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HIGH ORDER TRANSMISSION CONDITIONS FOR THIN

CONDUCTIVE SHEETS IN MAGNETO-QUASISTATICS

Kersten Schmidt1 and Sébastien Tordeux2

Abstract. We propose transmission conditions of order 1, 2 and 3 approximating the shielding be-

haviour of thin conducting curved sheets for the magneto-quasistatic eddy current model in 2D. This

model reduction applies to sheets whose thicknesses ε are at the order of the skin depth or essen-

tially smaller. The sheet has itself not to be resolved, only its midline is represented by an interface.

The computation is directly in one step with almost no additional cost. We prove the well-posedness

w.r.t. to the small parameter ε and obtain optimal bound for the modelling error outside the sheet of

order εN+1 for the condition of order N . We end the paper with numerical experiments involving high

order finite elements for sheets with varying curvature.
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Introduction

Bibliographic overview

In many practical applications, electronic devices are surrounded by casings or other sheets of a highly
conductive material to protect them from external electromagnetic fields (e. g., protection of the signal in data
cables) or to protect the environment from the electromagnetic fields generated by devices (e. g., transformer
or bushings). To minimise the cost, size and weight, these sheets have to be thin. This leads to a non-perfect
shielding where the electromagnetic fields partly penetrate the shields and have a small but significant effect
in the protected region. The large ratio of characteristic lengths (width of the device against thickness of the
sheet) leads to serious numerical problems. Indeed the classical numerical methods such as finite differences or
finite elements require a small mesh size and are consequently very costly or simply not able (due to limited
memory) to compute a numerical approximation of the solution of such a problem. Another important issue
for such problems is related to mesh generation. It is time consuming to take into account small details in
the geometry. Moreover, most of commercial mesh generators generate meshes with poor quality when the
geometrical characteristic lengths are too different. Designing methods where the sheet needs not be included
in the mesh is really a crucial objective. These two considerations point out the necessity of an appropriate
modelling of the shielding behaviour by thin sheets. This is the problem that we address in this paper.
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Project MAGIQUE-3D, INRIA Bordeaux-Sud-Ouest, 64013 Pau, France; e-mail: sebastien.tordeux@univ-pau.fr.

kersten.schmidt@math.tu-berlin.de
sebastien.tordeux@univ-pau.fr


2

Impedance boundary conditions (IBC), have been originally proposed for solid conductors by Shchukin [27]
and Leontovich [17], for which recently IBCs of higher orders [1, 10, 13, 26] as for perfect conductors with thin
coatings [2, 3, 8] located at the boundary of the physical domain have been derived.

For thin layers located in the interior of the domain, approximate transmission conditions (also called
impedance boundary conditions) of low order have been proposed by several authors, e. g., [14,16,20], and also
for transient analysis [19]. Asymptotic expansions to any order have been derived for the electro-quasistatic
equations [22] and time-harmonic Maxwell equations [21] in biological cells with isolating membranes.

In a previous article [25] we derived an asymptotic expansion at any order for the eddy current problem in
2D with thin highly conducting sheets. These derivations lead to the definition of a limit solution and correctors
of higher orders, which can be computed iteratively. However, this multi-step procedure is not perfectly suited
for the applications. In this article, we derive and study a one step numerical method to predict the shielding
of a thin sheet.

The geometrical setting

Let us denote by −→x = (x, y, z) a cartesian parametrisation of R3 and by −→
ex,

−→
ey and −→

ez the associated
orthogonal unit vectors. To avoid difficulties mostly related to differential geometry, we will be concerned in
this article with a z-invariant configuration. To take care of the two-dimensional phenomenon, we introduce
the vector x = (x, y) composed of the two first coordinates of −→x .

The computational domain Ω × R is decomposed into a highly conducting sheet Ωε
int × R and a domain

Ωε
ext × R filled with air which satisfies

(i) Ω is a connected bounded domain of R2 with regular boundary ∂Ω.
(ii) The conducting sheet Ωε

int is filled with material of constant conductivity σ and permeability µ0. It has
constant thickness ε > 0 and is centred around Γ a regular closed curve of Ω with no cross point

Ωε
int =

{
x ∈ Ω : ∃ y ∈ Γ ‖x− y‖2 < ε

2

}
. (0.1)

To each point of Γ can be associated a curvature κ(t) and a left normal unit vector n(t) (see Fig. 1).

Moreover it can be parameterised, for ε small enough, by a local coordinate system as follows. Let Γ̂
be a one-dimensional torus of the same length than Γ. Let denote by xm : Γ̂ → Ω an injective C∞

mapping whose range is Γ and satisfying ‖x′
m‖ = 1. The domain Ωε

int can then be seen as the range of
the bijective mapping





Γ̂×]− ε/2, ε/2[ −→ Ωε
int

(t, s) 7−→ x(t, s) = xm(t) + sn(t).

(0.2)

To obtain a C∞ sheet Ωε
int we assume that ε‖κ‖L∞(Γ) < 2.

(iii) The exterior of the sheet Ωε
ext = Ω\Ωε

int has constant permeability µ0 and is not conductive.

Two-dimensional magneto-quasistatic with eddy current modelling

When the geometric characteristic length are all much smaller than the wave length, the electromagnetic fields
are accurately described by the eddy current model, a quasi-static approximation to the Maxwell equations [5,24],





div(
−→
E ) = 0,

−→
rot(

−→
E ) = −∂t

−→
B,

−→
rot(

−→
B ) = µ0

−→
J ,

(0.3)

where the current
−→
J is
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(a) Illustration of the geometry and the local coor-

dinate system inside the sheet.

n
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(b) The limit geometry of Ωε

ext is the whole domain
without the midline Γ of the sheet which consists
of two connected parts Ω+ and Ω

−
.

Figure 1. The two-dimensional geometrical setting for a sheet of thickness ε and the limit
geometry for ε → 0.

• in Ωε
ext impressed −→

J =
−→
J0 (0.4)

with
−→
J0 a given regular function compactly supported in Ωε

ext (see Fig. 1(b)).

• in Ωε
int proportional to the electric field

−→
E by Ohms law

−→
J = σ

−→
E . (0.5)

We consider a time-harmonic excitation

−→
J0(

−→x , t) = exp(−iωt) j0(x)
−→
e z . (0.6)

Due to z-invariance, the electromagnetic fields have to be sought in frequency domain with the form

−→
E (−→x , t) = e(x) exp(−iωt) −→e z and

−→
B (−→x , t) = bx(x) exp(−iωt) −→e x + by(x) exp(−iωt) −→e y. (0.7)

Inside Ωε
int and Ωε

ext it reads for the out-of-plane electric field [23]

−∆e(x) = −iωµ0j0(x) =: f(x), in Ωε
ext, (0.8)

−∆e(x) + iωµ0σe(x) = 0, in Ωε
int. (0.9)

with the perfectly conducting boundary condition on ∂Ω, e = 0, and transmission conditions at the two
interfaces between Ωε

int and Ωε
ext: the function e and its normal derivative are continuous across the interfaces

or equivalently

e ∈ H1
∆(Ω) :=

{
u ∈ H1(Ω) : ∆u ∈ L2(Ω) and u = 0 on ∂Ω

}
. (0.10)
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Finally, to express that the sheet is highly conductive, we rescale the coefficient iωµ0σ by multiplying it by
the small thickness ε. Thus, we introduce a quantity

c0 = εωµ0σ. (0.11)

To obtain asymptotic solutions for small values of the thickness ε we will let it vary, while defining c0 by (0.11)
for some fixed thickness ε0 and so independently of ε. Concurrently, we use the notation eε for the electric field
solution highlighting that it depends on the varying ε.

We have now all the ingredients to set a system of PDEs defining the exact solution. The problem we
investigate is to find the electrical field eε satisfying





eε ∈ H1
∆(Ω),

−∆eε(x) = f(x), in Ωε
ext,

−∆eε(x) +
ic0
ε
eε(x) = 0, in Ωε

int.

(0.12)

Remark 0.1 (Asymptotic solution with scaled coefficient iωµ0σ). Scaling ωµ0σ like 1/ε does not have at first
glance a clear meaning. Indeed a thin sheet has, in real configuration, a given thickness (ε = 1mm for example)
and a given conductivity (σ = 5.9 · 107 A

Vm for copper). However, this asymptotic point of view is known for
similar problems to be rather efficient [3, 13] to design numerical methods. Moreover, scaling ωµ0σ like 1/ε
corresponds to a borderline case where the sheet is neither impenetrable (this will happen for |ωµ0σ|−1 = o(ε))
nor transparent (|ωµ0σ| = o(ε−1)) in the limit for ε going to 0. With the scaling ωµ0σ = c0

ε already the limit
model for ε → 0 is physically relevant and an asymptotic expansion is expected to be accurate already with a
few terms.

