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Commande optimale d’équations intégrales avec

contraintes sur l’état

Résumé : Nous considérons un problème de commande optimale d’une classe
d’équations intégrales avec contraintes sur l’état initial et final, ainsi que des con-
traintes sur l’état à tout instant. Nous prouvons un principe de Pontryaguine,
et étudions la continuité de la commande optimale et des mesures associées aux
contraintes du premier ordre. Nous établissons également la continuité lipschitz
de ces fonctions dans le cas où toutes les contraintes sur l’état sont du premier
ordre.

Mots-clés : commande optimale, contraintes sur l’état, principe de Pon-
tryaguine, continuité lipschitz, équations intégrales, principe d’Ekeland.
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1 Introduction

Integral equations occur in a natural way in the study of economic problems
or population dynamics, see for instance Hritonenko and Yatsenko [22] and
Kamien and Schwartz [24]. The optimal control of such systems has been already
discussed in a number of papers. Vinokurov [32] provides a maximum principle
for a problem with constraints over the sum of integral and final cost functions.
His proof has been questioned in Neustadt and Warga [28]. Existence of an
optimal control for such problems is studied in Angell [1, 2, 3]. Several variants
of the maximum principle for an optimal control problem with integral or final
constraints were obtained in Bakke [4], Carlson [12], de la Vega [13], and in the
book by Neustadt [29].

The novelty in this paper is that we discuss optimal control problems of
integral equations with running state constraints as well as constraints on the
initial and final states. We prove a version of Pontryagin’s principle, and analyze
the Lipschitz continuity (over time) of the control and of some of the multipliers.

Significant advances in the study of optimal control problems with running
state constraints have been obtained in recent years. See in particular Bonnans
and Hermant [8, 6, 7, 9], Malanowski [25, 26].

There is a specific literature about Lipschitz continuity of the optimal control
for state constrained problems: see the pioneering paper Hager [20], Galbraith
and Vinter [18, 19], Shvartsman and Vinter [31], Do Rosario de Pinho and
Shvartsman [16], Hermant [21] in the case of second order state constraints, and
more recently Bonnans [5] in the case of state constraints of arbitrary order.
An important tool is the use of alternative optimality systems, motivated by
reformulations in which the Hamiltonian function includes some time derivative
at appropriate order of the state constraint: see Bryson, Denham and Dreyfus
[10], and Jacobson, Lele and Speyer [23]. A clarification of the theory was
brought in Maurer [27].

The paper is organized as follows. We set the problem and state Pontryagin’s
principle in section 2.1. The proof of Pontryagin’s principle is provided in section
3. The continuity of the control (and of the multipliers associated to first order
state constraints) is analyzed in section 4. The alternative optimality system
is introduced in section 5, allowing to obtain (under appropriate hypotheses)
the Lipschitz continuity of the control (and of the multipliers associated to first
order state constraints). We conclude in section 6 by discussing open problems.

The norm in Euclidean spaces will be denoted by | · |. The projection onto
a closed convex subset K of an Euclidean space is denoted by PK(·).
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4 J.F. Bonnans and C. de la Vega

2 Setting and statement of Pontryagin’s princi-

ple

2.1 Setting

In this paper we consider a state constrained optimal control problem of the
following type:

(P )





Min

∫ T

0

ℓ(ut, yt)dt+ φ(y0, yT );

(i) yt = y0 +
∫ t

0
f(t, s, us, ys)ds; t ∈ (0, T );

(ii) g(yt) ≤ 0; t ∈ [0, T ],
(iii) Φ(y0, yT ) ∈ K,

with ℓ : IRm × IRn → IR, φ : IRn × IRn → IR, f : IR × IR × IRm × IRn → IRn,
g : IRn → IRng , ng ≥ 1, Φ : IRn × IRn → IRnΦ , and K is a closed and non empty
convex subset of IRnΦ . All data f , g, ℓ, φ, Φ are assumed to be of class C∞,
and f is supposed to be Lipschitz. Set, for q ∈ [1,∞]

Uq := Lq(0, T, IRm); Yq := W 1,q(0, T, IRn). (1)

The control and state space are U := U∞, Y := Y∞. We call trajectory a pair
(u, y) ∈ U ×Y, solution of the state equation (P )(i). We set τ as the symbol for
the first variable of f , so that for instance Dτf denotes the partial derivative of
f w.r.t. the first variable. Observe that in the case when f does not depend on
τ , we recover the classical state constrained optimal control problem.

2.2 Statement of Pontryagin’s principle

Denote by C([0, T ]) the set of continuous functions on [0, T ], and by B̃V ([0, T ])

the set of functions of bounded variations on [0, T ]. Elements of B̃V ([0, T ]) have
left and right limits over (0, T ). The jump of a function η with left and right

limits at time t is denoted by [ηt] := ηt+ − ηt−. When η ∈ B̃V ([0, T ]), we define
its jumps at time 0 and T as [η0] = η0+ − η(0) and [ηT ] = ηT − ηT−, resp.

If η and λ belong to B̃V ([0, T ]), we say that ηRλ if η and λ have the same
value at times 0 and T , and same left and right limits over (0, T ). This defines an

equivalence relation. We denote by BV ([0, T ]) the quotient space B̃V ([0, T ])/R,
and by BVT ([0, T ]), the set of elements of BV ([0, T ]) for which the elements of
the equivalence class have zero value at time T+.

We may identify the dual of C([0, T ]) with BVT ([0, T ]), the linear form

associated with η ∈ BVT ([0, T ]) being y 7→
∫ T

0
ytdη̃t, where η̃t is an element of

the equivalence class of η; in the sequel we will write this integral as
∫ T

0
ytdηt.

