
HAL Id: inria-00471718
https://inria.hal.science/inria-00471718

Submitted on 8 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incentive, Resilience and Load Balancing in Multicasting
through Clustered de Bruijn Overlay Network

(PrefixStream)
Anh-Tuan Gai, Laurent Viennot

To cite this version:
Anh-Tuan Gai, Laurent Viennot. Incentive, Resilience and Load Balancing in Multicasting through
Clustered de Bruijn Overlay Network (PrefixStream). 14th IEEE International Conference on Net-
works (ICON), Sep 2006, Singapore, Singapore. pp.1-6, �10.1109/ICON.2006.302673�. �inria-00471718�

https://inria.hal.science/inria-00471718
https://hal.archives-ouvertes.fr

Incentive, Resilience and Load Balancing in Multicasting

through Clustered de Bruijn Overlay Network

Anh-Tuan Gai∗

INRIA Rocquencourt
anh-tuan.gai@inria.fr

Laurent Viennot†

INRIA Rocquencourt
laurent.viennot@inria.fr

Abstract: In this paper, we consider the problem of mul-
ticasting a stream of packets in a large scale peer-to-peer
environment. In that context peers should have incentive
to cooperate. We present PrefixStream, an algorithm that
addresses this problem by using reciprocity in packet for-
warding. Each node thus has incentive to forward since
recipients send back other packets of the stream. To achieve
this efficiently, PrefixStream strips the content across two
sets of clustered trees built upon the symmetric de Bruijn
graph. This both allows to banish nodes that do not respect
reciprocity of exchanges and gives resilience to node failures.
Furthermore, it reduces the forwarding load of every node
to the stream bandwidth (every node uploads as much as it
downloads) even when the size of its cluster varies. Con-
versely to previously proposed hierarchical schemes, Pre-
fixStream promotes disjoint clustering. This enables loose
maintenance and network latencies optimization. We sketch
the design of PrefixStream and analyze its performances.

Key words: peer-to-peer, multicast, incentive, streaming,
de Bruijn.

1 Introduction

This paper proposes an algorithm called PrefixStream for
multicast streaming in a very large scale peer-to-peer net-
work. We call multicast streaming an application where a
source is sending a flow of packets to a large number of re-
ceivers. IP multicasting is certainly the most efficient way
for multicast, however the burden of duplicating packets is
carried by intermediate routers which are often independent
from the source and the receivers. This may explain why
transit networks hardly ever support IP multicasting. On
the other hand, attention is now centered on end-system or
application-level multicast where the participants duplicate
themselves the packets [4, 19, 15].

We concentrate on a system where the scarcest resource
is the forwarding capacity of nodes. We typically target
streaming applications for ADSL users. To function prop-
erly, such a system requires at least an average upload band-
width per node greater than the stream bandwidth. Pre-
fixStream allows all users to receive the stream under the

∗Domaine de Voluceau, B.P.105, 78153 Le Chesnay cedex, France.
Research supported by the PairAPair project, ACI Masse de données.

condition that each user devotes to the system an upload
capacity equal to the stream bandwidth.

Most existing solutions assume varying upload capacities
of nodes. However, we argue that in a selfish context, all
nodes should bear the same forwarding load. The reason is
twofold. Selfish nodes tend to spend the minimum capac-
ity required to obtain the service. Such behavior has been
observed in file sharing applications where free riders [2, 18]
tend to upload only if they cannot download otherwise. In
such realistic selfish context, all nodes end up devoting same
minimal bandwidth to the system, i.e. the stream band-
width. Secondly, it may be the case that most of the nodes
have an upload capacity close to the stream bandwidth since
applications will tend to give the best quality available to the
majority of users. (In an heterogeneous system, the classical
approach is to form classes of users with equivalent capacity.
Each class then certainly needs balanced forwarding loads.)
Let us first discuss the three major design goals achieved by
PrefixStream.

Low delay with balanced forwarding loads. First of
all, minimizing the maximal delay is a classical concern in
multicasting especially for live streaming. For that purpose,
it is necessary to forward each packet of the stream along a
tree rooted at the source. This allows to reach all nodes with
a logarithmic number of retransmissions. Notice that inte-
rior nodes of the tree forward more data than they receive
and that leaves do not forward at all. In order to balance
the forwarding load of nodes, multiple disjoint trees must be
used where each participant works more in some trees and
less in others. Such solutions were first introduced to effi-
ciently multicast in the hypercube [9] through edge disjoint
trees. However, application-level multicast rather requires
interior-node disjoint trees [4] where each node is interior in
only one tree (being a leaf in other trees).