Objective of the paper

In what follows we will design a one step procedure to compute a numerical approximation of eε which does
require neither mesh refinement nor meshing of the thin sheet Ωε

int. This technique is based on the asymptotic
expansion for ε varying to 0 of eε obtained in [25]. It consists in modelling the thin sheet by two approximate
transmission conditions which are derived and justified in three steps:

(i) We derive formally an approximate models whose solutions ẽ ε,N are candidates to approximate the
exact solution eε.

(ii) We prove that the approximate problems are well posed for small ε and asymptotically stable.
(iii) We prove that ẽ ε,N is an approximation of eε of order N , i. e., ẽ ε,N − eε = o

ε→0
(εN ).

In order to have a presentation as clear as possible, this article will only carry on the cases corresponding to
approximation order N ≤ 3. These results can be extended to N > 3 even if one has to deal with higher
derivative operators on the midline Γ of the sheet which introduces extra difficulties. The role of steps (ii) and
(iii) is to give a mathematical background to the formal computations of step (i). In Section 1 the result of [25]
will be shortly summarised. The steps (i) will be formally carried out in Section 2 for any order N . Section 3
is devoted to the concrete transmission condition for order N = 1 including steps (ii) and (iii), while Section 4
deals with order N = 2 and N = 3. Finally, in Section 5 numerical experiments will be shown.

1. Hierarchical asymptotic expansions

We aim in this section in summarising the results of [25], where we have derived the complete asymptotic
expansion with respect to the width of the sheet ε of the solution of problem (0.12) for a regular sheet.
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This complete asymptotic expansion consists of two parts. First, the restriction of eε to the exterior of the
sheet has been considered where we were seeking for a Taylor expansion of this restriction:

eεext(x) = eε
∣∣
Ωε

ext
(x) = eε,Next (x) + rε,Next (x) with eε,Next (x) :=

N∑

j=0

εjuj
ext(x), ∀N ∈ N. (1.1)

Secondly, we considered the restriction to the interior of the sheet of eε. For this restriction we were not
searching for a Taylor expansion of eε in the original curvilinear coordinates (s, t), but in the normalised
curvilinear coordinates (S, t) = ( sε , t)

eεint(x) = eε
∣∣
Ωε

int

(x) = eε,Nint (x) + rε,Nint (x) with eε,Nint (s, t) :=
N∑

j=0

εjuj
int(

s

ε
, t), ∀N ∈ N. (1.2)

The following two estimates make clear what we mean by Taylor expansion

‖eεext − eε,Next ‖H1(Ωε
ext)

= ‖rε,Next ‖H1(Ωε
ext)

≤ CN εN+1, ∀N ∈ N, (1.3)

‖eεint − eε,Nint ‖H1(Ωε
int)

= ‖rε,Nint ‖H1(Ωε
int)

≤ CN εN+ 1
2 , ∀N ∈ N. (1.4)

The coefficients uj
ext(x) and uj

int(S, t) of the above Taylor expansions are functions, which do not depend on
ε and which are defined on the limit domain Ω \ Γ of Ωε

ext for ε → 0 and on the normalised sub-domain of the

sheet Γ̂ × [− 1
2 ,

1
2 ], respectively. In [25], the terms of the exterior expansion and interior expansions uj

ext and

uj
int have been defined order by order by a coupled problem. The uj

int were then eliminated — this has been

done explicitly up to order 2 in [25] — to obtain a definition of uj
ext with problems involving only the exterior

coefficients of lower order and not the interior coefficients. These hierarchical decoupled problems take the form

uj
ext ∈ H1

∆(Ω \ Γ) :=
{
u ∈ H1(Ω \ Γ) : ∆u ∈ L2(Ω \ Γ) and u = 0 on ∂Ω

}
, (1.5a)

−∆uj
ext(x) = fj(x), in Ω \ Γ, (1.5b)

[
uj
ext

]
(t) =

j∑

ℓ=2

(γℓu
j−ℓ
ext )(t), on Γ, (1.5c)

[
∂nu

j
ext

]
(t)− ic0

{
uj
ext

}
(t) =

j∑

ℓ=1

(ζℓu
j−ℓ
ext )(t), on Γ, (1.5d)

with

• the two transmission operators [·] and {·} defined on the midline Γ by

[u] (t) := u(t, 0+)− u(t, 0−), {u} (t) := 1

2

(
u(t, 0+) + u(t, 0−)

)
,

• the differential operators γℓ and ζℓ that are explicitly given for ℓ ≤ 3 in Appendix A.1,
• the source terms fj that are inherited from the original problem and consequently satisfy (j > 0)

f0(x) = f(x) and fj(x) = 0, in Ω \ Γ, (1.6)

• the spaces Hm(Ω \ Γ), for all m ∈ N, which are the sets of all functions u which are Hm(Ω+) and
Hm(Ω−) where Ω+ and Ω− are the two connected component of Ω \ Γ (see Fig. 1).
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Remark 1.1. For j = 0 and 1, the functions uj
ext are continuous across the interface Γ but not C1(Ω). For

j ≥ 2, the functions uj
ext are not continuous across the interface Γ. However, they are well-defined and regular

on each connected component Ω+ and Ω− of Ω \ Γ, see Appendix B.

Once the exterior coefficients are defined the interior coefficients can be computed as combinations of the
expansion terms for the exterior fields at the same and previous orders

uj
int(t, S) =

j∑

ℓ=0

(ηℓu
j−ℓ
ext )(t, S), (1.7)

where the differential operators ηℓ are given for ℓ ≤ 3 in Appendix A.2. The interior coefficients are polynomials
in the normal coordinate S and result by the exterior fields of the same and the previous orders.

Remark 1.2. The latter asymptotic expansion can directly be used to obtain a numerical approximation of eε.

Indeed one has just to compute eε,Next and eε,Nint , with N fixed by the desired precision. These computations do
require neither mesh refinement nor the meshing of the thin sheet. However, this method suffers from a major
drawback: For relatively large ε the model of order 0 does quite possibly not reach the desired precision and
one has to compute further terms of the asymptotic expansion in order to obtain a sharp approximation to eε.
The multi-step procedure is not standard and may disencourage to be implemented in a numerical library.

2. Derivation of the transmission conditions for the exterior fields

This section is devoted to the derivation of transmission conditions for general orders based on the terms
uj
ext of the asymptotic expansion of the exterior part of the exact solution eε. These transmission conditions

with associated problems define approximate functions ẽε,N of a particular order N in one step.

2.1. The definition of the exterior approximation

We adopt the point of view of formal series. Due to (1.1), the formal Taylor series of eεext takes the form

eεext(x) ∼
+∞∑

j=0

εjuj
ext(x) (2.1)

where we have adopted the symbol “∼” to mention that this series may diverge or converge but not toward eεext.
Therefore multiplying for all j ∈ N system (1.5c), (1.5d) by εj and summing we get with

[ +∞∑

j=0

εjuj
ext

]
(t) =

+∞∑

j=0

εj
j∑

ℓ=0

(γℓu
j−ℓ
ext )(t), on Γ, (2.2a)

[
∂n

+∞∑

j=0

εjuj
ext

]
(t)− ic0

{ +∞∑

j=0

εjuj
ext

}
(t) =

+∞∑

j=0

εj
j∑

ℓ=0

(ζℓu
j−ℓ
ext )(t), on Γ, (2.2b)

with the convention γ0 = γ1 = ζ0 = 0. Interchanging the two sums and identifying eεext, we find

[eεext] (t) ∼ (γεeεext)(t), on Γ, (2.3a)

[∂ne
ε
ext] (t)− ic0 {eεext} (t) ∼ (ζεeεext)(t), on Γ, (2.3b)

with the two formal operator series γε and ζε given by

γε =

+∞∑

j=0

εjγj , and ζε =

+∞∑

j=0

εjζj . (2.4)
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These two transmission conditions appear to be perfect. However, the question of convergence of the series
(2.4) remains (they diverge potentially). Moreover, it seems not possible to get a simple formula for the sum
if it exists. Consequently, these two perfect transmission conditions could not directly be used for numerical
computations. However, truncating these two series at a given order N

γε,N =

N∑

j=0

εjγj , and ζε,N =

N∑

j=0

εjζj , (2.5)

we get well defined transmission conditions to model the highly conductive thin sheet.

This series truncation leads to problems for the approximate solutions ẽε,Next

ẽε,Next ∈ H1
∆(Ω \ Γ), (2.6a)

−∆ẽε,Next (x) = f(x), in Ω \ Γ, (2.6b)

[
ẽε,Next

]
(t)− (γε,N ẽε,Next )(t) = 0, on Γ, (2.6c)

[
∂nẽ

ε,N
ext

]
(t)− ic0

{
ẽε,Next

}
(t)− (ζε,N ẽε,Next (t)) = 0, on Γ. (2.6d)

The approximate solutions are indexed by N which is related to the order of the approximation. The reader
may note that the approximate solution for N > 1 is no more continuous across Γ and therefore does not belong
to H1(Ω), but to H1(Ω \ Γ).