By IRn∗ we denote the dual of IRn, represented as a set of horizontal vectors.
More generally all vector-valued dual variables will be seen as horizontal vec-
tors function of time. For instance, the dual of C([0, T ])n will be identified to
BVT ([0, T ])n∗, the set of functions of bounded variation over [0, T ] with values
in IRn∗.

We denote by F (P ) the set of (u, y) ∈ U × Y that satisfy the constraints of
problem (P ). Set M := BVT ([0, T ])ng∗. Let ᾱ ∈ IR+, Ψ̄ ∈ IRnΦ and η̄ ∈ M.

INRIA



Optimal control of state constrained integral equations 5

For y ∈ Y, denote the end points Lagrangian as the function [IR+ × IRnΦ∗] ×
IRn × IRn → IR whose expression is

Φ[α,Ψ](y0, yT ) := αφ(y0, yT ) + ΨΦ(y0, yT ). (2)

We adopt here (as in some of the Russian literature, see e.g. Dmitruk [15])
the convention of denoting the multipliers as parameters of functions having
primal and dual variables, such as Hamiltonian of Lagrangian functions. Let
(ū, ȳ) ∈ F (P ). The associated costate, whenever it exists, is defined as the
solution in P := BV ([0, T ])n∗ of





−dp̄t = ᾱDyℓ(ūt, ȳt)dt+ p̄tDyf(t, t, ūt, ȳt)dt+

ng∑

i=1

g′i(ȳt)dη̄i,t

+

∫ T

t

p̄sD
2
τ,yf(s, t, ūt, ȳt)ds,

(−p̄0−, p̄T+) = Φ′[ᾱ, Ψ̄](ȳ0, ȳT ).
(3)

By standard contraction arguments, it can be shown that the variant of (3)
obtained by removing the initial condition on the costate has a unique solution
in P. Next we introduce the Hamiltonian function

H[α, p](t, u, y) := αℓ(u, y) + ptf(t, t, u, y) +

∫ T

t

psDτf(s, t, u, y)ds. (4)

The Hamiltonian is a function parameterized by (α, p) ∈ IR+ × BV ([0, T ])n∗,
from IR× IRm × IRn into IR. Note that the dynamics can be written as

−dp̄t = DyH[ᾱ, p̄](t, ūt, ȳt)dt+ (dη̄t) g
′(ȳt). (5)

Definition 2.1. Let (ū, ȳ) ∈ F (P ). We say that (ᾱ, η̄, Ψ̄, p̄) in IR+ × M ×
IRnΦ∗×P, is a Pontryagin multiplier associated with (ū, ȳ) ∈ F (P ) if the costate
equation (3) is satisfied, as well as the four following conditions: non triviality

ᾱ+ ‖η̄‖ + |Ψ̄| > 0, (6)

complementarity

η̄ ≥ 0;

ng∑

i=1

∫ T

0

gi(yt)dηi,t = 0. (7)

transversality condition
Ψ̄ ∈ NK(Φ(ȳ0, ȳT )), (8)

and Hamiltonian inequality

H[ᾱ, p̄](t, ūt, ȳt) ≤ H[ᾱ, p̄](t, u, ȳt), for all u ∈ IRm, for a.a. t ∈ (0, T ). (9)

We say that (ū, ȳ) ∈ F (P ) is a Pontryagin extremal, or that it satisfies Pontrya-
gin’s principle, if the set of associated Pontryagin multipliers is not empty.

The set of Pontryagin multipliers, that we denote by Λ(ū, ȳ), is a convex
cone not containing zero. When (ᾱ, η̄, Ψ̄, p̄) ∈ Λ(ū, ȳ) is such that ᾱ > 0, we say
that the multiplier is regular and we may identify the multiplier with the one

RR n➦ 7257



6 J.F. Bonnans and C. de la Vega

of the same direction with α = 1. In the latter case we say that (η̄, Ψ̄, p̄) is a
regular multiplier. When ᾱ = 0 we say that (η̄, Ψ̄, p̄) is a singular multiplier.

We say that (ū, ȳ) ∈ F (P ), is a local solution of (P ) in the L1 norm if the
following holds:




∫ T

0

ℓ(ūt, ȳt)dt+ φ(ȳ0, ȳT ) ≤

∫ T

0

ℓ(ut, yt)dt+ φ(y0, yT ),

for all (u, y) ∈ F (P ) such that ‖u− ū‖1 + |y0 − ȳ0| is small enough.
(10)

Our main theorem follows.

Theorem 2.2. Any local solution of problem (P ), in the L1 norm, is a Pon-
tryagin extremal.

In the subsequent sections we will prove this theorem and analyse some con-
sequences, as the analysis of continuity and Lipschitz continuity of the control.
We first establish the well-posedness of the state equation.

3 Proof of Pontryagin’s principle

3.1 Study of the state equation

We recall that the function f is supposed to be Lipschitz. The lemma below is
of course well-known.

Lemma 3.1. If f is Lipschitz, then given (u, y0) ∈ U1 × IRn, the state equation
(P )(i) has a unique solution in Y1, denoted y[u, y0], and for all (u′, y′0) ∈ U1 ×
IRn, we have that

‖y[u′, y′0] − y[u, y0]‖∞ = O(‖u′ − u‖1 + |y′0 − y0|). (11)

Proof. a) Existence and uniqueness of the state is obtained using the usual
technique of contraction operators for the Cauchy-Lipschitz theorem.
b) Denote y := y[u, y0] and y′ := y[u′, y′0]. The estimate (11) is a consequence
of Gronwall’s lemma, once we observe that the state equation implies

‖y′ − y‖∞ ≤ |y′0 − y0| + Lf

∫ T

0

(|u′s − us| + |y′s − ys|) ds. (12)

Let (ū, ȳ) be a trajectory. The classical linearized system is the following
equation, where (v, z) ∈ U × Y:

zt = y0 − ȳ0 +

∫ t

0

D(u,y)f(t, s, ūs, ȳs)(vs, zs)ds, t ∈ (0, T ). (13)

We next introduce a variant that we will call Pontryagin linearization, since it
is strongly related to the Pontryagin maximum principle, and whose expression
is as follows:

zt = y0−ȳ0+

∫ t

0

[Dyf(t, s, ūs, ȳs)zs + f(t, s, us, ȳs) − f(t, s, ūs, ȳs)] ds, t ∈ (0, T ).