Efficient maintenance of the topology. As nodes may
frequently enter and leave the system, maintaining this set
of trees may become a challenging task. PrefixStream par-
titions the nodes in clusters and build trees among these
clusters. Multicasting trees use one node per cluster and
are easily maintained as long as each cluster contains a liv-
ing node. A simple distributed algorithm is used to form
clusters: nodes gather together according to the prefix of
their identifier. The de Bruijn graph over prefixes allows

1

to construct interior-node disjoint trees of regular degree.
The drawback of this resilient scheme is longer propagation
delays in large clusters.

Incentive to cooperate. Requiring balanced forwarding
loads provides fairness. Nevertheless, it does not necessarily
ensure that nodes behave as instructed. Nodes that do not
fulfill their forwarding load should be detected and replaced
by some more reliable nodes. To allow this, PrefixStream
makes symmetric exchanges between nodes. This is possible
through the use of two sets of trees where an edge of a tree
in one set also appears with reversed direction in some other
tree of the second set. If a node does not forward a packet
as expected, the recipient may refuse to serve it in return.
We use similar reciprocity inside clusters since each node
regularly sends packets to all other members of its cluster.
This exchange reciprocity thus enables tit-for-tat incentive
mechanisms as introduced by BitTorrent [5]. Notice that
the delay constraints and the packet level exchange of the
streaming context prevent from using directly BitTorrent.

Our contributions. The de Bruijn topology was al-
ready known as a good candidate for distributed hashta-
bles [14, 7, 10, 1, 8]. We show that it is also well suited
for multicasting. First of all, the de Bruijn graph natu-
rally contains interior-node disjoint trees of regular degree.
This structure ensures both load balancing and low propa-
gation delays. Moreover, the use of the de Bruijn graph and
its symmetric allows to introduce reciprocity in exchanges.
This brings the first peer-to-peer streaming algorithm with
incentive to cooperate. On the other hand, we introduce a
new way of clustering nodes which is naturally distributed.
This enables low topology maintenance and resilience to
churn.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 outlines the PrefixStream
design. We analyze PrefixStream performances in Section 4.

2 Related work

Many application-level multicast have been proposed re-
cently [4, 19, 15] (see [16] for an overview). Almost all of
them rely on the hypothesis that nodes behave as instructed.

CoopNet [15] uses a centralized server to build multiple
trees respecting degree constraints (the degree of a node is
constrained by its upload capacity). On the other hand,
Zigzag [19] uses a single tree with hierarchical clusters.
Pulse [16] is an ongoing work to adapt BitTorrent algorithm
to streaming. It is inspired both from the unstructured
topology of BitTorrent and from its tit-for-tat exchange
mechanism for giving incentive to cooperate. It exchanges
small chunks of the stream within a time sliding window.
However, it is still unclear whether BitTorrent may scale to
make exchanges at very small chunk level. Indeed, the con-
trol overhead for announcing chunks bitmaps to neighbors
may become comparable to the stream bandwidth. Bigger
chunks incur less overhead but more delay. Similarly, Pre-
fixStream uses reciprocity of exchanges both inside clusters

and between clusters. However, it relies on a structured
topology ensuring low propagation delays and low control
overhead.

PrefixStream mostly resemble SplitStream [4]. Split-
Stream strives to construct interior-node disjoint trees based
on the Pastry [17] overlay network. Each tree is basically
constructed as the union of all routes from nodes to a given
source. SplitStream additionally relies on an incremental
insertion procedure to respect degree constraints of nodes
and to cope with node departures. This mechanism is effi-
cient when many nodes have spare capacity. However, when
node capacities are limited to the stream bandwidth, this
procedure generally rebuild a full branch of the tree where
the node is inserted. Besides a complex reparation process,
the main drawback of using this balancing mechanism is to
make some nodes interior in several trees, moving away the
topology from its primary design goal. A single node de-
parture can then affect several trees. The need for this bal-
ancing mechanism is inherently due to the hypercube like
topology used. We argue that the basic tree construction
scheme of SplitStream produces unbalanced trees where in-
terior nodes close to the root have higher degree than inte-
rior nodes closer to the bottom of the tree. For example,
without constraint, the degree of the root can be as much as
(d−1) logd n with n nodes and d trees when it should be d to
have a balanced system. See Annex A for a sketch of proof.
The hypercube is indeed better suited for constructing edge
disjoint trees [9]. On the other hand, the de Bruijn topol-
ogy generalizes the heap binary-tree structure and naturally
builds regular degree trees. PrefixStream brings the follow-
ing improvements: it always succeeds in building interior-
node-disjoint trees, clustering provides low topology main-
tenance under churn, and reciprocity of exchanges enable
tit-for-tat incentive mechanisms.