The question of existence and uniqueness of ẽε,N is not only an interesting mathematical question. Very
often problems arising from an asymptotic expansion are not well posed and so not well suited for numerical
computations. Consequently, it is crucial to check the existence and uniqueness of solution of problem (2.6).
Moreover, the convergence proof needs a stability result that is closely related to the existence and uniqueness
of the solution of the collected models. We will come to this question in Sec. 3 for order N = 1 and in Sec. 4
for order N = 2.

2.2. The definition of the interior approximation

The same strategy can be applied to the derivation of an interior approximation. Due to (1.2), the Taylor

series of eεint reads e
ε
int(t, s) ∼

∑+∞
j=0 ε

juj
int(t,

s
ε ). Inserting (1.7) we have

eεint(t, s) ∼
+∞∑

j=0

εj
j∑

ℓ=0

(ηℓu
j−ℓ
ext )(t,

s
ε ) =

( +∞∑

ℓ=0

εℓηℓ

)( +∞∑

j=0

εjuj
ext

)
(t, s

ε ) ∼ ηεeεext(t,
s
ε ).

with the operator series ηε, which is the formal limit for N → +∞ of

ηε,N :=

N∑

ℓ=0

εℓηℓ.

Using this operator for a concrete N leads to the introduction of the interior approximation of order N

ẽε,Nint (t, s) = (ηε,N ẽε,Next )(t,
s
ε ). (2.7)

Remark 2.1. In the continuation we will not carry on the justification of these approximations. Note, however,

that it can be proved that ẽε,Nint is an approximation of order N − 1
2 of eεint, i. e., (see also Fig. 5 and Fig. 6)

‖eεint − ẽε,Nint ‖H1(Ωε
int)

= ‖rε,Nint ‖H1(Ωε
int)

≤ CN εN+ 1
2 . (2.8)
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3. The transmission conditions of order 1

The system (2.6) with the transmission conditions of order 1 is given by

ẽε,1ext ∈ H1
∆(Ω), (3.1a)

−∆ẽε,1ext(x) = f(x), in Ω \ Γ, (3.1b)

[
ẽε,1ext

]
(t) = 0, on Γ. (3.1c)

[
∂nẽ

ε,1
ext

]
(t)−

(
ic0 − ε

c20
6

){
ẽε,1ext

}
(t) = 0, on Γ. (3.1d)

With the vanishing jump (3.1c) we may use ẽε,1ext equivalently to {ẽε,1ext} for convenience.

3.1. The weak formulation

In what follows, homogeneous Dirichlet boundary conditions at ∂Ω will be incorporated in the trial and test
spaces which are

H1
∂Ω(Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂Ω

}
. (3.2)

Hence, the system (3.1) is equivalent to the variational formulation: Seek ẽε,1ext ∈ H1
∂Ω(Ω) such that

a
ε
1(ẽ

ε,1
ext, e

′) = 〈ℓ, e′〉 , for all e′ ∈ H1
∂Ω(Ω) (3.3)

with the bilinear form aε1 and the linear form ℓ defined by

a
ε
1(e, e

′) =

∫

Ω

∇e · ∇e′ dx+

∫

Γ

(
ic0 − ε

c20
6

)
{e} {e′} dt, (3.4)

〈ℓ, e′〉 =
∫

Ω

fe′ dx. (3.5)

3.2. Well-posedness and stability

Lemma 3.1. There exists a constant γ > 0 such that for all ε > 0 and for all e ∈ H1
∂Ω(Ω) we have

∣∣∣aε1(e, e)
∣∣∣ ≥ γ√

1 + c20ε
2
‖e‖2H1(Ω). (3.6)

Proof. Since |1− ic0ε| =
√
1 + c20ε

2 and by inserting aε1(e, e), we have

∣∣∣aε1(e, e)
∣∣∣ =

∣∣∣
1− ic0ε√
1 + c20ε

2
a
ε
1(e, e)

∣∣∣ ≥ Re
( 1− ic0ε√

1 + c20ε
2
a
ε
1(e, e)

)
≥ 1√

1 + c20ε
2

(
|e|2H1(Ω) +

5

6
c20ε‖e‖2L2(Γ)

)
. (3.7)

By positivity of ‖e‖2L2(Γ) and Poincaré-Friedrichs inequality [6] since e ∈ H1
∂Ω(Ω), it follows for some γ > 0

∣∣∣aε1(e, e)
∣∣∣ ≥ 1√

1 + c20ε
2
|e|2H1(Ω) ≥ γ√

1 + c20ε
2
‖e‖2H1(Ω). (3.8)

The proof is complete. �
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Remark 3.2. This proof can easily be adapted to other boundary conditions. For the Neumann boundary
condition, where we search for solutions e ∈ H1(Ω), we can use the estimate

∣∣∣aε1(e, e)
∣∣∣ ≥

∣∣∣Re
(

1−ic0ε√
1+c20ε

2
aε1(e, e)

)∣∣∣+
∣∣∣Im

(
aε1(e, e)

)∣∣∣

2
. (3.9)

Then, the steps for the real part in last proof are repeated, and after noting that Im
(
aε1(e, e)

)
= c0‖e‖2L2(Γ).

Finally, the following Poincaré-Friedrichs inequality in H1(Ω) can be applied

|e|2H1(Ω) + c0 ‖e‖2L2(Γ) ≥ γ′‖e‖2H1(Ω), ∀e ∈ H1(Ω). (3.10)

A direct consequence of the coercivity and of the Lax-Milgram lemma [6] is the existence and uniqueness of
the solution of the model of order 1.

Lemma 3.3. There exists a unique solution ẽε,1ext ∈ H1
∂Ω(Ω) of (3.3) which satisfies

∥∥ẽε,1ext

∥∥
H1(Ω)

≤
√
1 + c20ε

2

γ

∥∥ℓ
∥∥
(H1

∂Ω(Ω))′
. (3.11)

3.3. Estimates of the modelling error

In this section we show that the solution of the model of order 1 approximates the exact solution with an
error of order ε2.

Theorem 3.4 (Modelling error for order 1). There exists a constant C independent of ε such that

∥∥ẽε,1ext − eεext
∥∥
H1(Ωε

ext)
= O

ε→0
(ε2). (3.12)

Proof. Both functions ẽε,1ext and eεext will be compared to the exterior asymptotic expansion truncated at order 1

eε,1ext = u0
ext + εu1

ext. (3.13)

Due to the triangular inequality, we have

∥∥ẽε,1ext − eεext
∥∥
H1(Ωε

ext)
≤

∥∥ẽε,1ext − eε,1ext

∥∥
H1(Ωε

ext)
+

∥∥eε,1ext − eεext
∥∥
H1(Ωε

ext)
. (3.14)

We shall show that both terms are O
ε→0

(ε2).

(i) To estimate the first term, we remark that eε,1ext solves

eε,1ext ∈ H1
∆(Ω), (3.15a)

−∆eε,1ext(x) = f(x), in Ω \ Γ, (3.15b)

[
eε,1ext

]
(t) = 0, on Γ. (3.15c)

[
∂ne

ε,1
ext

]
(t)−

(
ic0 − ε

c20
6

){
eε,1ext

}
(t) = ε2

c20
6
u1
ext(t), on Γ. (3.15d)

Comparing (3.15) to (3.1), we observe that the error function ẽε,1ext − eε,1ext ∈ H1
∂Ω(Ω) is solution of the

variational formulation

a
ε
1(ẽ

ε,1
ext − eε,1ext, e

′) = ℓε1(e
′) ∀e′ ∈ H1

∂Ω(Ω), (3.16)
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with

ℓε1(e
′) := −ε2

c20
6

∫

Γ

u1
ext(t) e

′(t) dt. (3.17)

Due to the Cauchy-Schwartz inequality and the trace theorem we have for all e′ ∈ H1
∂Ω(Ω) ⊂ H1(Ω)

ℓε1(e
′) ≤ ε2

c20
6
‖u1

ext‖L2(Γ) ‖e′(t)‖L2(Γ) ≤ C ε2 ‖u1
ext‖L2(Γ) ‖e′‖H1(Ω). (3.18)

Since the function u1
ext does not depend on ε, we obtain

∥∥ℓε1
∥∥
(H1

∂Ω(Ω))′
= sup

e′∈H1
∂Ω(Ω)

ℓε1(e
′)∥∥e′

∥∥
H1(Ω)

= O
ε→0

(ε2). (3.19)

and with the stability estimate (3.11) of the variational formulation we conclude

∥∥ẽε,1ext − eε,1ext

∥∥
H1(Ωε

ext)
= O

ε→0
(ε2). (3.20)

(ii) The estimate for the second term follows from (1.3).