(14)

INRIA



Optimal control of state constrained integral equations 7

Lemma 3.2. Let (u, y0) and (ū, ȳ0) belong to U × IRn, with associated states
denoted by y and ȳ, resp. Let z be the solution of the Pontryagin linearization
(14). If Dyf is Lipschitz, then for some C1 > 0 depending only on the data of
(P ), we have that

‖ȳ + z − y‖∞ ≤ C1

(
‖u− ū‖2

1 + |y0 − ȳ0|
2
)
. (15)

Proof. We have that ζ := ȳ + z − y is solution of

ζt =

∫ t

0

(Dyf(t, s, ūs, ȳs)ζs + ∆(t, s)) ds, t ∈ (0, T ), (16)

where

∆(t, s) = f(t, s, us, ȳs) − f(t, s, us, ys) +Dyf(t, s, ūs, ȳs)(ys − ȳs), (17)

so that, setting yσ
s := ȳs + σ(ys − ȳs):

∆(t, s) =

∫ 1

0

(Dyf(t, s, us, y
σ
s ) −Dyf(t, s, ūs, ȳs)) (ys − ȳs)dσ. (18)

It follows that, denoting by LDyf the Lipschitz constant of Dyf :

|∆(t, s)| ≤ LDyf (|us − ūs| + ‖y − ȳ‖∞)‖y − ȳ‖∞ (19)

so that ‖∆(t, ·)‖1 = O
(
‖u− ū‖2

1 + |y0 − ȳ0|
2
)
. We conclude with Gronwall’s

lemma.

3.2 The penalized problem

In this section we provide a proof for Pontryagin’s principle (theorem 2.2).
The first step consiste in proving a variant of this result in the case when the
control is subject to the constraint of belonging to a certain compact set. So,
given a compact set U ⊂ IRm, consider the problem obtained by adding to the
formulation of (P ) the control constraint that the control a.a. belongs to U :

(PU )





Min

∫ T

0

ℓ(ut, yt)dt+ φ(y0, yT );

(i) yt = y0 +
∫ t

0
f(t, s, us, ys)ds; t ∈ (0, T );

(ii) g(yt) ≤ 0; t ∈ [0, T ],
(iii) Φ(y0, yT ) ∈ K,
(iv) ut ∈ U, for a.a. t ∈ (0, T ).

The set ΛU (ū, ȳ) of Pontryagin multipliers is defined as in definition (2.1), re-
placing the Hamiltonian inequality (9) by

H[ᾱ, p̄](t, ūt, ȳt) ≤ H[ᾱ, p̄](t, u, ȳt), for all u ∈ U , for a.a. t ∈ (0, T ). (20)

Theorem 3.3. Any local solution of problem (PU ), in the L1 norm, is a Pon-
tryagin extremal.

RR n➦ 7257



8 J.F. Bonnans and C. de la Vega

Proof. Let (ū, ȳ) be a local solution of problem (PU ). We denote UU := L∞(0, T, U).
The Banach space C[0, T ]ng being separable, there exists an equivalent norm

denoted ‖ · ‖e such that the dual unit ball is stricly convex, see e.g. [14]. Since
C := C[0, T ]

ng

− is convex, the associated distance function denoted by dC(.),
which is non expansive, has out of C unit norm subgradients, and is therefore
differentiable out of C. We note

J(u, y0) :=

∫ T

0

ℓ(u(t), y[u, y0](t))dt+ φ(y0, yT [u, y0]). (21)

Consider the cost function

Jε(u, y0) :=
(
(J(u, y0) − J(ū, ȳ0) + ε2)2+ + (dC(g(y[u, y0])))

2

+ (dK(Φ(y0, yT [u, y0]))
2
) 1

2

,
(22)

and the problem

Min
(u,y0)

Jε(u, y0); (u, y0) ∈ UU × IRn. (Pε)

Since Jε is a nonnegative function and Jε(ū, ȳ0) = ε2, we have that (ū, ȳ0) is
an ε2 solution of Pε. Since U is bounded, we have that the function (u, y0) →
Jε(u, y0) is continuous for the augmented Ekeland metric

ρA((u, y0), (u
′, y′0)) := |y0 − y′0| + ρE(u, u′), (23)

where ρ is the Ekeland metric given by

ρE(u, u′) := meas({t ∈ (0, T ) : ut 6= u′t}). (24)

Hence, by Ekeland’s principle [17], there exists (uε, yε
0) ∈ UU × IRn such that

|yε
0 − ȳ0| + ρE(uε, ū) ≤ ε, (25)

and

Jε(u
ε, yε

0) ≤ Jε(u, y0) + ε (|y0 − yε
0| + ρE(u, uε)) , for all (u, y0) ∈ U × IRn.