3 PrefixStream Design

As in [15, 4], the content is split into stripes multicasted
along separate trees. Any efficient encoding such as Multiple
Description Encoding (MDC) or a more classical erasure
coding can be used along these stripes. The main novelty of
PrefixStream resides in its topology design which is basically
a de Bruijn graph over clusters of nodes.

3.1 De Bruijn Topology

Definition 1 A base d left shifting de Bruijn graph of p
digits is a directed graph with dp vertices. Each vertex is a
sequence of p digits in base d. An arc from u to v is present
when v may be obtained by left shifting u by one position
and adding a new digit on the right. The right shifting de
Bruijn graph is obtained with the backward edges of the left
shifting de Bruijn graph: an arc from u to v is present when
v may be obtained by right shifting u and adding a new digit
on the left. We call de Bruijn graph the symmetric graph
obtained with both left and right right shifting edges.

2

PrefixStream is built upon the de Bruijn graph because it
contains two symmetrical sets of interior-node-disjoint trees.
One set is obtained by left shifting, the other by right shift-
ing. A left tree is obtained by following left shifting edges
from a root r = x · · ·x with all digits equal to x. The sons of
the root have the form x · · ·xy, its grand sons have the form
x · · ·xyz and so on. Notice that all interior vertices have x
as first digit. Using d different digits x thus yields d interior-
node-disjoint left trees. The root of each tree has degree d−1
and all other interior nodes have degree d. Interior-node-
disjoint right trees can be obtained similarly. Moreover, the
two sets are symmetrical: the father of a node in a tree of
one set is a son in a tree of the other set.

Notice that for d = 2, the left shifting tree with root
0 · · · 0 is simply the classical heap structure where node i
has sons 2i and 2i + 1 (multiplying by 2 is equivalent to left
shifting the binary representation). (The root node of degree
1 is usually excluded from the structure.) The de Bruijn
topology thus naturally generalizes the heap structure for
constructing d-ary trees.

stripe 4

000

001 011

111

010

101

100 110

stripe 3

stripe 1

stripe 2

S

Figure 1: A simple example illustrating PrefixStream inter-
cluster communications with d = 2 and p = 3.

Figure 1 illustrates how PrefixStream enables bi-
directional exchanges between nodes of the de Bruijn graph.
We will see in the sequel how each node of the de Bruijn
graph is operated by a cluster of peers. The trees are rooted
at nodes ”000” and ”111” which have degree 1 (other in-
terior nodes have degree 2). Stripe 1 (resp. stripe 3) is
multicasted in the left (resp. right) tree of ”000”, stripe 2
(resp. stripe 4) in the left (resp. right) tree of ”111”. (No-
tice that roots have degree 1 and other interior nodes have
degree 2.) More generally, with a base d de Bruijn graph,
the stream is split into 2d stripes. Each stripe is multicasted
in turn in one of the 2d trees of degree d rooted at one of
the d nodes with all the same digits. Each node is interior
in one left shifting multicast tree, and in one right shifting
multicast tree. It is a leaf in other trees. When a node serves
d nodes in the left (resp. right) shifting tree where it is in-
terior, it is served by one of them in each d right (resp. left)
shifting tree. This is the basic property allowing exchange

reciprocity.
Note that a node failure affects at most two stripes over

2d, which is almost equivalent to loosing one stripe over d.
Indeed, if the failing node is not a root, very few nodes may
actually loose two stripes as detailed in Annex B.

3.2 Clusters

A set of d interior-node-disjoint trees of degree d can only be
obtained when all the trees are complete d-ary trees. This
is only possible with n = (dp+1 − 1)/(d − 1) for some p.
Similarly, the disjoint trees of the de Bruijn graph with roots
of degree d − 1 requires exactly dp nodes for some p. To
accommodate to a variable number of peers and to increase
resilience, PrefixStream uses a clustering scheme. Peers are
partitioned into dp disjoint clusters and clusters exchange
data along the de Bruijn graph as described in the previous
section. p may vary when the number of peers changes by a
factor of d.

Definition 2 A cluster tree is a tree between clusters. Clus-
ters are disjoint sets of participating nodes. In a cluster tree
each node knows the nodes belonging to its cluster, the nodes
of its parent cluster and the nodes of its son clusters.

