is 
alled a bipartite
omponent of G),(2.2) for ea
h non-sink vertex v, all ar
s leaving v belong to the same bipartite
omponent,(2.3) for ea
h non-sour
e vertex v, all ar
s entering v belong to the same bipartite
omponent.
S

T

(a) (b)Figure 2. (a) A 
omplete bipartite graph with sour
e set S and sink setT . (b) The bipartite 
omponents of the transitive redu
tion of the N -free orderrepresented in Figure 1.Statements 2.2 and 2.3 are simply a 
ondition of maximality of the bipartite
omponents (see Figure 2). Using this de�nition, another 
hara
terization theoremis given: 4



Theorem 3 [VTL82℄. A dag is CBC if and only if it is the transitiveredu
tion of an N -free order.Remarks: Let Si and Ti respe
tively denote the sour
e set and the sink set of thebipartite 
omponent Bi. Then for all v 2 Ti, ImPred(v) = Si and for all u 2 Si,ImSu

(u) = Ti. Thus we have:fSi; 1 � i � kg = fImPred(v); v 2 V gand fTi; 1 � i � kg = fImSu

(u); u 2 V g:Ea
h Si (respe
tively Ti) will be 
alled a 
omponent sour
e set (respe
tively 
om-ponent sink set) of G whose bipartite 
omponent is Bi.3. Parallel re
ognition algorithms.In the following we develop two parallel algorithms for N -free order re
ogni-tion. They are both based on Theorem 3 and they 
ompute the bipartite 
ompo-nents. They suppose that the input is given in transitively redu
ed form.For the remaining of this paper, let n and m respe
tively denote the numberof verti
es and ar
s of the input.The �rst algorithm employs the ex
lusive-read ex
lusive-write (EREW forshort) PRAM, where only one pro
essor at a time 
an read from or write to amemory lo
ation. It runs in O(logn) time with O(n+m) pro
essors.The se
ond algorithm employs the arbitrary 
on
urrent-read 
on
urrent-write(arbitrary-CRCW for short) PRAM. In 
ase of write 
on
i
t, only one arbitrarypro
essor su

eeds in writing its value. The se
ond algorithm runs in 
onstanttime with O(n2) pro
essors.3.1 Data-stru
ture independent algorithm.The two parallel algorithms are based on the following data-stru
ture inde-pendent algorithm:Algorithm 1. N -free order re
ognitionInput: A transitively redu
ed graph G = (V;A).Output: True if the transitive 
losure of G is an N -free order and false if not.Step 1. Let Si and Ti respe
tively denote the sour
e set and the sink set ofthe bipartite 
omponent Bi (1 � i � k). Compute the bipartite 
omponentssupposing that G is the transitive redu
tion of an N -free order as follows:Sele
t a vertex ui in ea
h 
omponent sour
e set Si using fSi; 1 � i � kg =fImPred(v); v 2 V g.For all su
h vertex ui, 5



identify Ti = ImSu

(ui),identify the Bi as the set of all ar
s having their head in Ti.Step 2. Che
k whether the three 
onditions 2.2, 2.3 and 2.1 for CBC dags areveri�ed. If it is the 
ase then G is the transitive redu
tion of an N -free order,else return false.Remarks: Noti
e that in any 
ase, the 
omponents 
omputed in Step 1 form apartition of the ar
 set. Moreover they indu
e bipartite subgraphs of G be
auseG is transitively redu
ed. Indeed, if it was not the 
ase, a 
omponent Bi would
ontain two ar
s of the form (u; v) and (v; w). It would also 
ontains by 
onstru
-tion the ar
 (ui; v) and the ar
 (ui; w) whi
h would then appear to be a transitivear
. This would violate the fa
t that G is transitively redu
ed. Thus in Step 2,for 
ondition 2.1 we just have to 
he
k that these subgraphs are 
omplete.Noti
e also that all the ar
s entering a vertex v 2 Ti will be in the samebipartite 
omponent Bi by 
onstru
tion. Thus 
ondition 2.3 will always be veri�edand we do not need to 
he
k it. On the other hand, when we su

essfully 
he
k, forsome sink vertex u, that all the ar
s leaving it are in the same bipartite 
omponentBi (
ondition 2.2), we then know that u 2 Si. Thus the 
omponent sour
e setsare 
omputed at the same time.As a �nal remark, let us explain how we will deal with disjoint subsets. Thebipartite 
omponents are disjoint subsets of A. Every Bi will be numbered by ui.The bipartite 
omponents will be represented in array B su
h that an ar
 j is inBi if and only if B[j℄ = ui. The Si (respe
tively the Ti) are disjoint subsets of V .Every Si (respe
tively Ti) will have same number as Bi. The Si (respe
tively theTi) will be analogously represented in an array S (respe
tively T ).Theorem 4. Algorithm 1 determines whether a transitively redu
ed graph Gis N -free.The proof follows from theorem 3.Proof: If the input G is the transitive redu
tion of an N -free order (i.e. a CBCdag), then the algorithm really 
omputes its bipartite 
omponents in Step 1 andthe three tests su