(26)
Let yε = y[uε, yε

0] denote the state associated with control uε and initial condi-
tion yε

0. We have that Jε(u
ε, yε

0) > 0 (otherwise we would have (uε, yε) ∈ F (P )
and J(uε, yε

0) < J(ū, ȳ0), which would contradict for ε small enough the local
optimality of (ū, ȳ)). Set

αε =

(
J(uε, yε

0) − J(ū, ȳ0) + ε2
)
+

Jε(uε, yε
0)

; Ψε =
PK(Φ(yε

0, y
ε
T )) − Φ(yε

0, y
ε
T )

Jε(uε, yε
0)

, (27)

and

ψε =





dC(g(yε))DdC(g(yε))

Jε(uε, yε
0)

if g(yε) /∈ C,

0 otherwise.
(28)

We have that |Ψε| = Jε(u
ε, yε

0)
−1dK(Φ(yε

0, y
ε
T )) and since ||DdC(g(yε))||e = 1,

we deduce that ||ψε||e = Jε(u
ε, yε

0)
−1dC(g(yε)). Therefore

α2
ε + ||ψε||2e + |Ψε|2 = 1. (29)

INRIA



Optimal control of state constrained integral equations 9

In addition, since dC is a convex function, we have

〈ψε, z − g(yε)〉 ≤ 0, for all z ∈ C, (30)

and from the definition of projection

Ψε(w − PK(Φ(yε
0, y

ε
T ))) ≤ 0, for all w ∈ K. (31)

Let ηε ∈ M be such that dηε = ψε. The Pontryagin linearization (14) at the
trajectory (uε, yε) is

zε
t = y0−y

ε
0+

∫ t

0

(Dyf(t, s, uε
s, y

ε
s)z

ε
s+f(t, s, us, y

ε
s)−f(t, s, uε

s, y
ε
s))ds, t ∈ (0, T ).

(32)
Let us compute the directional derivative of the perturbed cost w.r.t. y0 at
(uε, yε

0) in an arbitrary direction w0 ∈ IRn. Let us denote by w the directional
derivative of the state w.r.t. the initial condition, at the point (uε, yε

0), in the
direction w0. We have that

wt = w0 +

∫ t

0

Dyf(t, s, uε
s, y

ε
s)wsds. (33)

We obtain




Dy0
Jε(u

ε, yε
0)w0 = αε

∫ T

0

Dyℓ(u
ε
t , y

ε
t )wtdt+

ng∑

i=1

∫ T

0

g′i(y
ε
t )wtdη

ε
i,t

+Φ′[αε,Ψ
ε](yε

0, y
ε
T )(w0, wT ).

(34)
Let pε

t ∈ P be the unique solution of the costate equation

−dpε
t = αεDyℓ(u

ε
t , y

ε
t )dt+ pε

tDyf(t, t, uε
t , y

ε
t )dt+

ng∑

i=1

g′i(y
ε
t )dη

ε
i,t

+

∫ T

t

pε
sD

2
τ,yf(s, t, uε

t , y
ε
t )ds, s ∈ [0, T ];

pε
T+ = DyT

Φ[αε,Ψε](yε
0, y

ε
T ).

(35)

After an integration by parts, we see that (34) reduces to

Dy0
Jε(u

ε, yε
0)w0 =

(
Dy0

Φ[αε,Ψ
ε](yε

0, y
ε
T ) + pε

0−

)
w0. (36)

Since (26) implies |Dy0
Jε(u

ε, yε
0)| ≤ ε, we deduce that

|pε
0− +Dy0

Φ[αε,Ψε](yε
0, y

ε
T )| ≤ ε. (37)

We next claim that, for any trajectory (u, y) ∈ U × Y we have that

Jε(u, y0) − Jε(u
ε, yε

0) =
∫ T

0
(H[αε, pε](t, ut, y

ε
t ) −H[αε, pε](t, uε

t , y
ε
t )) dt

+O(||u− uε||21 + |y0 − yε
0|

2).
(38)

Indeed, set Rε := ||u − uε||21 + |y0 − yε
0|

2. By lemma (3.2), denoting by zε the
Pontryagin linearization defined in (32), we have that

g(y) − g(yε) = g′(yε)zε +O(Rε), (39)

Φ(y0, yT ) − Φ(yε
0, y

ε
T ) = Φ′(yε

0, y
ε
T )(zε

0, z
ε
T ) +O(Rε) (40)

RR n➦ 7257



10 J.F. Bonnans and C. de la Vega





J(u, y0) − J(uε, yε
0) =

∫ T

0

(ℓ(ut, y
ε
t ) − ℓ(uε

t , y
ε
t ) +Dyℓ(u

ε
t , y

ε
t )z

ε
t ) dt

+φ′(yε
0, y

ε
T )(zε

0, z
ε
T ) +O(Rε).

(41)

By the chain rule we deduce that

{
Jε(u, y0) − Jε(u

ε, yε
0) = αε (J(u, y) − J(uε, yε)) +

∫ T

0
g′(yε

t )z
ε
t dη

ε
t

+(Ψε)t (Φ(y0, yT ) − Φ(yε
0, y

ε
T )) +O(Rε).

(42)

Applying (35)-(41) to (42) and integrating by parts, our claim follows.
Given ε > 0, let (uε, yε

0) be the control and initial state obtained by Ekeland’s
Principle, satisfying (25)-(26). Let yε be the associated state, and denote by pε

the associated costate, solution of (35). Since ||u − uε||1 = O(ρE(u, uε)), (26)
and (38) imply





1

ρA((u, y0), (uε, yε
0))

∫ T

0

(H[αε, pε](t, uε
t , y

ε
t ) −H[αε, pε](t, ut, y

ε
t )) dt

≤ ε+O(||u− uε||1 + |y0 − yε
0|).

(43)

By classical arguments for unconstrained problems we obtain that

H[αε, pε](t, uε
t , y

ε
t ) ≤ H[αε, pε](t, u, yε

t )+ε, for all u ∈ U a.a. t ∈ (0, T ). (44)

Since U is bounded, ūt and uε
t belong to U for a.a. t, and ρA((ū, ȳ0), (u

ε, yε
0)) <

ε, we have that, when ε ↓ 0, ‖uε − ū‖1 + |yε
0 − ȳ0| → 0 and therefore, by lemma

3.1, yε → ȳ uniformly. In view of (29)-(31), we can extract a subsequence εk

such that, denoting by “
∗
→” the weak ∗ convergence,





αεk
→ ᾱ ∈ [0, 1],

Ψεk → Ψ̄; Ψ̄(w − Φ(ȳ0, ȳT )) ≤ 0, for all w ∈ K,

ψεk
∗
→ ψ̄;

〈
ψ̄, z − g(ȳ)

〉
≤ 0, for all z ∈ C,

pεk
∗
→ p̄.