W

source

cluster−head

others

x

y’

z
X

Y

Figure 2: Multicasting inside a cluster tree of PrefixStream.

Figure 2 illustrates how PrefixStream distributes the for-
warding load in a cluster tree. A cluster head of an interior
node is elected by receiving a packet from the parent clus-
ter. It forwards the packet to each cluster son, and then to
another member of its cluster (if there is one). This delegate
node then forwards the packet to all other members of the
cluster as in cluster Y of Figure 2. The cluster head may ad-
ditionally forward the packet to more members of its cluster
for load balancing purposes as explained in Subsection 3.4
and illustrated in cluster W of Figure 2. In a leaf cluster,
the receiving node forwards to all other nodes of its cluster.
Cluster heads may change for each packet of the stream.
However, good reciprocity and latency optimizations should
stabilize this choice.

3.3 Incentive to cooperate

The basic idea for allowing reciprocity between clusters is
to select as cluster head the nodes that most often serve
the cluster in reversed trees. Assume the source uses a 2d
cyclic sequence to select the roots of the cluster trees. A

3

first round uses the d left trees and a second round uses the
d right trees. A possible choice consists in using the left
trees with roots 0 · · · 0, 1 · · · 1,... and the right trees with
roots 0 · · · 0, 1 · · · 1,... In the most simple scheme, each clus-
ter head forwards its packet to the node that most recently
sent a packet of a previous round to its cluster. However, a
cluster head failure could then result in the loss of d packets
in a row inside its cluster. To avoid this we propose to use
the following logical reciprocity.

When cluster head x forwards its packet to a node y in
a cluster son Y , it piggy-backs the identifier and address of
the delegate node z of its cluster that should be used for
reciprocity. In the following round, when cluster head y′ of
Y has to forward a packet back, it sends it to z as illustrated
between clusters Y and X of Figure 2. To allow cluster head
stability, x indicates itself as delegate node for its parent
clusters in the two trees where its cluster is interior. Most
probably, y′ will thus be y. As the previous cluster sender is
piggy-backed, x can acknowledge the reciprocity of y. The
identifier of x should also be piggy-backed in the packet from
y′ to z, so that z can acknowledge the reciprocity of x (z
receives a packet because x has send a packet to y). Other
nodes in the cluster of z only acknowledge z for reciprocity.

Basically, inside a cluster of size m, each node forwards a
distinct packet of the stream over m to any given member.
(This is done indirectly by the cluster head d− 1 times over
d.) Nodes showing good reciprocity are served before the
others. Depending on its remaining bandwidth, a node may
serve only some of the nodes with low reciprocity. It is im-
portant to generously serve every node from time to time.
Otherwise, any network failure would result in the banish-
ment of the node that cannot fulfill its contract. Similarly,
new nodes have to receive some packets for proving their
will to participate.

Concerning inter-cluster reciprocity, proper functioning
is obtained when inter-cluster forwarding always occurs.
When a cluster head does not receive packets back from
another cluster, it selects another receiver in that cluster.
Inter-cluster forwarding is thus always maintained as long
as a well behaving node is found in each cluster. As the
cluster heads of root clusters forward to d− 1 clusters only,
they can use their spare transmissions to acknowledge recep-
tion of the packets sent to the previous root by the source.
This allows the source to select well behaving cluster heads
in root clusters.

Notice that our scheme privileges nodes participating to
the forwarding load of the system. This gives incentive to
cooperate. However, it is not resilient to Byzantine failures
in the purpose of disturbing the system. Pushing forward
to such requirements is beyond the scope of this paper.

3.4 Fully balancing forwarding loads

In the above scheme, delegates nodes of a cluster have an
ideal load of 1: they forward one packet of the stream over
m− 1 and forward it to m− 1 nodes at most. On the other
hand, the cluster head forwards one packet of the stream

over d and forwards it to d + 1 nodes. This results in a load
of 1 + 1/d. Notice that there is still some incentive to be
cluster head since it is the only node that is not affected by
the failure of another member of its cluster. However, we
show how to obtain fully balanced loads.

The idea is to use two cluster heads with a 4d cyclic tree-
root sequence. To avoid collisions, each cluster is virtually
split into two halves according to a total order of the identi-
fiers. When a cluster head is chosen among the nodes with
smallest (resp. greatest) identifiers, it is called a low (resp.
high) cluster head. The first and the third rounds of the
cyclic sequence are similar to two rounds of the previous
scheme and always use low cluster heads. The second and
the fourth rounds are also similar but use high cluster heads.