eed in Step 2.Anyway, no matter what partition of the ar
 set has been 
omputed in Step 1,if the tests su

eed in Step 2 then G is a CBC dag. If G is not the transitiveredu
tion of an N -free order then we 
annot have 
omputed bipartite 
omponentsin Step 1 and one of the tests will fail in Step 2.
6



3.2 An EREW algorithm.In the remaining of the paper, we mix up verti
es and their numbers, moreformally, we suppose that V = f1; : : : ; ng.The �rst parallel N -free order re
ognition uses an ar
-array data stru
ture,where the ar
s are expli
itly stored as 
ouples of vertex numbers in an array A.During the algorithm, we sort 
ouples of integer between 1 and n (the numbersof the verti
es). As no eÆ
ient bu
ket sort running on EREW PRAM is known,we will always use the Cole Parallel Merge Sort [Col88℄ whi
h 
an sort k elementsin O(log k) time using k pro
essors. These 
ouples will be sorted a

ording to thelexi
ographi
al order <lex de�ned by:(u; v) <lex (u0; v0)() � either u < u0or u = u0 and v < v0:or a

ording to the anti-lexi
ographi
al order <anti de�ned by:(u; v) <anti (u0; v0)() (v; u) <lex (v0; u0):In a lexi
ographi
ally (respe
tively anti-lexi
ographi
ally) sorted array of 
ouples,we 
all blo
ks the subarrays of 
onse
utive 
ouples having same �rst (respe
tivelyse
ond) 
omponent (see Figure 3).
(a)

1 9

7

4

6

8

25

3

(b) (1,3) (1,6) (2,7) (3,7) (4,8) (4,9) (5,7) (6,2) (6,5) (8,3) (8,6) (9,2) (9,5)(
) (6,2) (9,2) (1,3) (8,3) (6,5) (9,5) (1,6) (8,6) (2,7) (3,7) (5,7) (4,8) (4,9)Figure 3. (a) The N -free order represented in Figure 1 with numberedverti
es. (b) The ar
-array representation of its redu
ed form sorted lexi
ographi-
ally. The blo
ks whi
h are the subarrays of 
ouples having same �rst 
omponentare outlined. (
) The ar
-array sorted anti-lexi
ographi
ally. The blo
ks are thesubarrays of 
ouples having same se
ond 
omponent.7



In this �rst implementation of Step 1 of Algorithm 1, the 
hosen vertex in ea
h
omponent sour
e set will be the one having minimal number. The idea will be tosele
t these elements u1; : : : ; uk without having 
omputed the 
omponent sour
eset S1; : : : ; Sk that respe
tively 
ontain them. To do so, we anti-lexi
ographi
allysort the ar
-array. Consider now the ar
s of a blo
k and let v be their 
ommonse
ond 
omponent. Keeping only their tails, we obtain the sorted list of the ele-ments of ImPred(v). Thus the �rst element of this list is the sele
ted vertex of the
omponent sour
e set ImPred(v). Obviously this �rst element will be the same forany w su
h that ImPred(w) = ImPred(v). In the example of Figure 3, the sele
tedverti
es will be 6; 1; 2 and 4. Then we 
an easily identify the 
orresponding Ti andBi giving them number ui.The out-degree D+(u) of ea
h vertex u of the input (1 � u � n) will berequired in Step 2. We will verify that every Bi 
omputed in Step 1 is 
om-plete by 
he
king that all its sour
es have same out-degree. This is suÆ
ientsin
e D+(ui) = jTij by 
onstru
tion. The out-degrees 
an easily be 
al
ulated inO(logn) time using for example, a lexi
ographi
al sorting of the ar
s and a parallelpre�x 
omputation.The algorithm is as follows:Algorithm 2. EREW implementationInput: A transitively redu
ed graph G.Output: True if the transitive 
losure of G is an N -free order and false if not.� Implementation of Step 1 of Algorithm 1 	1 Sort the ar
s of array A anti-lexi
ographi
ally.2 For all 1 � j � m do3 Let (u; v) be the ar
 in array position A[j℄.4 If (u; v) is the �rst ar
 of its blo
k (i.e. if the head of the ar
 in arrayposition A[j � 1℄ is di�erent from v) then set T [v℄ := u.5 Set the bipartite 
omponent number of the ar
 (u; v) to B[j℄ := T [v℄.� Implementation of Step 2 of Algorithm 1 	� Che
king 
ondition 2.2: are the ar
s leaving ea
h vertex in the same bipartite
omponent? 	6 Sort the ar
s lexi
ographi
ally.� Che
k that in every blo
k, all ar
s have same bipartite 
omponent number: 	7 For all 2 � i � n do8 Let (u1; v1) and (u2; v2) be the 
ouples in array positions A[i� 1℄ andA[i℄ respe
tively.9 If u1 = u2 then ReturnValue[i℄ := (B[i� 1℄ = B[i℄)10 Else ReturnValue[i℄ := true11 S[u2℄ := B[i℄12 Let (u; v) be the 
ouple in array position A[1℄, set S[u℄ := B[1℄.8