(45)

The complementarity and transversality conditions (7)-(8) conditions follow,
as well as the costate equation (3) (passing to the limit in (37) for the initial
condition), and the Hamiltonian inequality (9) follows by passing to the limit
in (44).

In remains to check the nontriviality condition (6). If ᾱ > 0 or Ψ̄ 6= 0, it
holds. Otherwise, by (29), ‖ψεk‖e → 1. By (30), ψε is nonnegative, which means
that ηε is non decreasing, so that its classical dual norm of ηε, equal to its total
variation, is |ηε

0| (in view of the zero terminal condition). Since ‖ψεk‖e → 1, we
have that lim infk |η

ε
0| > 0. Passing to the limit we obtain that the element η̄ of

BVT ([0, T ]) associated to ψ is also nondecreasing and that η̄0 6= 0 (since by the
definition of weak∗ convergence, ηε

0 = ψεk(1) → ψ̄(1) = η̄0). The conclusion
follows.

Proof of theorem 2.2. Let (ū, ȳ) be a local solution in L1 of problem (P ). Let
R > ||ū||L∞(0,T,U). Denote UR = B̄R, and UR = L∞(0, T, UR). Obviously (ū, ȳ)
is a local solution in L1 of the problem (PR) obtained by adding to (P ) the
constraint ut ∈ UR a.a. By theorem 3.3, there exists some (αR, η

R,ΨR, pR) ∈
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Optimal control of state constrained integral equations 11

ΛR(ū, ȳ), where by ΛR(ū, ȳ) we denote the set of Pontryagin multipliers associ-
ated with (ū, ȳ) for problem (PR), and we may assume that

α2
R + ||ψR||2e + |ΨR|2 = 1. (46)

The Hamiltonian inequality for problem (PR) writes

H[αR, p
R](t, ūt, ȳt) ≤ H[αR, p

R](t, u, ȳt), for all u ∈ B̄(0, R), for a.a. t ∈ (0, T ).
(47)

We next pass to the limit when R ↑ +∞, quite in the same way than passing to
the limit when ε ↓ 0 in the proof of theorem 3.3, so there is no need to repeat
the arguments. The conclusion follows.

4 Continuity of the control and multipliers

In this section we will establish some results of continuity and Lipschitz con-
tinuity for the control and the multipliers associated with state constraints of
first order (having in mind that those associated with state constraints of higher
order typically have jumps). A delicate question is to understand how should
be defined the order of a state constraint in our setting.

4.1 Order of the state constraint

Let (u, y) be a trajectory. Then the time derivative of the state is

ẏt = f(t, t, ut, yt) +

∫ t

0

Dτf(t, s, us, ys)ds. (48)

This leads to the definition of the total derivative of a function t 7→ G(t, yt),
along the trajectory (y, u), as G(1)(t, ut, yt, u, y), where G(1) : IR× IRm × IRn ×
U × Y → IR is defined by

G(1)(t, ũ, ỹ, u, y) := DtG(t, ỹ) +DỹG(t, ỹ)f(t, t, ũ, ỹ)

+DỹG(t, ỹ)

∫ t

0

Dτf(t, s, us, ys)ds.

In other words, the total derivative of G(t, yt) is

G(1)(t, ut, yt, u, y) := DtG(t, yt) +DỹG(t, yt)f(t, t, ut, yt)

+DỹG(t, yt)

∫ t

0

Dτf(t, s, us, ys)ds.

In particular, the total derivative of the ith state constraint is g
(1)
i (t, ut, yt, u, y),

where

g
(1)
i (t, ũ, ỹ, u, y) = g′i(ỹ)f(t, t, ũ, ỹ) + g′i(ỹ)

∫ t

0

Dτf(t, s, us, ys)ds. (49)

We say that the ith state constraint is of first order if the dependence w.r.t. ũ
of the above expression is non trivial, i.e., if

g′i(ỹ)Duf(t, t, ũ, ỹ) 6= 0, for some (t, ũ, ỹ) ∈ IR× IRm × IRn. (50)
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12 J.F. Bonnans and C. de la Vega

Otherwise we say that the ith state constraint is of higher order. In that case,
we have

g′i(ỹ)Duf(t, t, ũ, ỹ) = 0, for all (t, ũ, ỹ) ∈ IR× IRm × IRn, (51)

We can then write g
(1)
i (t, ut, yt, u, y) under the form g

(1)
i (t, yt, u, y), and define

g(2), the total derivative of g(1), as

g
(2)
i (t, ut, yt, u, y) = Dtg

(1)
i (t, yt, u, y) +Dỹg

(1)
i (t, yt, u, y)ẏt. (52)

Note that

Dtg
(1)
i (t, yt, u, y) = g′i(yt) (2Dτf(t, t, ut, yt) +Dsf(t, t, ut, yt))

+g′i(yt)

∫ t

0

D2
ττf(t, s, us, ys)ds.

(53)

From (48) and (52) we get

g
(2)
i (t, ut, yt, u, y) = Dtg

(1)
i (t, yt, u, y)

+ Dỹg
(1)
i (t, yt, u, y)

(
f(t, t, ut, yt) +

∫ t

0

Dτf(t, s, us, ys)ds

)
.