Each cluster head should avoid to use the other cluster
head as a delegate. (To agree on the choice of delegates,
packet i can be delegated to node in position i modulo m−2
in the ordered list of other members.) To maintain its intra-
cluster reciprocity, each cluster head forwards its packet to
d−1 more members of its cluster as illustrated in cluster W
of Figure 2. To make incentive more robust, these members
are the d−1 delegate nodes that should receive a packet back
from inter-cluster reciprocity. (Remember that the cluster
head selects itself as delegate for the tree where its cluster
is interior.) If such a delegate node does not receive later
on the packet from the other cluster, it still sends an empty
packet to all other members of its cluster. This proves its
willingness to cooperate and it informs the cluster head that
it should select another receiver in the other cluster.

Over a cycle of 4d packets, a cluster head now sends
2d packets two times and has a load of 1. An ordinary
member of a cluster of size m sends m − d − 1 packets as
a direct delegate and m − 1 packets as an indirect dele-
gate. As it is selected once over m − 2 packets, its load
is 1

m−2 (m−d−1
d + d−1

d (m − 1)) = 1. A stabilized choice of
cluster heads thus results in ideally balanced loads in the
cluster. When cluster heads choices are not stabilized, the
load can still be maintained close to 1 by giving priority to
the cluster head role and partially fulfilling the delegate role
to maintain good reciprocity.

3.5 Resilience to node failure

First note that the above balanced scheme succeeds in build-
ing interior-node-disjoint trees when cluster size is greater
or equal to 2d + 2. More precisely, the 2d trees used to
multicast 2d consecutive packets of the stream have disjoint
interior nodes. The trick is that with m > 2d + 2, an ordi-
nary member of a cluster is interior in successively different
trees allowing to fully balance loads despite a variable num-
ber of nodes. In case of node failure, a remaining node looses
at most 2 packets over 4d. As the number of ancestors of a
cluster is 2d(p − 1) at most, packet loss is likely to remain
below this threshold of 1/(2d) as long as the number of si-
multaneous failures is lower than 1/(4d(p − 1)). Note that
the reparation time of a tree is simply the time required to
detect the node failure, selecting another forwarder in the

4

cluster is simply instantaneous. This typically means that
with a few percent of node failures per minute the packet
loss remains lower than 1/(2d) in the network. The above
balanced scheme can be used to send 4d stripes guarantying
that 4d − 2 at least are received most of the time. It could
also be used to send 2d stripes guarantying that 2d − 1 at
least are received most of the time. Finally, notice that this
scheme could be generalized to obtain k disjoint multicast
trees per cluster tree by selecting k disjoint cluster heads in
each cluster. This is interesting for enabling a large number
of stripes with low degree trees.

3.6 Forming clusters

Each participating node chooses a random identifier writ-
ten in base d. Identifiers should be long enough to make
collisions highly unlikely. We propose to form clusters by
gathering together all nodes whose identifier shares a com-
mon prefix of length p ≈ logd(n/m) where n is the number
of nodes and m is the desired number of nodes per cluster.

For that purpose, we use a prefix metric on identifiers.
We call prefix metric a metric such that distance decreases
as common prefix length increases. (A simple choice is the
bitwise xor of identifiers [13].) We say that two nodes are
close if the distance between their identifiers is small.

A node can estimate p as the common prefix length of
its m closest contacts. Each node may get a different es-
timation. However, when identifiers are chosen randomly,
it is a classical balls and bin result to show that with high
probability, all other nodes will get an estimation greater
than p − c for some suitable low value c. All nodes thus
gather all contacts whose identifier begins with the same
p− c digits as itself. (This will typically represent O(log n)
contacts.) Each node can then maintain what would be its
cluster member list if the prefix length was p, p − 1,... or
p− c. As a result, it is sufficient that the source knows the
overall lower estimation pm of p. It can piggy back pm in
each packet and all nodes operate with the clusters obtained
with prefix length pm. Notice that different packets may be
multicasted along the clusters obtained with different values
of pm. To maintain pm, a node may alert the source when
the number of members in its cluster for prefix pm is lower
than m or greater than dcm. Finding nodes with a given
prefix is delegated to a distributed hashtable.

3.7 Distributed hashtable

Note that the de Bruijn graph has already been suggested
for constructing peer-to-peer distributed hashtables [14, 7,
10, 1, 8]. Any distributed hashtable allowing to find nodes
having some given prefix could be used to compute clusters
as described above. For example, a distributed hashtable
using prefix routing such as [17, 13] is a suitable choice.
However, as inter-cluster communications will follow the de
Bruijn topology, a de Bruijn based solution will certainly
allow to reduce control overhead.

