G. [. Booth and . Leuker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, Chv84] V. Chvàtal. Perfectly ordered graphs. Annals of Discrete Mathematics, pp.335-37963, 1976.
DOI : 10.1016/S0022-0000(76)80045-1

D. G. Corneil, S. Olariu, and L. Stewart, The ultimate interval graph recognition algorithm ?, Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-98), pp.175-180, 1998.

T. [. Hsu and . Ma, Substitution decomposition on chordal graphs and applications, Proceedings of the 2nd ACM-SIGSAM Internationnal Symposium on Symbolic and Algebraic Computation, number 557, 1991.
DOI : 10.1007/3-540-54945-5_49

F. [. Hò-ang, M. Maffray, and . Noy, A characterization of p4-indifference graphs, Journal of Graph Theory, vol.31, issue.3, pp.155-162, 1999.

M. Habib, R. M. Mcconnell, C. Paul, and L. Viennot, Lex-BFS a partition refining technique , application to transitive orientation and consecutive 1's testing, Theoretical Computer Science, 1997.
URL : https://hal.archives-ouvertes.fr/inria-00471613

B. [. Hò-ang and . Reed, Some classes of perfectly orderable graphs, Journal of Graph Theory, vol.1, issue.4, pp.445-463, 1989.
DOI : 10.1002/jgt.3190130407

R. [. Korte and . Möhring, An Incremental Linear-Time Algorithm for Recognizing Interval Graphs, SIAM Journal on Computing, vol.18, issue.1, pp.68-81, 1989.
DOI : 10.1137/0218005

J. [. Mcconnell and . Spinrad, Linear-time modular decomposition and efficient transitive orientation of undirected graphs, Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.536-545, 1994.

J. [. Mcconnell and . Spinrad, Modular decomposition and transitive orientation, Discrete Mathematics, vol.201, issue.1-3, pp.189-241, 1999.
DOI : 10.1016/S0012-365X(98)00319-7

T. Raschle and K. Simon, On the p 4 -components of graphs, 1997.

R. [. Rose, G. S. Tarjan, and . Leuker, Algorithmic Aspects of Vertex Elimination on Graphs, SIAM Journal on Computing, vol.5, issue.2, pp.266-283, 1976.
DOI : 10.1137/0205021