�

4. The transmission conditions of order 2 and order 3

In this section, a weak formulation for the models of order 2 and 3 will be derived. Their solutions solve
transmission problems (2.6) written for N = 2 and 3 that involve the operators γj and ζj for j ≤ 3, which are
given in (A.1) and (A.2). More explicitly, the transmission conditions are given for N = 2 by

[
ẽε,2ext

]
(t) + ε2

ic0κ(t)

24
{ẽε,2ext}(t) + ε2

ic0
12

{∂nẽε,2ext}(t) = 0, (4.1a)

[
∂nẽ

ε,2
ext

]
(t)−

(
ic0 − ε

c20
6

− ε2
ic0
12

(7c20
20

+ ∂2
t

)){
ẽε,2ext

}
(t)− ε2

ic0κ(t)

24
{∂nẽε,2ext}(t) = 0, (4.1b)

and for N = 3 by

[
ẽε,3ext

]
(t) + ε2

ic0κ(t)

24

(
1− ε

ic0
10

)
{ẽε,3ext}(t) + ε2

ic0
12

(
1− ε

ic0
10

)
{∂nẽε,3ext}(t) = 0, (4.2a)

[
∂nẽ

ε,3
ext

]
(t)−

(
ic0 − ε

c20
6

− ε2
ic0
12

(7c20
20

+ ∂2
t

)
+ ε3

c20
40

(17c20
84

+
κ2(t)

3
+ ∂2

t

)){
ẽε,3ext

}
(t) (4.2b)

−ε2
ic0κ(t)

24

(
1− ε

ic0
10

)
{∂nẽε,3ext}(t) = 0. (4.2c)

The transmission conditions of order 2 and 3 are rather similar. They differ only by terms of order ε3. In the
continuation, we will give most of the details for the model of order 2 and will only state the result for the
model of order 3 to avoid repetitions.

4.1. The weak formulation: a mixed formulation

We first derive the variational formulation for the model of order 2. With the first transmission condition
(4.1a), the solution of the approximate models of order 2 is in general not continuous across the interface Γ.
The natural functional framework is not anymore H1

∂Ω(Ω) but

H1
∂Ω(Ω \ Γ) =

{
v ∈ H1(Ω \ Γ) : v = 0 on ∂Ω

}
. (4.3)
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The derivation of the variational formulation is based on the next Green formula
∫

Ω\Γ

∆e e′ dx+

∫

Ω\Γ

∇e ·∇e′ dx+

∫

Γ

[∂ne]{e′}+{∂ne}[e′] dt = 0, ∀e ∈ C∞(Ω\Γ) and e′ ∈ H1
∂Ω(Ω\Γ). (4.4)

For e = ẽε,2ext, the two transmissions conditions (4.1) can easily be inserted in (4.4) to eliminate ∂ne. However,
this leads to an ε-degenerated variational formulation with ε−2 factors. Therefore, we prefer to replace the
mean normal trace in (4.4) as well as in (4.1) by a new unknown function

λ̃ε,2
ext = {∂nẽε,2ext} ∈ L2(Γ), (4.5)

We shall now derive a system governing e = ẽε,2ext and λ̃ε,2
ext. Inserting (4.5) and (4.1b) in (4.4) leads to

∫

Ω\Γ

∇ẽε,2ext · ∇e′ dx+
(
ic0 − ε

c20
6

− ε2
7ic30
240

)〈
{ẽε,2ext}, {e′}

〉
Γ
− ε2

ic0
12

〈
∂2
t {ẽε,2ext}, {e′}

〉
Γ

+ ε2
ic0
24

〈
κλ̃ε,2

ext, {e′}
〉
Γ
+
〈
λ̃ε,2
ext, [e

′]
〉
Γ
= 〈f, e′〉 ,

where
〈
·, ·
〉
Γ
denotes the inner product w.r.t. L2(Γ). This expression is integrated by part over Γ to obtain the

first part of the mixed formulation

a
I
2(ẽ

ε,2, λ̃ε,2; e′) = 〈f, e′〉 ∀e′ ∈ H1,1
∂Ω (Ω \ Γ) (4.6)

with

a
I
2(e, λ; e

′) =

∫

Ω\Γ

∇e · ∇e′ dx+
(
ic0 − ε

c20
6

− ε2
7ic30
240

)〈
{e}, {e′}

〉
Γ
+ ε2

ic0
12

〈
∂t{e}, ∂t{e′}

〉
Γ

+ ε2
ic0
24

〈
κλ, {e′}

〉
Γ
+
〈
λ, [e′]

〉
Γ

(4.7)

and where we have introduced the test space H1,1
∂Ω (Ω \ Γ) to ensure a minimal regularity on Γ

H1,1
∂Ω (Ω \ Γ) =

{
v ∈ H1(Ω \ Γ) : {v} ∈ H1(Γ), v = 0 on ∂Ω

}
. (4.8)

The second part of the mixed formulation consists in a weak formulation of (4.1a)

a
II
2 (ẽ

ε,2
ext, λ̃

ε,2;λ′) = 0, ∀λ′ ∈ L2(Γ) (4.9)

with

a
II
2 (e, λ;λ

′) =
〈
[e], λ′

〉
Γ
+ ε2

ic0
24

〈
{e}, κλ′

〉
Γ
+ ε2

ic0
12

〈
λ, λ′

〉
Γ
. (4.10)

The mixed formulation takes the form: Seek ẽε,2ext ∈ H1,1
∂Ω (Ω\Γ) and λ̃ε,2

ext ∈ L2(Γ) such that for all e′ ∈ H1,1
∂Ω (Ω\Γ)

and λ′ ∈ L2(Γ) 



aI2(ẽ
ε,2
ext, λ̃

ε,2
ext; e

′) = 〈f, e′〉

aII2 (ẽ
ε,2
ext, λ̃

ε,2
ext;λ

′) = 0.
(4.11)

or equivalently

a2

((
ẽε,2ext

λ̃ε,2
ext

)
,

(
e′

λ′

))
= 〈f, e′〉 , (4.12)
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with the continuous sesquilinear form on the product space H1,1
∂Ω (Ω \ Γ)× L2(Γ)

a2

((
e

λ

)
,

(
e′

λ′

))
= a

I
2(e, λ; e

′) + a
II
2 (e, λ;λ

′). (4.13)

Conversely, it is easy to check that solutions ẽε,2ext and λ̃ε,2
ext of (4.12) satisfy (2.6) and (4.5).

For the model of order 3, this procedure can be as well repeated. This leads to a similar weak formulation
where a2 has to be replaced by a3 given by

a3

((
e

λ

)
,

(
e′

λ′

))
= a2

((
e

λ

)
,

(
e′

λ′

))
+

17c40ε
3

3360

〈
{e}, {e′}

〉
Γ
− c20ε

3

40

〈
∂t{e}, ∂t{e′}

〉
Γ

+
c20ε

3

120

〈
κ{e}, κ{e′}

〉
Γ
+

c20ε
3

240

(〈
κλ, {e′}

〉
Γ
+
〈
{e}, κλ′

〉
Γ

)
+

c20ε
3

120

〈
λ, λ′

〉
Γ
.

(4.14)

4.2. Well-posedness and stability

Even if the exact model provides a unique solution this does not transfer as a matter of course to the
approximative models. In this section, we address the question of existence, uniqueness of the solutions and the
stability with respect to the small parameter ε.

We start with a preliminary lemma.

Lemma 4.1 (Equivalent H1
∂Ω(Ω\Γ)-norm). Let α > 0. The semi-norm (|v|2H1(Ω\Γ)+α‖{v}‖2L2(Γ))

1/2 is a norm

of H1
∂Ω(Ω \ Γ).

Proof. We shall prove the equivalence to the standard H1(Ω\Γ)-norm, i. e., there exists 0 < γ− ≤ γ+ such that

γ−‖v‖2H1(Ω\Γ) ≤ |v|2H1(Ω\Γ) + ‖{v}‖2L2(Γ) ≤ γ+‖v‖2H1(Ω\Γ) ∀v ∈ H1
∂Ω(Ω \ Γ). (4.15)

The second inequality follows from the the trace theorem on Γ. To prove the first one, we act by contradiction.
Let us suppose that there exists a sequence vn ∈ H1

∂Ω(Ω \ Γ) satisfying





‖vn‖H1(Ω\Γ) = 1,

lim
n→+∞

|vn|2H1(Ω\Γ) = 0,

lim
n→+∞

‖{vn}‖2L2(Γ) = 0.