Using

Dũ

(
Dtg

(1)
i (t, yt, u, y)

)
= Dt

(
Dũg

(1)
i (t, yt, u, y)

)
= 0 (54)

Dũ

(
Dỹg

(1)
i (t, yt, u, y)

)
= Dỹ

(
Dũg

(1)
i (t, yt, u, y)

)
= 0 (55)

we obtain

Dũg
(2)
i (t, ut, yt, u, y) = Dỹg

(1)
i (t, yt, u, y)Duf(t, t, ut, yt). (56)

Given a trajectory (u, y) ∈ U × Y, let us define g(k+1) as the total derivative
of g(k), and the order of a state constraint gi as the smallest positive integer qi
such that (note that for higher orders the partial derivative below depends in
general on (u, y) also and not only (t, ũ, ỹ))

{
Dũg

(k)
i (t, ũ, ỹ, u, y) = 0, for all (t, ũ, ỹ, u, y) ∈ IR× IRm × IRn × U × Y,

for all 0 ≤ k < qi.
(57)

For a state constraint gi of order q with k < q, we can then write g
(k)
i (t, ut, yt, u, y)

under the form g
(k)
i (t, yt, u, y) and we have:

g
(k+1)
i (t, ut, yt, u, y) = Dtg

(k)
i (t, yt, u, y) +Dỹg

(k)
i (t, yt, u, y)ẏt (58)

Using analogous equations (54)-(55) for g(k) instead of g(1) we obtain

Dũg
(k+1)
i (t, ut, yt, u, y) = Dỹg

(k)
i (t, yt, u, y)Duf(t, t, ut, yt). (59)

So we see that, although the expression of high order derivatives of state con-
straints is rather involved, the partial derivative w.r.t. ut may be written in a
way very similar to the one for ordinary differential equations.
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4.2 Continuity of the control

Let (ū, ȳ) be a Pontryagin extremal. We say that ū has side limits on [0, T ] if it
has left limits on (0, T ] and right limits on [0, T ). When t ∈ (0, T ) is such that ūt

has left and right limits at time t, denoted by ūt±, with jump [ūt] := ūt+ − ūt−,
we define

ūσ
t := ūt− + σ[ūt], σ ∈ [0, 1], (60)

so that ū0
t = ūt− and ū1

t = ūt+. We need to set, for σ ∈ [0, 1]:

Hσ[ᾱ, p̄](t, u, y) := ᾱℓ(u, y) + p̄σ
t f(t, t, u, y) +

∫ T

t

p̄sDτf(s, t, u, y)ds. (61)

The basic hypothesis is
{

For some αH > 0, αH |[ūt]|
2 ≤ D2

uuH
σ[ᾱ, p̄](t, ūσ

t , ȳt)([ūt], [ūt]),
for all σ ∈ [0, 1], t ∈ [0, T ].

(62)

We denote by I1 (resp. I1(t)) the set of (resp. of active at time t) first order
state constraints, and use the hypothesis of positive linear independence w.r.t.
the control of first-order active state constraints along the trajectory (ū, ȳ):

∑

i∈I1(t)

βiDũg
(1)
i (t, ūt, ȳt, ū, ȳ) = 0 and β ≥ 0 implies β = 0, for all t ∈ [0, T ].

(63)
Define

H[ᾱ, p](t±, u, y) := αℓ(u, y) + pt±f(t, t, u, y) +

∫ T

t

psDτf(s, t, u, y)ds. (64)

Theorem 4.1 (Continuity of the control). Let (ū, ȳ) be a Pontryagin extremal
for (P ) with associated Pontryagin multiplier (ᾱ, η̄, Ψ̄, p̄).
(i) Assume that, for some R > ‖ū‖∞, H[ᾱ, p̄](t±, ·, ȳt) has, for all t ∈ (0, T ), a
unique minimum w.r.t. the control over B(0, R), denoted ût±. Then (a repre-
sentative of) ū has side limits on [0, T ], equal to ût±.
(ii) Assume that ū has side limits on [0, T ] and that (62) holds. Then ū is con-
tinuous.
(ii) Assume that the control is continuous and that (63) holds. Then the mul-
tipliers ηi associated with components gi of the state constraint of first order
(qi = 1) are continuous on [0, T ].

Proof. (i) It suffices to derive the desired property for left limits. So take τ ∈
(0, T ) and let tk ↑ τ be such that ūtk

= ûtk±. We can actually take subsequences
for which the ± has constant sign, so for instance assume that ūtk

= ûtk−. Let
ũ be a limit point of ūtk

. Then

H[ᾱ, p̄τ ](τ−, ũ, ȳτ ) = limk H[ᾱ, p̄tk
](tk−, ūtk−

, ȳtk
)

≤ limk H[ᾱ, p̄tk
](tk−, ûτ−, ȳtk

) = H[ᾱ, p̄τ ](τ, ûτ−, ȳτ ).

In view of the hypothesis, this implies ũ = ûτ−, as was to be proved.
(ii) Given t ∈ [0, T ] and σ ∈ [0, 1], we apply to F (σ) := DuH

σ[ᾱ, p̄](t, ūσ
t , ȳt)

the identity F (1) − F (0) =
∫ 1

0
F ′(σ)dσ, valid since F is of class C1. Since

F ′(σ) = D2
uuH

σ[ᾱ, p̄](t, ūσ
t , ȳt)[ūt] − [ηt]g

′(ȳt)Duf(t, t, ūσ
t , ȳt), (65)
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14 J.F. Bonnans and C. de la Vega

we have

0 = DuH
1[ᾱ, p̄](t, ūt+, ȳt) −DuH

0[ᾱ, p̄](t, ūt−, ȳt) = F (1) − F (0)

=

∫ 1

0

(
D2

uuH
σ[ᾱ, p̄](t, ūσ

t , ȳt)[ūt] − [η̄t]g
′(ȳt)Duf(t, t, ūσ

t , ȳt)
)
dσ.