13 If not(Vni=2 ReturnValue[i℄) then return false� Che
king 
ondition 2.1: are the bipartite 
omponents 
omplete? 	14 Store the 
ouples (S[u℄; D+(u)) lexi
ographi
ally.15 Che
k in the same way as previously that in every blo
k all the 
ouples havesame se
ond 
omponent.16 If the two tests have su

eeded then return true.Theorem 5. Algorithm 2 determines whether a transitively redu
ed graph Gis N -free. It runs on EREW PRAM in O(logn) time using n+m pro
essors.Proof: Algorithm 2 is 
learly equivalent to Algorithm 1. The 
on
urrent read inline 5 
an be implemented with a pre�x 
omputation in O(logn) time using mpro
essors. All sorts and 
onjon
tions 
an run in O(logn) time using O(n +m)pro
essors. The result follows.3.3 A CRCW algorithm.We now propose a 
onstant time algorithm. This is possible be
ause we deeplyuse the arbitrary 
on
urrent write ability to 
ompute partitions instead of sortingoperations. We will 
he
k that the bipartite 
omponents are 
omplete thanks tothe 
omplementary graph: we will test if no ar
 is missing in any 
omponent. Theuse of the 
omplementary graph indu
es a O(n2) workload. Algorithm 3 is basedon an adja
en
y-matrix stru
ture whi
h allows to work on both the graph and its
omplement. The adja
en
y-matrix M for the input graph G = (V;A) is de�nedas follows: M [u; v℄ = � true if (u; v) 2 Afalse otherwise.Noti
e that we 
an easily 
ompute this representation from an ar
-array datastru
ture in 
onstant time using n2 pro
essors.To implement Step 1 of Algorithm 1, every bipartite 
omponent will be 
om-puted in two phases. Consider a 
omponent sour
e set Si. For all v 2 V su
hthat ImPred(v) = Si, we have to isolate the same vertex ui. First we pi
k anarbitrary vertex ST [v℄ 2 ImPred(v) (lines 1-2). In ea
h 
omponent sour
e set, wekeep only the pi
ked vertex having minimal number (lines 3-6). Then for ea
hsu
h vertex ui, we respe
tively 
ompute Ti and Bi as the immediate su

essors setof ui (lines 7-8) and as the set of the ar
s entering Ti (line 9). Figure 4 illustrateslines 1-6 on an example.Algorithm 3. CRCW implementationInput: A transitively redu
ed graph G.Output: True if the transitive 
losure of G is an N -free order and false if not.9
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2 31

7

(a) (b)