(4.16)

One can extract from vn a subsequence wn weakly convergent in H1(Ω \ Γ) to its limit w which satisfies

∇w = 0 in Ω \ Γ, w = 0 on ∂Ω and {w} = 0 on Γ. (4.17)

Let us prove that w = 0. Since ∇w = 0 in Ω \Γ, the function w is constant in the two connected subdomains of
Ω\Γ. Moreover, these two constants are zero since w = 0 on ∂Ω and {w} = 0 on Γ. Hence, we can conclude that
wn is weakly convergent in H1(Ω\Γ) to 0, and by compactness, strongly convergent in L2(Ω\Γ). Consequently,
the function wn satisfies






‖wn‖H1(Ω\Γ) = 1,

lim
n→+∞

|wn|2H1(Ω\Γ) = 0,

lim
n→+∞

‖wn‖2L2(Ω\Γ) = 0.

(4.18)

This is impossible. �
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Theorem 4.2 (Well-posedness and stability of the models of order 2). There exists ε∗ > 0 such that for all

ε ∈]0, ε∗], f ∈ (H1,1
∂Ω (Ω \ Γ))′ and g ∈ L2(Γ) there is a unique (e, λ) ∈ H1,1

∂Ω(Ω \ Γ)× L2(Γ) satisfying

〈f, e′〉+
〈
g, λ′

〉
Γ
= a2

((
e

λ

)
,

(
e′

λ′

))
, ∀(e′, λ′) ∈ H1,1

∂Ω (Ω \ Γ)× L2(Γ). (4.19)

Moreover, there exists a constant C > 0 independent of ε ∈]0, ε∗], f ∈ (H1
∂Ω(Ω \ Γ))′ and g ∈ L2(Γ) such that

∥∥e
∥∥2
H1

∂Ω(Ω\Γ)
+ ε2|{e}|2H1(Γ) + ε2

∥∥λ
∥∥2

L2(Γ)
≤ C

(∥∥f
∥∥2
(H1

∂Ω(Ω\Γ))′
+ ε−2

∥∥g
∥∥2
L2(Γ)

)
. (4.20)

Proof. We pick ε∗ = min( 1
c0
, 1
‖κ‖L∞(Γ)

), and consider therefore in the continuation, ε > 0 satisfying εc0 ≤ 1 and

ε‖κ‖L∞(Γ) ≤ 1.

Operator formulation. Let us first associate to the bilinear form a2, a linear operator A2

A2 : H1,1
∂Ω (Ω \ Γ)× L2(Γ) −→ (H1,1

∂Ω (Ω \ Γ))′ × L2(Γ) (e, λ) 7−→ (f, g) (4.21)

defined by

〈f, e′〉+
〈
g, λ′

〉
Γ
= a2

((
e

λ

)
,

(
e′

λ′

))
, ∀(e′, λ′) ∈ H1,1

∂Ω(Ω \ Γ)× L2(Γ). (4.22)

or equivalently

〈f, e′〉 = aI2(e, λ; e
′), ∀e′ ∈ H1,1

∂Ω (Ω \ Γ)
〈
g, λ′

〉
Γ

= aII2 (e, λ;λ
′), ∀λ′ ∈ L2(Γ).

(4.23)

To prove that the problem of order 2 is well-posed, we will show that A2 is bijective. First, we prove that
A2 is injective and has closed range, then we prove that the range of A2 is dense in (H1,1

∂Ω (Ω \ Γ))′ × L2(Γ).
Injectivity and closed range. To show that the operator A2 is injective and has closed range it suffices to
prove the stability estimate (4.20) for every (e, λ) ∈ H1,1

∂Ω (Ω \ Γ) × L2(Γ) and (f, g) = A2(e, λ). For proving

surjectivity we consider here the range with f ∈ (H1,1
∂Ω (Ω\Γ))′, i. e., in a larger space than the f in the statement

of the theorem. Let us equip the space H1,1
∂Ω(Ω \ Γ) with the norm defined by

‖u‖2H1,1(Ω\Γ) := ‖u‖2H1(Ω\Γ) + ε2|{u}|2H1(Γ).

By definition the functions f and g satisfy for every (e′, λ′) ∈ H1,1
∂Ω (Ω \ Γ)× L2(Γ)

∫

Ω\Γ

∇e · ∇e′ dx+
(
ic0 − ε

c20
6

− ε2
7ic30
240

)〈
{e}, {e′}

〉
Γ

+ε2
ic0
12

〈
∂t{e}, ∂t{e′}

〉
Γ
+ ε2

ic0
24

〈
κλ, {e′}

〉
Γ
+
〈
λ, [e′]

〉
Γ
= 〈f, e′〉 ,

〈
[e], λ′

〉
Γ
+ ε2

ic0
24

〈
{e}, κλ′

〉
Γ
+ ε2

ic0
12

〈
λ, λ′

〉
Γ
=

〈
g, λ′

〉
Γ
.



14

Subtracting for e′ = e and λ′ = λ the conjugate complex of the second equation from the first equation and
taking the real and imaginary parts we have

Re
(
〈f, e〉 −

〈
g, λ

〉
Γ

)
= Re

(
a
I
2(e, λ; e)− aII2 (e, λ;λ)

)
= |e|2H1(Ω\Γ) − ε

c20
6
‖{e}‖2L2(Γ) − ε2

c0
12

Im(
〈
κ(t)λ, {e}

〉
Γ
),

Im
(
〈f, e〉 −

〈
g, λ

〉
Γ

)
= Im

(
a
I
2(e, λ; e)− aII2 (e, λ;λ)

)
(4.24)

= c0
(
1− ε2

7c20
240

)
‖{e}‖2L2(Γ) + ε2

c0
12

|{e}|2H1(Γ) + ε2
c0
12

Re(
〈
κ(t)λ, {e}

〉
Γ
) + ε2

c0
12

‖λ‖2L2(Γ).

Due to Young’s inequality we can assert that

∣∣〈κ(t)λ, {e}
〉
Γ

∣∣ ≤ ‖κ‖L∞(Γ)‖λ‖L2(Γ)‖{e}‖L2(Γ) ≤
‖λ‖2L2(Γ)

4
+ ‖κ‖2L∞(Γ) ‖{e}‖2L2(Γ) (4.25)

and consequently

Re
(
〈f, e〉 −

〈
g, λ

〉
Γ

)
≥ |e|2H1(Ω\Γ) − c0

(εc0
6

+
ε2‖κ‖2L∞(Γ)

12

)
‖{e}‖2L2(Γ) − ε2

c0
48

‖λ‖2L2(Γ),

Im
(
〈f, e〉 −

〈
g, λ

〉
Γ

)
≥ c0

(
1− 7ε2c20

240
−

ε2‖κ‖2L∞(Γ)

12

)
‖{e}‖2L2(Γ) +

c0ε
2

12
|{e}|2H1(Γ) + ε2

3c0
48

‖λ‖2L2(Γ).

(4.26)

Using the assumptions ε‖κ‖L∞(Γ) ≤ 1 and εc0 ≤ 1 we obtain

Re
(
〈f, e〉 −

〈
g, λ

〉
Γ

)
≥ |e|2H1(Ω\Γ) −

c0
4

‖{e}‖2L2(Γ) − ε2
c0
48

‖λ‖2L2(Γ),

Im
(
〈f, e〉 −

〈
g, λ

〉
Γ

)
≥ 3c0

4
‖{e}‖2L2(Γ) +

c0ε
2

12
|{e}|2H1(Γ) + ε2

3c0
48

‖λ‖2L2(Γ).

(4.27)

Remarking that Re((1 − i)(〈f, e〉 −
〈
g, λ

〉
Γ
)) = Re(〈f, e〉 −

〈
g, λ

〉
Γ
) + Im(〈f, e〉 −

〈
g, λ

〉
Γ
)) we obtain by

adding the two lines of (4.27)

Re
(
(1− i)

(
〈f, e〉 −

〈
g, λ

〉
Γ

))
≥ |e|2H1(Ω\Γ) +

c0
2
‖{e}‖2L2(Γ) + ε2

c0
12

|{e}|2H1(Γ) + ε2
c0
24

‖λ‖2L2(Γ). (4.28)

Due to the Poincaré-Friedrichs inequality, see Lemma 4.1, |e|2H1(Ω\Γ) + ‖{e}‖2L2(Γ) ≥ γ‖e‖2H1(Ω\Γ) we get the

estimate

Re
(
(1− i)

(
〈f, e〉 −

〈
g, λ

〉
Γ

))
≥ C1

(
‖e‖2H1(Ω\Γ) + ε2|{e}|2H1(Γ) + ε2‖λ‖L2(Γ)

)
(4.29)

with C1 > 0 independent of ε. The Cauchy-Schwartz inequality allows to bound the left hand-side

Re
(
(1− i)

(
〈f, e〉 −

〈
g, λ

〉
Γ

))
≤

√
2
(
‖f‖(H1,1(Ω\Γ))′‖e‖H1,1(Ω\Γ) + ε−1‖g‖L2(Γ) ε‖λ‖L2(Γ)