(66)

Note that the integral term in the Hamiltonian has no contribution in the above
difference. Therefore the remaining analysis is identical to the one of the stan-
dard case of the optimal control of an ODE. We give a short proof in order to

make the paper self-contained. Observing that g′iDuf = Dũg
(1)
i = 0 if qi > 1,

and setting νi := [η̄i,t], we obtain that

∫ 1

0

D2
uuH

σ[ᾱ, p̄](t, ūσ
t , ȳt)[ūt]dσ =

∑

i∈I1

νig
′
i(ȳt)

∫ 1

0

Duf(t, t, ūσ
t , ȳt)dσ. (67)

Taking the scalar product of both sides of (67) by [ūt], we get using hypothesis

(62) and the relation
∫ 1

0
Duf(t, t, ūσ

t , ȳt)[ūt]dσ = [f(t, t, ūσ
t , ȳt)] that

αH |[ūt]|
2 ≤

∑

i∈I1

νig
′
i(ȳt)[f(t, t, ūσ

t , ȳt)] =
∑

i∈I1

νi[g
(1)
i (t, ūt, ȳt, ū, ȳ)]. (68)

If νi > 0, then gi(ȳt) = 0, and since gi(ȳt) attains a local maximum at time t,

[g
(1)
i (t, ūt, ȳt, ū, ȳ)] ≤ 0. Therefore, the right-hand side in (68) is a nonpositive.

By (62), [ūt] = 0. Point (ii) follows.
(iii) Since [ūt] = 0, the right-hand side of (67) reduces to

∑

i∈I1

νiDũg
(1)
i (t, ūt, ȳt, ū, ȳ),

and is equal to the zero l.h.s. We conclude with (63), using the inequality
ν ≥ 0.

5 The alternative optimality system

5.1 First-order alternative system

We next provide an extension of the theory of alternative optimality system to
the setting of integral equations. This is a key property for establishing the
Lipschitz regularity of the optimal control. Similarly to [20] (see also [27]), we
define the alternative multiplier and costate, elements of M and P resp., as

η1
t := −η̄t; p1

t := p̄t − η1
t g

′(ȳt), t ∈ [0, T ]. (69)

In view of the costate equation (3), we have that

−dp1
t = −dp̄t +

∑ng

i=1 g
′
i(ȳt)dη

1
i,t + η1

t g
′′(ȳt) ˙̄ytdt

=
(
ᾱDyℓ(ūt, ȳt) + p̄tDyf(t, t, ūt, ȳt) + η1

t g
′′(ȳt)f(t, t, ūt, ȳt)

)
dt

+
(∫ T

t
p̄sD

2
τ,yf(s, t, ūt, ȳt)ds+ η1

t g
′′(ȳt)

∫ t

0
Dτf(t, s, ūs, ȳs)ds

)
dt.

(70)
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Therefore p1 is absolutely continuous. Substituting p̄t = p1
t + η1

t g
′(ȳt) in the

previous r.h.s., using the identity

g′(ȳt)Dyf(t, t, ūt, ȳt) + g′′(ȳt)f(t, t, ūt, ȳt) =
d

dy
[g′(ȳt)f(t, t, ūt, ȳt)] , (71)

and having in mind the expression (49) of g
(1)
i (t, ut, yt, u, y), we obtain

−dp1
t = ᾱDyℓ(ūt, ȳt) + p1

tDyf(t, t, ūt, ȳt) +

∫ T

t

p1
sD

2
τ,yf(s, t, ūt, ȳt)ds

+η1
tDỹg

(1) +

∫ T

t

η1
sg

′(ȳs)D
2
τ,yf(s, t, ūt, ȳt)ds.

(72)

This leads to define the alternative Hamiltonian, in which (ũ, ỹ) ∈ IRm × IRn,
u ∈ U and y ∈ Y:

H1[α, p1, η1](t, ũ, ỹ, u, y) := H[α, p1](t, ũ, ỹ) + η1g(1)(t, ũ, ỹ, u, y)+∫ T

t

η1
sg

′(ȳs)Dτf(s, t, ũ, ỹ)ds.
(73)

Then the dynamics of the alternative costate can be written as

−ṗ1
t = DỹH

1[ᾱ, p1, η1](t, ūt, ȳt, ū, ȳ), t ∈ (0, T ). (74)

The initial-final conditions for the alternative costate are

(−p1
0 − η1

0g
′(ȳ0), p

1
T ) = Φ′[ᾱ, Ψ̄](ȳ0, ȳT ). (75)

When analyzing the dependance of the alternative Hamiltonian w.r.t. ũ we note
that

H1[α, p1, η1](t, ũ, ȳt, ū, ȳ) = H[α, p̄](t, ũ, ȳt) + η1
t g

′(ȳt)

∫ t

0

Dτf(t, s, ūs, ȳs)ds.

(76)
It follows that stationarity or minimality of H w.r.t. u holds iff H1 has the
same property w.r.t. ũ. So the Hamiltonian inequality (9) is equivalent to the
corresponding one for the alternative system:

H1[ᾱ, p1, η1](t, ūt, ȳt, ū, ȳ) ≤ H1[ᾱ, p1, η1](t, u, ȳt, ū, ȳ),
for all u ∈ IRm, for a.a. t ∈ (0, T ).

(77)

5.2 Lipschitz behavior of the control variable

In this section we assume that the control is continuous and that all constraints
are of first order, so that we may denote I(t) = I1(t). Consider the following
hypothesis, stronger than (63) (we have removed the hypothesis of nonnegativity
of β):

∑

i∈I(t)

βiDũg
(1)
i (t, ūt, ȳt, ū, ȳ) = 0 implies β = 0, for all t ∈ [0, T ]. (78)

Our next hypothesis is of strong Legendre-Clebsch type, reduced to a sub-
space:

For some αH > 0 : αH |υ|2 ≤ D2
uuH[ᾱ, p̄](t, ūt, ȳt)(υ, υ),

whenever Dũg
(1)
i (t, ūt, ȳt, ū, ȳ)υ = 0, for all i ∈ I(t), t ∈ [0, T ].