Practically, the de Bruijn topology between clusters is
built as follows. Each node u estimates p as above. Let

u1 · · ·up−c be its prefix. It then finds through the distributed
hashtable all the nodes with one of the 2d + 1 following
prefixes: u1 · · ·up−c, and yu1 · · ·up−c−1, u2 · · ·up−cy for all
y ∈ {0, . . . , d−1}. Several lookups may be necessary for each
prefix depending on the distributed hashtable used. When
the estimation p of a node increases, it simply cuts its con-
tact lists. When p decreases, new lookups are performed.
As PrefixStream still behaves normally as long as there is
one node per cluster, this gives time for performing these
lookups.

3.8 Balancing Clusters

As we will see in Section 4, a larger cluster incurs longer
delays for its members. Nodes thus have incentive to join
the smallest cluster as possible. A rather classical way to
achieve this is to make new nodes choose 2 (or even log n)
random identifiers and to select the identifier resulting in the
smallest estimation of p [3]. Such heuristics typically bound
the ratio of cluster sizes by O(log log n). To maintain bal-
anced clusters when the overall number of nodes decreases,
nodes experiencing an estimation of p much higher than the
actual value pm read in the stream packets should try to
choose another identifier. (Some random decision process
should be used to desynchronize such reassignments.) Al-
ternatively, another solution [12] guarantees a O(1) factor
between cluster sizes. It uses a O(log n) walk after insertion
and reassigns identifiers from time to time.

4 Performance analysis

We now introduce our network model and then provide an
analysis of propagation delays.Packet loss has already been
analyzed in Subsection 3.5.

4.1 Network Model

The source is an external node reliably furnishing the pack-
ets with a bandwidth 1, it does not duplicate packets. (The
source could be a synchronized cluster of nodes acting as a
single node for more reliability.) To analyze delays, we use
the following model of transmission. It is similar to the LogP
model [6] except that we suppose a fixed packet length. A
packet requires a time T to be emitted and transits a time
L in the network. (When sending i packets in a row, the
last packet will thus be received after a time iT + L.) With
a 128 kbit/s upload bandwidth and 1000 bits packets, T is
typically less than 10 ms. L is half of the average round trip
time on the Internet and varies typically between 20 and
150 ms. Lower bounds on the minimum delay for multicast-
ing a packet to n nodes can be found in [11]. The normalized
latency l = L/T is the maximal number of packets a node
can send in a row before the first packet is received.

4.2 Delay analysis

The tree height is the prefix length (in digits) minus one and
thus equals h = p−1 ≈ logd(n/m)−1. The maximal delay is

5

obtained for a leaf cluster. It is thus bounded by the source
delay T + L plus the tree delay h(dT + L) plus the intra-
cluster delay (m−1)T +L where m is the cluster size. Notice
that for fairness with respect to delays, cluster sizes should
be well balanced. Indeed, the intra-cluster forwarding algo-
rithm imposes a reordering buffering window of m packets.
Figure 3 illustrates the normalized delay bounds obtained
by PrefixStream (a scheme maintaining a large cluster size
m ∈ [2d + 2, 2d2 + 2d] is assumed.). We see that choosing
d = 4 allows to obtain delays within a factor of approx-
imately 1.9 from the theoretical optimal delay for a wide
range of l = L/T values. Notice that we obtain large delays
for d = 8 because the curves assume the large cluster size of
2d2 + 2d = 144 resulting in a very long intra-cluster delay.
This is the cost for targeting m = 2d+2 and ensuring a low
packet loss. d = 4 is certainly the best compromise enabling
a 4d = 16 stripes scheme with relatively small clusters.

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

M
ax

im
al

 p
ro

pa
ga

tio
n

de
la

y
/ T

Normalized latency l=L/T

2.5*(optimal delay)
1.9*(optimal delay)

PrefixStream delay d=2
PrefixStream delay d=4
PrefixStream delay d=6
PrefixStream delay d=8

Figure 3: PrefixStream normalized delay bound as a func-
tion of l = L/T for different values of d with n = 106 nodes.

In a real network, various values of l are experienced.
Latency optimization can be obtained by preferring clus-
ter heads closer in the network. PrefixStream thus allows to
reduce the forwarding time of the h−1 first inter-cluster for-
warding hops. Notice that intra-cluster optimization would
not reduced notably propagation delays.