4

6

1 2 3 4

5 6 7

Figure 4. Sele
ting a sour
e in ea
h bipartite 
omponent. (a) A bipartite
omponent with numbered verti
es. (b) Here, an arbitrary 
on
urrent write hasdetermined ST [5℄ = 2 and ST [6℄ = ST [7℄ = 3 (line 2). Thus we mark 2 and3 (line 4). The existen
e of the ar
 (3; 5) proves that 3 and 2 = ST [5℄ are inthe same sour
e set ImPred(5) = ImPred(6) = ImPred(7) and thus that 3 isnot the marked vertex with minimal number in this sour
e set. Hen
e 3 will beunmarked (line 6).� Implementation of Step 1 of Algorithm 1 	1 For all 1 � u; v � n do if M [u; v℄ then2 ST [v℄ := u � arbitrary 
on
urrent write 	3 For all 1 � u � n do Marked[u℄ := false4 For all 1 � v � n do Marked[ST [v℄℄ := true5 For all 1 � u; v � n do if M [u; v℄ then6 If u > ST [v℄ then Marked[u℄ := false � 
on
urrent write of samevalue 	7 For all 1 � u; v � n do if M [u; v℄ then8 If Marked[u℄ then T [v℄ := u9 B[u; v℄ := T [v℄� Implementation of Step 2 of Algorithm 1 	10 Result := true� Che
king 
ondition 2.2: are the ar
s leaving ea
h vertex in the same bipartite
omponent? 	� Compute the sour
e set of every bipartite 
omponent: 	11 For all 1 � u; v � n do if M [u; v℄ then12 S[u℄ := B[u; v℄ � arbitrary 
on
urrent write 	13 If S[u℄ 6= B[u; v℄ then Result := false � 
he
k that the previous
on
urrent write was indeed a 
on
urrent write of the same value 	� Che
king 
ondition 2.1: are the bipartite 
omponents 
omplete? 	� Che
k that no ar
 is missing in any 
omponent: 	14 For all 1 � u; v � n do if not(M [u; v℄) then15 If S[u℄ and T [u℄ are de�ned and S[u℄ = T [v℄ then Result := false10



16 return Result.Theorem 6. Algorithm 3 determines whether a transitively redu
ed graph Gis N -free. It runs on CRCW PRAM in 
onstant time using n2 pro
essors.Proof: The time and number of pro
essors bounds are 
lear.In line 13, all ar
s (u; v) leaving u write their bipartite 
omponent number inS[u℄ and 
he
k in line 14 that they have all written the same value, 
he
king bythe way 
ondition 2.2. Noti
e that two verti
es u and v are sour
es of the samebipartite 
omponent if and only if S[u℄ = S[v℄.We 
he
k that every bipartite 
omponent Bi joining verti
es from Si with Tiis 
omplete by testing whether an ar
 (u; v) verifying u 2 Si and v 2 Ti is missingin line 17.We still have to prove that the implementation of Step 1 of Algorithm 1 is
orre
t. We suppose that the input is a CBC dag as we do not matter what is
omputed otherwise.Consider a bipartite 
omponent Bi joining verti
es from Si with Ti. For allv 2 Ti, ST [v℄ is set in line 2 to an arbitrary vertex in Si = ImPred(v). The verti
esof the form ST [v℄ are marked in line 4. Let ui be the marked vertex with minimalnumber in Si and let vi be a vertex su
h that ST [vi℄ = ui.Consider now line 6. For all ar
 (ui; v) leaving ui, v 2 Ti and thus we haveST [v℄ � ui. Hen
e ui is still marked after this line. On the other hand for allu 2 Si di�erent from ui, the ar
 (u; vi) is present in the graph sin
e the bipartite
omponent is 
omplete by hypothesis. As u > ST [vi℄, Marked[u℄ is set to false.After line 6, ui is the only marked vertex in Si. Thus the write in line 8 is ex
lusiveand Ti = ImSu

(ui) is the set of verti
es v verifying T [v℄ = ui. The ar
s (u; v) ofBi are those entering a vertex in Ti as 
omputed in line 9. They 
an be identi�edby B[u; v℄ = ui the number of Bi.4. Parallel algorithms for 
onstru
ting edge dia-grams.In the following se
tion, we provide algorithms whi
h determine an edge dia-gram edge-indu
ing a given N -free order.4.1 Properties of the bipartite 
omponents.Let G = (V;A) be the transitive redu
tion of an N -free order P . By theo-rem 3, G is a CBC dag. Let B1; : : : ; Bk be the partition of its ar
 set in bipartite
omponents. For every Bi, we denote by Si the set of sour
es of Bi and by Ti theset of sinks of Bi. 11



Let T0 be the sour
e set of G and S1 be the sink set of G. Thus T0; T1; : : : ; Tkand S1; : : : ; Sk; S1 form two partitions of V . In addition, we introdu
e two \vir-tual" bipartite 
omponents B0 and B1. We formally set that T0 is the 
omponentsink set of B0 and that S1 is the 
omponent sour
e set of B1.Now 
onsider the dag R = �fB0; B1; : : : ; Bk; B1g; eV � de�ned as follows.Ea
h vertex v 2 V is asso
iated to an ar
 ev 2 eV of R (eV is a multiset):(7) if v 2 Ti and v 2 Sj then ev = (Bi; Bj) is an ar
 from Bi to Bj .Noti
e that Rmay have parallel ar
s as there may be several verti
es in Ti\Sj .