(79)
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Theorem 5.1. Assume that all state constraints are of first order. Let (ū, ȳ, p̄, η̄)
be a first-order extremal and associated multipliers, with ū continuous. If hy-
potheses (78) and (79) hold, then ū and η̄ are Lipschitz function of time.

Proof. We adapt the idea of [20]. For t ∈ [0, T ], denote by Ī(t) := {1, . . . , ng} \
I(t) the set of non active first-order constraints. We partition the alternative
multiplier at time t into η1

t = (η̂t, η̃t), where η̂ (resp. η̃) stands for the com-
ponents in I(t) (resp. Ī(t)). We identify η̃ with its extension by zero for the
components of η1 in I(t). Consider the function, where η̃1 ∈ IR|I(t)|∗:

F [t, ū, ȳ, α, p1, η1, η̃1](u) := H[α, p1](t, u, ȳt) + η̃1g(1)(t, u, ȳt, ū, ȳ)

+

∫ T

t

η1
sg

′(ȳs)Dτf(s, t, u, ȳt)ds,
(80)

whose expression is close to the one of the alternative Hamiltonian, but with η̃1
t

instead of η1
t in the second term of the sum in the r.h.s. Consider the nonlinear

programming problem

Min
u∈Rm

F [t, ū, ȳ, α, p1, η1, η̃1](u) subject to g
(1)
i (u, ȳt, ū, ȳ) = 0, i ∈ I(t). (81)

We claim that ūt is a local solution of this problem. Indeed, let gi(ȳt) be a
first-order state constraint. Its total derivative is continuous since ū is so, and
is equal to zero whenever it is active since gi(ȳt) reaches a local maximum. It
follows that ūt is feasible for problem (81).

By the qualification hypothesis (78), there exists a unique Lagrange multi-
plier. In view of the alternative optimality system, the latter is nothing but η̂t.
The expression of the first-order optimality conditions (where the variables are
(u, η̂t)) is

DuH
1[ᾱ, p1, η1

t ](t, u, ȳt, ū, ȳ) = 0; g
(1)
i (u, ȳt, ū, ȳ) = 0, i ∈ I(t). (82)

Hypothesis (79) is a well-known sufficient condition for local optimality for non-
linear programming problems. It follows that ūt is a local solution of (81), as
was claimed.

Having (76) in mind, we see that the Jacobian of optimality conditions (82)
w.r.t. unknowns (u, η̂) is

(
D2

uuH[ᾱ, p̄, η1
t ](t, ūt, ȳt) Dũg

(1)
I(t)(ūt, ȳt, ū, ȳ)

⊤

Dũg
(1)
I(t)(ūt, ȳt, ū, ȳ) 0

)
. (83)

In view of hypotheses (78)-(79), this Jacobian is invertible at (ūt, η̂t).
Let (a, b) be a compatible pair, in the sense of section 7.1, for the set I(t).

Then Ī(a) = Ī(b). The data of problem (81) satisfy a Lipschitz condition,
with a constant not depending on the particular (a, b), since either they are
indeed Lipschitz functions of time, or, in the case of η̃1, it has the same value at
time a and b. By the implicit function theorem, applied to (82), and standard
compactness arguments, there exists ε > 0 and c > 0 such that, if b < a + ε,
then

|ūb−ūa|+|η1
b−η

1
a| ≤ c(b−a), for all compatible pairs (a, b) such that b < a+ ε.

By lemma 7.1, (ū, η1) is Lipschitz over (a, b) whenever b < a+ε. The conclusion
follows.
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6 Conclusion

We have performed a partial extension of the theory of optimal control with run-
ning and initial-final state constraints problems to the case of integral equations,
obtaining a version of Pontryagin’s principle as well as continuity properties for
the control and the multipliers associated to first order state constraints. We
also obtained Lipschitz properties for these variables in the case when all state
constraints are of first order.

We leave open the question of second order optimality conditions; see e.g.
[8] (without initial-final state constraints) and the analysis of related shooting
algorithms in [9]. This involves the analysis of junction points associated to
high order state constraints. Of course the shooting algorithm by itself, viewed
as the analysis of an autonomous state-costate differential equation, is not valid
(think to the case of an unconstrained system). However, the sensitivity analysis
for junction points and variations of the state and costate under a perturbation
might be extended to the present framework.

Some other types of systems with memory have been considered as in Carlier
and Tahraoui [11], Samassi and Tahraoui [30]. It would be of interest to extend
the analysis of state constrained problems to these frameworks, as well as for
systems with delays.

7 Appendix

7.1 Hager’s lemma

We recall Hager’s lemma [20]; see [5] for a slightly simplified proof. Let X be
a Banach space, and x be a continuous function [0, 1] → X. Let I : [0, 1] →
{1, . . . , n} be upper continuous, i.e.,

If tn → t ∈ [0, 1], and i ∈ I(tn), then i ∈ I(t). (84)

We will speak of I(t) as a set of active constraints since this is the case in our
application. We say that the pair (a, b) in [0, 1]2 is compatible if

a < b; I(a) = I(b); I(t) ⊂ I(a), for all t ∈ (a, b), (85)

i.e., the same constraints are active at times a and b, and no other constraint
is active for t ∈ (a, b). We say that L > 0 is a Lipschitz constant for x over
E ⊂ [0, 1]2 if

‖x(a) − x(b)‖ ≤ L|b− a| whenever (a, b) ∈ E. (86)

Lemma 7.1. Assume that x ∈ C([0, T ], X) and that I is upper continuous. Let
L > 0 be a Lipschitz constant for x over the set of compatible pairs. Then L is
a Lipschitz constant for x i.e., we have that

‖x(a) − x(b)‖ ≤ L|b− a|, for all (a, b) ∈ [0, 1]2. (87)
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