5 Conclusion

We have introduced PrefixStream, an incentive content dis-
tribution system based on end-system multicast in a clus-
tered de Bruijn topology. PrefixStream has guaranteed de-
lay performances with regard to the theoretical optimal.
The main breakthrough of PrefixStream is to enable ex-
change reciprocity and thus tit-for-tat like incentive mech-
anisms. The system is able to reduce the forwarding load
of each participating node to the stream bandwidth and the
loads remain balanced under churn. PrefixStream disjoint
clustering scheme enables high resilience to node failures.
Besides simulating and experimenting the protocol, inter-
esting future work resides in better tolerating large clusters

with regards to delays. This could be possible through re-
cursive use of PrefixStream inside large clusters.

References
[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and

E. Pavlov. A generic scheme for building overlay networks in
adversarial scenarios. In Proc. of the 17th Int. Symp. on Parallel
and Distributed Processing (IPDPS), 2003.

[2] E. Adar and B. Huberman. Free riding on gnutella. First Monday,
5(10), 2000.

[3] J. Byers, J. Considine, and M. Mitzenmacher. Simple load bal-
ancing for distributed hash tables. In Peer-to-Peer Systems II:
Second International Workshop IPTPS, 2003.

[4] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. Splitstream: High-bandwidth multicast in coopera-
tive environments. In Proc. of the 19th ACM Symp. on Operating
Systems Principles (SOSP), 2003.

[5] B. Cohen. Incentives build robustness in bittorrent. In Workshop
on Economics of Peer-to-Peer Systems, 2003.

[6] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. San-
tos, R. Subramonian, and T. von Eicken. LogP: Towards a re-
alistic model of parallel computation. In Proc. of the 4th ACM
SIGPLAN Symp. on Principles and practice of parallel program-
ming, pages 1–12, 1993.

[7] P. Fraigniaud and P. Gauron. An overview of the content-
addressable network d2b. In Brief annoucement at 22nd ACM
Symp. on Principles of Distributed Computing (PODC), 2003.

[8] Anh-Tuan Gai and Laurent Viennot. Broose: a practical dis-
tributed hashtable based on the de-brujin topology. In Proc. of
the 4th IEEE Int. Conf. on Peer-to-Peer Computing (P2P), 2004.

[9] C.-T. Ho and S.L. Johnsson. Optimum broadcasting and per-
sonalized communication in hypercubes. IEEE Transactions on
computers, 38(9), 1989.

[10] M. Frans Kaashoek and David R. Karger. Koorde: A sim-
ple degree-optimal distributed hash table. In 2nd International
Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[11] R. Karp, A. Sahay, E. Santos, and K. Schauser. Optimal broadcast
and summation in the logp model. In Proc. of ACM Symp. on
Parallel Algorithms and Architectures (SPAA), pages 142–153,
1993.

[12] Gurmeet Singh Manku. A randomized id selection algorithm for
peer-to-peer networks. In Proc. of 23rd ACM Symp. on Principles
of Distributed Computing (PODC), 2004.

[13] P. Maymounkov and D. Mazieres. Kademlia: A peerto -peer in-
formation system based on the xor metric. In 1st International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[14] M. Naor and U. Wieder. Novel architectures for p2p applica-
tions: the continuous-discrete approach. In Proc. of the 55th an-
nual ACM symposium on Parallel algorithms and architectures
(SPAA), 2003.

[15] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai.
Distributing streaming media content using cooperative network-
ing. In ACM/IEEE NOSSDAV, 2002.

[16] F. Pianese. Pulse: A novel unstructured approach to p2p live
media streaming. In E-Next WG3 CDN Workshop, December
2004.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), 2001.

[18] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A
measurement study of peer-to-peer file sharing systems. In Proc.
of Multimedia Computing and Networking 2002, 2002.

[19] D. Tran, K. Hua, and T. Do. Zigzag: An efficient peer-to-peer
scheme for media streaming. In Proc. of IEEE INFOCOM, 2003.

6

Annex A
We show here that the basic algorithm of SplitStream [4] for construct-
ing interior-node-disjoint trees produces some interior nodes with de-
gree much larger than d. This implies the necessity for a balancing
mechanism when nodes do not have spare bandwidth.

When there is no bandwidth constraint, each tree of SplitStream is
built as the union of Pastry routes from all nodes to the root of the
tree. Consider a tree with root u = u1 · · ·up (nodes are identified by a
sequence of digits in base d). As Pastry uses prefix routing, the route
from a node v to u follows a node with same first digit as u, a node
with same 2 first digits as u, and so on. The average length of a route
is l ≈ logd n, the prefix length necessary to distinguish a node identifier
from others.