)

≤
√
2
(
‖f‖2(H1,1(Ω\Γ))′ + ε−2‖g‖2L2(Γ)

) 1
2
(
‖e‖2H1,1(Ω\Γ) + ε2‖λ‖2L2(Γ)

) 1
2

,

and using (4.29) we get

(
‖e‖2H1,1(Ω\Γ) + ε2‖λ‖2L2(Γ)

)
≤ C2

(
‖f‖2(H1,1(Ω\Γ))′ + ε−2‖g‖2L2(Γ)

) 1
2
(
‖e‖2H1,1(Ω\Γ) + ε2‖λ‖2L2(Γ)

) 1
2

(4.30)

which proves the injectivity and closedness of the range. With ‖f‖(H1,1(Ω\Γ))′ ≤ ‖f‖(H1(Ω\Γ))′ the stability
statement (4.20) holds with a constant independant of ε.
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Density of the range. Let us prove that every (e′, λ′) ∈ H1,1
∂Ω (Ω \ Γ) × L2(Γ) in the orthogonal complement

of the range of A2, i. e.,

0 = a2

((
e

λ

)
,

(
e′

λ′

))
∀(e, λ) ∈ H1,1

∂Ω (Ω \ Γ)× L2(Γ) (4.31)

satisfy e′ = 0 and λ′ = 0 (see for example [7, Corollary 1.8]).
We first consider e = e′ and λ = 0 which leads to

0 = a2

((e′
0

)
,

(
e′

λ′

))
=: bI2(e

′; e′, λ′)

= |e′|2H1(Ω\Γ) +
(
ic0 −

c20ε

6
− 7ic30ε

2

240

)
‖{e′}‖2L2(Γ) +

ic0ε
2

12
|{e′}|2H1(Γ) +

〈
[e′], λ′

〉
Γ
+

ic0ε
2

24

〈
{e′}, κλ′

〉
Γ
.

Then, we have for e = 0 and λ = λ′

0 = a2

(( 0

λ′

)
,

(
e′

λ′

))
=: bII2 (λ

′; e′, λ′) =
ic0ε

2

24

〈
κλ′, {e′}

〉
Γ
+
〈
λ′, [e′]

〉
Γ
+

ic0ε
2

12

〈
λ′, λ′

〉
Γ
.

In general, it holds bI2(e
′; e′, λ′) 6= aI2(e

′, λ′; e′) as well as bII2 (λ
′; e′, λ)′ 6= aII2 (λ

′, e′;λ′). However, it is easy to
verify that

0 = b
I
2(e

′; e′, λ′)− bII2 (λ
′; e′, λ′) = a

I
2(e

′, λ′; e′)− aII2 (e
′, λ′;λ′).

Thus, it holds (4.24) with e′ instead of e, λ′ instead of λ and f = g = 0. Thus, repeating the steps in the first
part of the proof leads to

e′ = 0 in Ω \ Γ, and λ′ = 0 on Γ, (4.32)

and so the range of A2 is dense, which completes the proof. �

Remark 4.3. The upper bound for thicknesses ε∗ in the proof for stability was not choosen optimally. For
particular sheets with a certain c0 existence and uniqueness might hold for larger thicknesses.

Remark 4.4. The same well-posed and stability result can be stated as well for the model of order 3.

4.3. Estimates of the modelling error

With the stability estimate we may deduce the modelling error induced by the neglected terms in their
derivation. These neglected terms are of order εN+1. Due to the ε−2-term in front of the norm of g in the
stability estimate (4.20) we can only obtain a non-optimal estimate of the modelling error of order εN . However,

using an asymptotic expansion of ẽε,Next up to one order higher we will be able to prove the following theorem.

Theorem 4.5 (Modelling error). Let N = 2, 3. We have the estimate

∥∥ẽε,Next − eεext
∥∥
H1(Ωε

ext)
= O

ε→0
(εN+1). (4.33)

Proof. To obtain an error estimate with the optimal order O(εN+1) we will first derive asymptotic expansions

ẽε,N,m
ext ≈

m∑

j=0

εjvN,j
ext (4.34)

of the solutions ẽε,Next , prove then that ẽε,N,m
ext approximate ẽε,Next to order εm+1, and conclude with the fact that

the expansion (4.34) coincides up to order m ≤ N with the asymptotic expansion of the exact solution.
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Step 1. Let N = 2 or 3. We insert the asymptotic expansion (4.34) in (2.6) and identify order by order. The

functions vN,j
ext satisfies

vN,j
ext ∈ H1

∆(Ω \ Γ),

−∆vN,j
ext (x) = fj(x), in Ω \ Γ,

[
vN,j
ext

]
(t) =

N∑

ℓ=2

(γℓv
N,j−ℓ
ext )(t), on Γ,

[
∂nv

N,j
ext

]
(t)− ic0

{
vN,j
ext

}
(t) =

N∑

ℓ=1

(ζℓv
N,j−ℓ
ext )(t), on Γ,

(4.35a)

completed with the source terms

f0(x) = f(x) and fj(x) = 0, in Ω \ Γ (4.35b)

and the convention vN,j
ext = 0 for j < 0.

The terms vN,j
ext of these asymptotic expansions do not depend on ε, are well defined. These functions are

in general discontinuous across Γ but are C∞(Ω+) and C∞(Ω−) (see Appendix B for a proof of this regularity
result).

Step 2. To show that the expansion (4.34) is in fact an approximation of ẽε,Next we define the residual

rε,N,m
ext := ẽε,Next −

m∑

j=0

εjvN,j
ext (4.36)

and we call

ρε,N,m
ext := {∂nrε,N,m

ext } = λ̃ε,N
ext −

m∑

j=0

εj{∂nvN,j
ext }. (4.37)

The residual rε,N,m
ext ∈ H1,1

∂Ω(Ω \ Γ) satisfies




−∆rε,N,m
ext = 0 in Ω \ Γ,

[
rε,N,m
ext

]
(t)−

N∑

ℓ=2

(εℓγℓr
ε,N,m
ext )(t) = f ε,N,m(t), on Γ

[
∂nr

ε,N,m
ext

]
(t)− ic0

{
rε,N,m
ext

}
(t)−

N∑

ℓ=1

(εℓζℓr
ε,N,m
ext )(t) = gε,N,m(t), on Γ

rε,N,m
ext = 0, on ∂Ω,

(4.38)

with

f ε,N,m(t) = −
∑

(j,ℓ)∈SN,m

εj+ℓ(γℓv
N,j
ext )(t), gε,N,m(t) = −

∑

(j,ℓ)∈SN,m

εj+ℓ(ζℓv
N,j
ext )(t).
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where the domain of summation Sn,m is the set of integers

SN,m =
{
(j, ℓ) ∈ N

2 : j ∈ [[0,m]], ℓ ∈ [[0, N ]] and j + ℓ ≥ m+ 1
}
. (4.39)

The system (4.38) can be transformed into a variational problem

aN

((
rε,N,m
ext

ρε,N,m
ext

)
,

(
e′

λ′

))
=

〈
gε,N,m, {e′}

〉
Γ
+
〈
f ε,N,m, λ′

〉
Γ
, ∀e′ ∈ H1,1

∂Ω (Ω \ Γ), ∀λ′ ∈ L2(Γ). (4.40)

Since the functions vN,m
ext do not depend on ε and are regular, we have the bounds

∥∥γℓv
N,j
ext

∥∥
L2(Γ)

≤ CN,j and
∥∥ζℓv

N,j
ext

∥∥
L2(Γ)

≤ C′
N,j.

These two sums contain a finite number of monomials of ε with order larger than m+ 1.