(a) (b)Figure 5. (a) The N -free order of Figure 1 represented by its Hasse dia-gram where the bipartite 
omponents are outlined. (b) Its unique edge diagramwhi
h has a single sour
e and a single sink. Its verti
es are the bipartite 
om-ponents represented in a (plus a sour
e and a sink). Ea
h ar
 is asso
iated to avertex of the N -free order.Theorem 8 [VTL82℄. The dag R is an edge diagram of P .Proof: G is the line graph of R as its ar
s (u; v) are those verifying u 2 Sj andv 2 Tj for some j 2 f1; : : : ; kg and we 
an write u = (Bi; Bj) and v = (Bj; Bk) forsome i; k 2 f0; 1; : : : ; k;1g.Noti
e that R is the only edge diagram of P whi
h has a single sour
e and asingle sink. 12



4.2 Algorithms.Parallel algorithms whi
h determine an ar
 array representation of a 
orre-sponding edge diagram given an N -free order 
an easily be obtained from there
ognition algorithms we have proposed.Suppose that the input is the redu
ed form of an N -free order. We havealready mentioned the fa
t that these algorithms 
ompute the Si and the Ti (1 �i � k). In addition, let us suppose that at the beginning of the algorithms, arraysT and S are respe
tively initialized to 0 and 1. The sour
es (respe
tively thesinks) are the only verti
es for whi
h T (respe
tively S) is not 
omputed. Thus atthe end of the algorithm, T (respe
tively S) represents the partition T0; T1; : : : ; Tk(respe
tively S1; : : : ; Sk; S1) where T0 has number 0 (and B1 has number 1).Thus by adding the following line, we obtain parallel algorithms for 
onstru
tingan ar
-array eV representing the edge diagram de�ned by 7 without 
hanging theprevious 
omplexities.(9) For all 1 � u � n do eV [u℄ := (T [v℄; S[v℄):Theorem 10. Algorithms 2 and 3 enhan
ed by (9) determine whether atransitively redu
ed graph is the transitively redu
ed form of an N -free orderand 
onstru
t (if the answer is yes) a 
orresponding edge diagram. Theyrespe
tively run on EREW PRAM in O(logn) time using n+m pro
essorsand on CRCW PRAM in 
onstant time using n2 pro
essors.Proof: The proof follow from Se
tion 4.2.Remarks: An edge diagram R gives a sublinear representation of the 
orrespond-ing N -free order P as its size is O(n). This representation allows to answer in 
on-stant time to the query \Is u an immediate prede
essor of v?" by testing whetherthe head of eu is the tail of ev.The transitively 
losed form of P 
an be obtained from the transitive 
losureof R as the query \Is u a prede
essor of v?" 
an be answered by testing whetherthere exists in R a dire
ted path from the head of eu to the tail of ev. This isinteresting sin
e in general R is mu
h smaller than the redu
ed form of P .5. Algorithms for distributed-memory ma
hines.Noti
e that Algorithm 2 is 
omposed of several sorting and partial sum rou-tines. Be
ause sorting algorithms and partial sum algorithms have been studiedintensively on many distributed-memory ar
hite
tures, it is a relatively small stepto write distributed-memory algorithms for re
ognizing N -free orders and 
on-stru
ting edge diagrams. 13



Consider a hyper
ube ar
hite
ture. The sorting pro
edure for hyper
ubewith the best 
omplexity, proposed by Cypher and Plaxton [CP90℄, runs in timeO(logn(log logn)2) on n pro
essors. The partial sum algorithm for hyper
ube in-trodu
ed by Nassimi and Sahni [NS81℄ runs optimally in time O(logn). Therefore,on a hyper
ube we 
an implement Algorithm 2 to run on m pro
essors in timeO(logn(log logn)2).On a O(pn) by O(pn) mesh of pro
essors, sorting pro
edures with the best
omplexity|for example, the rotate sort of Gafni and Marberg [MG87℄ or thebitoni
 sort of Bat
her [Bat68℄|run optimally in time O(pn). A partial sumalso runs optimally in time O(pn). Therefore on a O(pn) by O(pn) mesh ofpro
essors we 
an implement Algorithm 2 optimally in time O(pn).6. Perspe
tives.In this paper we have proposed PRAM and distributed-memory algorithmsfor re
ognizing N -free orders and 
onstru
ting edge diagrams. Note that ouralgorithms only a

ept transitively redu
ed dire
ted a
y
li
 graphs as input. It isa general problem to develop parallel re
ognition algorithms whi
h do not supposethat the input is transitively redu
ed or transitively 
losed, and whi
h do notrequire transitive redu
tion nor transitive 
losure 
omputations. As far as weknow, this is still an open problem for many other 
lasses of orders and even forvery simple ones like the 
lass of total orders.7. A
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