Now consider an interior node x of the tree obtained with root u.
Let i be the length of its longest common prefix with u. x is thus one of
the dl−i nodes with prefix u1 · · ·ui. (Our analysis assumes balanced
choices of node identifiers.) Each node with shorter common prefix
u1 · · ·uj (j < i) may choose such a node as a Pastry contact for its
j + 1 routing table entry. With a random choice, this occurs with
probability 1/di−j−1 × 1/dl−i = 1/dl−j−1. There are (d − 1)dl−j−1

such possible sons. The average tree degree of a node with prefix

u1 · · ·ui is thus roughly
∑i−1

j=0
(d− 1) = (d− 1)i. This can be as high

as (d− 1) logd n for the root.
Notice that our analysis assumes balanced choices of routing table

entries. (d − 1)i is thus a lower bound of the maximal degree of a
node with prefix u1 · · ·ui. However, Pastry selects routing table entries
minimizing network latency. This biased choice could produce some
interior nodes with larger degree and some others with smaller degree.

Annex B
With the symmetric de Bruijn topology, any node is interior in two
trees. It thus has two sets of descendants. We show that these two
sets are almost disjoint for non-root nodes. This implies that a node
will probably loose only one stripe over 2d in case of node failure in
the network. (In the worst case, a root failure for example, it looses
two stripes.)

A non root node u has an identifier of the form aiu′bj where the
first digit a is repeated i ≥ 1 times and the last digit b is repeated
j ≥ 1 times. As u is not a root, it contains at least to different digits.
If u′ is empty then a must differ from b. If not, the first digit of u′ is
not a and its last digit is not b.

A descendant v in both the left and right tree where u is interior
is called a double descendant. Such a node v must have an identifier
of the form v = ai′u′bjx = yaiu′bj′

where 1 ≤ |x| ≤ i, 1 ≤ |y| ≤ j,
i′ = i − |x| and j′ = j − |y|. (|w| denotes the number of digits of a
sequence w and wk denotes the concatenation of k copies of w.) x is

thus a suffix of aiu′bj′
and y is a prefix of ai′u′bj . As the last digit

of aiu′ is not b, we have |x| > j′. Similarly, we have |y| > i′. We can

thus write x = x′bj′
and y = ai′y′. As v = ai′u′bjx′bj′

= ai′y′aiu′bj′
,

we deduce u′bjx′ = y′aiu′.
First consider a 6= b. We either have |u′|+ j ≤ |y′| or |u′| ≥ |y′|+ i.

As |y′|+i = |x′|+j, the second case also implies |u′| ≥ |x′|+j. We can
then write u′ = y′′bjx′ = y′aix′′ with |y′′| = |x′′|. u′bjx′ = y′aiu′ then
implies y′′bjx′bjx′ = y′aiy′aix′′. By iterating the former arguments
we can prove by recurrence that (bjx′)k = (y′ai)k for some k ≥ 1. As
|x′| ≤ i and |y′| ≤ j, we obtain x′ = ai = x and y′ = bj = y. There
is thus at most one double descendant when a 6= b. (As an example,
u = (ab)i has (ba)i as double descendant.)

Let us now assume a = b. u′ must be non empty and does not begin
or end with a. As we have u′ajx′ = y′aiu′, we thus deduce |x′| ≥
|u′| and |y′| ≥ |u′|. We can then write x′ = ai′′u′ and y′ = u′aj′′

,

and any double descendant v can be written v = ai′u′aj+i′′u′aj′
=

ai′u′aj′′+iu′aj′
with 0 ≤ i′ < i, 0 ≤ j′ < j, i− i′ = i′′ + |u′|+ j′ and

j − j′ = j′′ + |u′| + i′. All values for i′ and j′ are possible as long as
j′′ ≥ 0 and i′′ ≥ 0, i.e. min(i, j) ≥ i′ + j′ + |u′|. The number of double
descendants is thus m(m + 1)/2 with m = min(i, j) − |u′| + 1. Let
p = |u|. As |u′| ≥ 1, the number of double descendants when a = b is
thus at most (p2 − 1)/8 when p is odd and (p2 − 2p)/8 when p is even.
(This is indeed the number of double descendants for u = aicai where
c is a digit different from a.)

The number of double descendants of any non root node is thus

bounded by max(1, p2−1
8

). This bound is tight. It should be compared
to the number of nodes in the de Bruijn graph: dp. For example, with
410 > 106 nodes, p is 10 and a node has at most 10 double descendants.

Notice that the number of double ancestors of a node is at most
p− 2 + d including the roots (this bound is met for v = cap−2c).

7