‖f ε,N,m‖L2(Γ) = O
ε→0

(εm+1) and ‖gε,N,m‖L2(Γ) = O
ε→0

(εm+1). (4.41)

Applying Theorem 4.2 allows to obtain a non-optimal bound ‖rε,N,m
ext ‖H1(Ω\Γ) ≤ ‖rε,N,m

ext ‖H1,1(Ω\Γ) = O(εm).
The optimal estimates follow from a triangular inequality

‖rε,N,m
ext ‖H1(Ω\Γ) ≤ ‖rε,N,m+1

ext ‖H1(Ω\Γ) + εm+1‖vN,m+1
ext ‖H1(Ω\Γ) = O

ε→0
(εm+1). (4.42)

Step 3. Comparing the systems (1.5) and (4.35), we remark that vN,j
ext = uj

ext for j ∈ [[0, N ]] (they are different

for j > N). Inserting eε,Next =
∑N

j=0 ε
juj

ext =
∑N

j=0 ε
jvN,j

ext , we get by the triangular inequality since Ωε
ext ⊂ Ω \Γ

∥∥ẽε,Next − eεext
∥∥
H1(Ωε

ext)
≤

∥∥ẽε,Next − eε,Next

∥∥
H1(Ω\Γ)

+
∥∥eε,Next − eεext

∥∥
H1(Ωε

ext)
. (4.43)

With rε,Next = eεext − eε,Next and rε,N,N
ext = ẽε,Next − eε,Next the two estimates (1.3) and (4.42) lead to the conclusion

∥∥ẽε,Next − eεext
∥∥
H1(Ωε

ext)
= O

ε→0
(εN+1). (4.44)

�

5. Numerical examples

This section is devoted to the numerical validation of the approximate models of order 1, 2 and 3. The
simulations were performed with the numerical C++ library Concepts [9, 11] using exactly curved elements of
high order which permits discretisation error lying below the modelling error.
The geometrical setting of the experiments. We consider an ellipsoidal thin sheet, a sheet with varying
curvature, with two live circular conductors in the middle (with opposite direction of the currents). The problem
is completed by perfect magnetic conductor (PMC) boundary condition on the circular outer boundary which
turns out to be a homogeneous Neumann boundary condition. Note, that the proof for stability and the
modelling error of the approximative problems with Dirichlet boundary condition can be extended to the case
of Neumann boundary condition using H1(Ω\Γ)\C instead of H1

∂Ω(Ω\Γ) (see Lemma 4.1). See Fig. 2(a) for a
sketch of the geometry and Fig. 2(b) for the flux lines and the absolute value of the magnetic field induced by
the two wires and shielded by the thin sheet (computed with the exact model).
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b

a

f = −iωµ0j0

ε

Ωε
ext

Ωε
int

(a) (b)

Figure 2. (a) Geometrical setting with elliptic mid-line (dashed line) with the semi-major

axis a = 1.2 and semi-minor axis b =
√
0.6. The boundary is a circle of radius R = 2. The live

wires are circles of radius 0.25 and midpoints (±0.5, 0). (b) The magnitude and the flux lines
of the in-plane magnetic field for ε = 1/16, c0 = 10 and f = 1 in the left wire and f = −1 in the
right one – corresponding to an alternating currents j0 with opposite direction. The flux lines
of the magnetic field compass the wires and are almost trapped in the interior area enclosed by
the thin sheet.

Γ

(a)

Ωε
int

(b)

Figure 3. (a) Mesh M0 for the finite element solution of the asymptotic expansion models.
The mid-line Γ is labelled. (b) Associate mesh Mε for the finite element solution of the exact
model with the cells in the sheet, here of thickness ε = 1/16.
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1
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x
2

(a) No shielding sheet.

−1 −0.5 0 0.5 1

x1

(b) Elliptic sheet with ε = 1/16, c0 = 10.

−1 −0.5 0 0.5 1

x1

(c) Same sheet with c0 = 100.

Figure 4. Illustration of the increasing shielding of two live wires by an elliptic thin sheet of
increasing conductivity. Visible is always the same part of the geometric domain. In the top
row the magnetic field intensity and direction (flux lines) are shown and in the bottom line the
in plane electric field. The scaling of the colours and the distances of the flux lines correspond
in all the plots of each row. The parameters are the same as in Fig. 2.

Illustration of the shielding effect. We start the series of numerical experiments with direct computations
which do not involve the approximate transmission conditions. The numerical computations have been done on
meshes Mε resolving the sheet (see Fig. 3(b)) and using curved cells with polynomial degree p = 10.

In Figure 4, we compare the electromagnetic fields for three different configurations. To each configuration
corresponds one column. In the first column no sheet is present, in the second column there is a highly
conducting sheet with ε = 1/16, c0 = 10, and in the third colum a conducting sheet with ε = 1/16 and an even
higher relative conductivity c0 = 100. The magnetic field is plotted in the first row, whereas the electric field is
plotted in the second.

To compare the results the same color scaling is used. In the case of no shielding sheet the fields decays
slowly away from the two wires. In the presence of the thin sheets the fields are to some degree trapped in the
enclosed area. This is especially pronounced for the most right pictures. The skin depths for the two conducting
sheets are dskin = 0.079 = 1.26 ε for c0 = 10 and dskin = 0.025 = 0.4 ε for c0 = 100.
Numerical study of the modelling error. We compare a numerical approximation of the solution of the
models of order 1, 2 and 3 to a reference solution.
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Figure 5. Convergence of the error of the transmission conditions of order 1, 2 and 3 for
the geometry shown in Fig. 2 with c0 = 1 and varying thickness ε. The solution with the
transmission condition is computed with p = 18 and subtracted from a numerical approximation
(p = 20) to the exact solution to get the error. The error is measured in the L2(Ωε

ext)-norm
(top left), in the L2(Ωε

int)-norm (top right), in the H1(Ωε
ext)-seminorm (bottom left), and in

the H1(Ωε
int)-seminorm (bottom right). The numerically observed convergence rates verify the

estimates in Theorem 3.4, Theorem 4.5 and Remark 2.1. Note, that the H1-norm of the exact
solution in Ωε

ext is of order 1, so the given absolute errors corresponds nearly to the relative
errors.

For the models of order 1, 2 and 3, the computations were achieved on the mesh M0, see Figure 3(a),
with no meshing of the thin sheet. We choose p = 18 for the polynomial degree of the finite element method.
The Lagrange multiplier was discretised with discontinuous piecewise polynomial elements on the edges of the
interface Γ.

The reference solutions were computed on the mesh Mε which resolves the geometry, see Figure 3(b). The
polynomial degree p = 20 was chosen higher than for the approximate models so that the discretisation error
for the reference solution is much smaller than the discretisation error for the model of order 1, 2, 3 and can be
neglected.
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Figure 6. Convergence of the error as in Fig. 5, where only the relative conductivity is changed
to c0 = 250. The numerically observed rates in ε correspond again to theoretically predicted.
At about ε = 4 · 10−2 = 10

c0
the curves of different orders have a crossing point (dskin ≈ 3 ε).

For larger thicknesses ε the model of order 1 achieves the best results.

For the computation of the interior solution we used a Lagrange multiplier for the mean value of the normal
derivative and computed locally its second derivative which is present in the model of order 3.

The Figures 5 and 6 show the convergence of the error of the transmission conditions of order 1, 2 and 3
w.r.t. the sheet thickness for the geometry in Fig. 2 and relative conductivities c0 = 1 and c0 = 250. The error
is shown in L2-norm and in H1-seminorm in the exterior and the interior of the sheet.

For the smallest value of the sheet thickness, the modelling error may fall below the discretisation error. In
this case, we observe an horizontal line in the convergence plot.

With c0 = 1 (Fig. 5), we observe very low error levels for all three models and convergence rates which coincide
with the theoretically predicted ones. The convergence stops when the discretisation error gets dominant. For
the model of order 3 and the error in the interior this point is reached earlier due to inexact evaluation of
∂2
t λ̃

ε,3
ext = ∂2

t {∂nẽε,3ext}. For the case c0 = 250 (Fig. 6) we observe almost the same convergence rates as for c0 = 1.
The error distribution of the electric field in the exterior of the sheet is shown in Fig. 7 for three examples

and the transmission conditions of order 1, 2 and 3. The order of magnitude of the error differ largely, and we
use therefore for each subfigure its individual colorbars. The first and second examples with sheet thickness
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Figure 7. Error of the electric field in the exterior of the thin conducting sheet for the as-
ymptotic models of order 1, 2 and 3 (note the different scalings of the color representation).
The configuration in the first row is with a sheet of thickness ε = 1/16 and relative conductivity
c0 = 10. The exact solution for this configuration is shown in Fig. 4(b). With this setting the
error decreases by about one order of magnitude when increasing the order of the model by one
(ε = 0.625

c0
). In the second row the error is plotted for ε = 1/256 and c0 = 1000 and decreases by

a factor of 2 per order (ε = 3.91
c0

). In the third row the configuration is ε = 1/16 and c0 = 1000

and the error increases with increasing order (ε = 62.5
c0

). Here the skin depth fall below the
valid value of the proposed models.

ε = 1/16 = 0.026
c0

(relative conductivity c0 = 10) and ε = 1/256 = 3.91
c0

(relative conductivity c0 = 1000) are well
and tight, respectively, in the range of validity of the models. We observe also a considerable decrease of the
error for the first example when increasing the order, whereas the decrease is lesser in the second example. The
thickness ε = 1/16 = 62.5

c0
(relative conductivity c0 = 1000) in the third example lies clearly above the range

of validity. The error in this example is smallest for order 1 and increases for higher model orders. In all the
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examples the error for the order 1 is mainly located in inner area where the electric field itself has highest values.
By increasing the model order the error field is more distributed.

For the models of order 2 and 3, the theory presented in the paper is only asymptotic. Lemma 4.2 states for
example the stability of the solution only for ε small enough. During the numerical simulations, no stability
problem was observed even for relatively larger values of the factor c0ε which has reached 31 for ε = 1/8 and
c0 = 250.

Concluding remarks

In the context of magneto-quasistatic, we derived three approximate models of order 1, 2 and 3 to take into
account the far field behaviour of thin and highly conducting sheets. With these models the sheet do not have to
be meshed, but is modelled by local transmission conditions. Therefore the models can easily be implemented in
most of the finite element libraries or codes based on a Galerkin approximation. Once the field outside the sheet
is computed the internal field follows as a polynomial in thickness direction. Our few numerical simulations
verify the theoretically achieved estimates for the modelling error. We end this article with some remarks and
open problems.
About regularity of the boundary. A lot of industrial casings are polygonal or polyhedral and so contains
edges. Our first order approximate model can be applied to such geometries. Anyway its justifications require
more advance arguments based on a multiscale analysis similar to the one of [8]. The same type of problematic
appears for open sheets.
About full Maxwell systems in 2D. When the displacement current is not neglected, one has to face a
Helmholtz equation inside the exterior domain. This equation has to be supplemented with radiation condition
in order to obtain a well posed problem. This leads to a non-coercive variational formulation and the stability
results of Section 3.2 and Section 4.2 require an important modification (one has to act by contradiction).
However, the extra ingredients are now classical. One can refer to [15] for a similar problem.
About three-dimensional thin sheets. When the sheet is not z-invariant but completely three-dimensional,
the relevant problem is vectorial. However, in the context of IBC, many authors, see [4, 12] for example, have
proposed approximate models. One can think to adapt their approach to highly conducting sheets.

Appendix A.

A.1. The surface operators involved in the transmission conditions

The approximate solutions ẽε,Next of order N are defined with the help of two differential operators that consists
in the truncation of two formal series of operators, see (2.6),

γε,N :=

N∑

j=2

εjγj and ζε,N :=

N∑

j=1

εjζj

where γ0 = γ1 = ζ0 = 0 and the differential operators γℓ and ζℓ that are explicitly given for ℓ ≤ 3 by

(γ2u)(t) := − ic0
24

(
κ(t) {u}(t) + 2 {∂nu}(t)

)
,

(γ3u)(t) := − c20
240

(
κ(t) {u}(t) + 2 {∂nu}(t)

)
,

(A.1)
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(ζ1u)(t) := −c20
6

{u}(t),

(ζ2u)(t) := − (ic0)

12

(
7c20
20

+ ∂2
t

)
{u}(t) + ic0κ(t)

24
{∂nu}(t)

(ζ3u)(t) :=
c20
40

(
17c20
84

+
κ2(t)

3
+ ∂2

t

)
{u}(t) + c20κ(t)

240
{∂nu}(t).

(A.2)

A.2. The interior operators

The interior approximation of order N involves the differential operators

ηε,N :=

N∑

j=0

εjηj

with

(η0u)(t, S) = {u}(t),

(η1u)(t, S) =
(ic0)

2
{u}(t)

(
S2 + 1

4

)
+ {∂nu}(t)S,

(η2u)(t, S) =
(ic0)

2

24
{u}(t)

(
S2 + 3

4

)2
+

(ic0)

6
{∂nu}(t)

(
S3 − 3

4S
)
− (ic0)

6
κ(t) {u}(t)

(
S3 + 3

4S
)

− 1

2

(
κ(t) {∂nu}(t) + ∂2

t {u}(t)
)
S2,

(η3u)(t, S) =
(ic0)

3

720
{u}(t)

((
S2 + 5

4

)3
+ 15

4

(
S2 + 1

4

))
+

(ic0)
2

120
{∂nu}(t)

(
S2 − 5

4

)2
S

+
c20
60

κ(t) {u}(t)
(
S4 +

5

2
S2 +

5

16

)
S − (ic0)

12
κ(t) {∂nu}(t)

(
S2 − 3

4

)
S2

− (ic0)

12
∂2
t {u}(t)

(
S2 + 1

2

)(
S2 + 1

4

)
+

(ic0)

8
κ2(t) {u}(t)

(
S4 + 1

2S
2 − 1

48

)

+
1

2

(
κ(t)∂2

t + 1
3κ

′(t)∂t
)
{u}(t)S3 +

1

3

(
κ2(t)− 1

2∂
2
t

)
{∂nu}(t)S3.

Appendix B. Existence, uniqueness and regularity of the terms of the

asymptotic expansions

We recall that Ω is a connected bounded domain of R2 with regular boundary ∂Ω and that Γ is a closed
regular curve included in Ω. The two connected components of Ω are denoted by Ω+ and Ω−, see Figure 1.

In this appendix, we aim in proving that the terms of the asymptotic expansions are well-defined and regular.

Lemma B.1. Let f ∈ C∞(Ω), g ∈ C∞(Γ), and h ∈ C∞(Γ). There exists a unique u ∈ H1(Ω \ Γ)

−∆u(x) = f(x), in Ω \ Γ, (B.1a)

[u] (t) = g(t), on Γ, (B.1b)

[∂nu] (t)− ic0 {u} (t) = h(t), on Γ, (B.1c)

u = 0, on ∂Ω. (B.1d)

Moreover, u is regular in Ω+ and Ω−, i. e., u ∈ C∞(Ω+) and u ∈ C∞(Ω−).

Proof. The proof consists of two parts, the proof of existence and uniqueness, and the proof of the regularity.
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(i) Existence and uniqueness. Since [u] (t) = g(t), the function u is in general not in H1(Ω). We introduce
the auxiliary function û defined by

û(x) = u(x)− χ(x)w(x) (B.2)

with

• w ∈ H1(R2 \ Γ) satisfying

−∆w(x) = f(x), in R
2 \ Γ, (B.3a)

[w] (t) = g(t), on Γ, (B.3b)

[∂nw] (t) = 0, on Γ, (B.3c)

and which is defined by the representation formula

w(x) =

∫

Ω

G(x, x′)f(x′)dx′ +

∫

Γ

∂G

∂n
(x, x′)g(x′)dx′ (B.4)

with G the Green function of the operator −∆ in 2D

G(x, x′) = − 1

2π
ln ‖x− x′‖. (B.5)

• the function χ a regular cut-off function vanishing in a neighbourhood of ∂Ω and with value 1 in a
neighbourhood of Γ.

The function û ∈ H1
∂Ω(Ω) satisfies

−∆û(x) = f̂(x), in Ω, (B.6a)

[∂nû] (t)− ic0û(t) = ĥ(t), on Γ, (B.6b)

with f̂ = f+∆(χw) ∈ C∞(Ω) (this function vanishes in the neighbourhood of Γ) and ĥ = h+ic0{w} ∈ H1/2(Γ).
This strong formulation is equivalent to the well-posed variational formulation (due to the Lax-Milgram theorem
and Poincaré-Friedrich inequality)

û ∈ H1
∂Ω(Ω)

∫

Ω

∇û · ∇u′ dx+

∫

Γ

ic0û u′ dt =

∫

Ω

f̂u′ dx−
∫

Γ

ĥu′ dt, ∀u′ ∈ H1
∂Ω(Ω). (B.7)

This demonstrates that u ∈ H1
∂Ω(Ω \ Γ) is uniquely defined by (B.1).

(ii) Regularity. To show that that the function u ∈ C∞(Ω \ Γ) the key argument comes from the integral
representation theory [18]. Let s ≥ 1. Since ∂Ω and Γ are regular, we have

u ∈ H1(Ω−) and u ∈ H1(Ω+) and u = 0 on ∂Ω,

∆u ∈ Hs−2(Ω−) and ∆u ∈ Hs−2(Ω+)

[u] ∈ Hs− 1
2 (Γ) and [∂nu] ∈ Hs− 3

2 (Γ)





=⇒ u ∈ Hs(Ω+) and u ∈ Hs(Ω−), (B.8)

or equivalently

u ∈ H1
∂Ω(Ω \ Γ) and ∆u ∈ Hs−2(Ω \ Γ)

[u] ∈ Hs− 1
2 (Γ) and [∂nu] ∈ Hs− 3

2 (Γ)

}
=⇒ u ∈ Hs(Ω \ Γ). (B.9)
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We act by induction. Let us suppose that u belongs to Hm(Ω\Γ) and prove that u ∈ Hm+1(Ω\Γ) with m ≥ 1.

By trace theorem {u} ∈ Hm− 1
2 (Γ). Consequently, this leads to

u ∈ H1
∂Ω(Ω \ Γ) and ∆u ∈ C∞(Ω \ Γ)

[u] = g ∈ C∞(Γ) and [∂nu] = ic0 {u}+ h ∈ Hm− 1
2 (Γ)

}
=⇒ u ∈ Hm+1(Ω \ Γ). (B.10)

This ends the proof. �
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